JPS61154077A - Manufacture of mosfet - Google Patents

Manufacture of mosfet

Info

Publication number
JPS61154077A
JPS61154077A JP27369184A JP27369184A JPS61154077A JP S61154077 A JPS61154077 A JP S61154077A JP 27369184 A JP27369184 A JP 27369184A JP 27369184 A JP27369184 A JP 27369184A JP S61154077 A JPS61154077 A JP S61154077A
Authority
JP
Japan
Prior art keywords
concentration impurity
gate
oxide film
polycrystalline silicon
silicon layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP27369184A
Other languages
Japanese (ja)
Inventor
Toshiki Tsushima
対馬 敏樹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP27369184A priority Critical patent/JPS61154077A/en
Publication of JPS61154077A publication Critical patent/JPS61154077A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate

Abstract

PURPOSE:To obtain a MOSFET having high withstanding voltage between a fined drain and a substrate by forming a high-concentration impurity region having a conduc tion type reverse to the substrate, oxidizing the whole surface, removing the whole high-concentration impurity region and shaping a low-concentration impurity region having the conduction ytpe reverse to the semiconductor substrate while using a gate- shaped substance miniaturized through oxidation as a mask. CONSTITUTION:A gate oxide film 12 and a polycrystalline silicon layer 13 are formed onto a P-type silicon substrate 11. The polycrystalline silicon layer 13 and the gate oxide film 12 are patterned to a gate form in succession through wet etching. Phosphorus ions are implanted while employing the polycrystalline silicon layer 13 as a mask to shape a deep high-concentration impurity layer 16. An oxide film 15 is shaped onto the whole surface through thermal oxidation. A polycrystalline silicon layer 13A is miniaturized at that time. The oxide film 15 is removed, and phosphorus ions are implanted while using the gate of the polycrystalline silicon layer 15A miniaturized as a mask to form a shallow low-concentration impurity layer 14. Phosphorus implanted for shaping the low-concentration impurity region 14 and the high- concentration impurity region 167 is activated through heat treatment.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は半導体装置の製造方法に係り、特に基板とドレ
イン間の耐圧を向上した構造のMOSFETの製造方法
に関する。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a method for manufacturing a semiconductor device, and particularly to a method for manufacturing a MOSFET having a structure with improved breakdown voltage between a substrate and a drain.

〔発明の技術的背景とその間4点〕 M08FFfTの通常の構造では基板とドレイン間の接
合の逆電界の他にゲートとドレインの電界が加わるため
ドレインの基板側に拡がる空乏層は基板表面のチャネル
領域付近で余り拡がらず、電界の高い領域が生じ、なだ
れ降伏が起り易くなる。
[Technical background of the invention and 4 points] In the normal structure of M08FFfT, in addition to the reverse electric field of the junction between the substrate and drain, the electric field of the gate and drain is applied, so the depletion layer that spreads toward the substrate side of the drain becomes a channel on the substrate surface. It does not spread much near the region, creating a region with a high electric field, making avalanche breakdown more likely.

そのため、MOSFETのドレインと基板間の耐圧は、
ドレインと基板間のpn接合単独のそれと比べてかなり
低い値となってしまい、素子としての特性上低下させ信
頼性を落としてしまう。これを改善した他の構造のMO
SFETが知られている。
Therefore, the breakdown voltage between the MOSFET drain and substrate is
This value is considerably lower than that of the pn junction alone between the drain and the substrate, which deteriorates the characteristics of the device and reduces its reliability. MO of other structure that improved this
SFET is known.

半導体のpn接合には空乏層領域が生じる。その空乏層
領域の幅は、p形n形各々の半導体の不純物濃度に関係
し、その値が小さい種牛じる空乏層の幅は大きくなる。
A depletion layer region occurs in a pn junction of a semiconductor. The width of the depletion layer region is related to the impurity concentration of the p-type and n-type semiconductors, and the smaller the value, the larger the width of the depletion layer.

したがって、MO8FBTの中でpn接合の1つである
ドレインと基板間において、ドレインの不純物濃度を低
くするとその間に生じる空乏層が拡がるので、今まで幅
の小さな空乏層に印加されていた電圧が幅の大きな空乏
層に印加されるようになり1界集中が緩和され、ドレイ
ンと基板間の耐圧が向上する。
Therefore, when the impurity concentration of the drain is lowered between the drain, which is one of the pn junctions in MO8FBT, and the substrate, the depletion layer formed between the drain and the substrate expands, so that the voltage that was previously applied to the narrow depletion layer becomes wider. Since the current is applied to a large depletion layer, the concentration of one field is alleviated, and the withstand voltage between the drain and the substrate is improved.

上記を実現させるMO8FBTの構造として、ゲートと
ドレイン、が離れているオフセットゲート構造のMO8
FBTにおいてイオン注入によりオフセット部分に自己
整合的に低濃度不純物領域を形成したものが知られてい
る。低濃度不純物領域とゲート間での耐圧低下は起こら
ないためドレインと基板間の耐圧は向上する。一般にこ
のような構造をL D D (Lightly Dop
ed Drain )構造と呼ぶ。
The MO8FBT structure that achieves the above is an offset gate structure in which the gate and drain are separated.
An FBT in which a low concentration impurity region is formed in a self-aligned manner at an offset portion by ion implantation is known. Since no reduction in breakdown voltage occurs between the low concentration impurity region and the gate, the breakdown voltage between the drain and the substrate is improved. Generally, such a structure is called LDD (Lightly Dop
ed Drain) structure.

以下、LDD@造のMO8FBTの従来の製造方法を図
によって説明する。第2図は従来の一例を示すLDD構
造のMO19FETの製造工程断面図である。
Hereinafter, a conventional manufacturing method of MO8FBT manufactured by LDD@ will be explained with reference to the drawings. FIG. 2 is a cross-sectional view of a manufacturing process of an MO19FET having an LDD structure, showing an example of the conventional method.

第2図(1)に示すように、p形シリコン基板21上△ に膜厚500又のゲート酸化膜22を熱酸化法により形
成し、その上に化学気相成長(以下CVDと略す)法に
より膜厚aooo、にの多結晶シリコン層23を形成し
、燐(P)を拡教する。その後、ゲート形状に多結墨シ
リコン層23とゲート酸化膜22をパターニングする。
As shown in FIG. 2 (1), a gate oxide film 22 with a thickness of 500 mm is formed on a p-type silicon substrate 21 by thermal oxidation method, and then chemical vapor deposition (hereinafter abbreviated as CVD) is applied on top of the gate oxide film 22. A polycrystalline silicon layer 23 with a thickness of aooo is formed using the following steps, and phosphorus (P) is diffused therein. Thereafter, the multi-ink silicon layer 23 and the gate oxide film 22 are patterned into a gate shape.

次に第2図(b)に示すように、多結晶シリコン層23
をマスクとして、注入量2 X 10■(cm−”) 
+注入エネルギー40(KeV:)の条件で燐(P)の
イオン注入を行ない浅い低濃度不純物領域24を形成す
る。次に第2図(c)に示すように、CVD法を用いて
膜厚5000λの酸化膜25を形成する。次に第2図(
c+)に示すように、反応性イオンエツチング(以下几
113と略す)により多結晶シリコン層23が露出する
まで酸化膜25(i−除去する。この際、多結晶シリコ
ン23の側面では膜厚的3ooo&の酸化膜25Aが残
る。次に第2図(e)に示すように、多結晶シリコン層
23及びその側面の酸化膜25人をマスクとして注入量
2 X 10” (m−”) 、注入エネルギー40 
(Key)の条件で燐(Plのイオン注入を行ない深い
高1度不純物領域26を形成する。その後、熱処理によ
り各不純物領域の不純物は活性化され、LDD構造のM
OS F ETが得られる。
Next, as shown in FIG. 2(b), a polycrystalline silicon layer 23
As a mask, injection amount 2 x 10cm (cm-”)
A shallow low concentration impurity region 24 is formed by ion implantation of phosphorus (P) under the condition of +implantation energy of 40 (KeV:). Next, as shown in FIG. 2(c), an oxide film 25 having a thickness of 5000λ is formed using the CVD method. Next, Figure 2 (
As shown in c+), the oxide film 25 (i-) is removed by reactive ion etching (hereinafter abbreviated as 113) until the polycrystalline silicon layer 23 is exposed. An oxide film 25A of 3ooo& is left behind. Next, as shown in FIG. energy 40
(Key) ion implantation of phosphorus (Pl) is performed to form a deep high degree impurity region 26. After that, the impurity in each impurity region is activated by heat treatment, and the M of the LDD structure is
OS FET is obtained.

しかし、従来の技術には以下のような問題点がある。However, the conventional technology has the following problems.

CVD法により形成される酸化膜の厚さは所定数値の士
約10%であり熱酸化法による士約2にに比ベバラツキ
が大きい。したがって、ゲート電極である多結晶シリコ
ン層23上の酸化膜25は一七の膜厚にバラツキが大き
いため、その総てをRI)3により除去する際、活性イ
オンがシリコン基板21表面及び多結−晶シリコン層2
3表面に直接衝突する部分がありその表面がエツチング
され損傷が生じる恐れがある。
The thickness of the oxide film formed by the CVD method is about 10% of the predetermined value, and the variation is large compared to about 2% of the predetermined value. Therefore, since the oxide film 25 on the polycrystalline silicon layer 23 which is the gate electrode has large variations in film thickness, when all of it is removed by RI)3, active ions are -crystalline silicon layer 2
3. There is a part that directly collides with the surface, and there is a risk that the surface will be etched and damaged.

又、RIBによるエツチングそれ自体にも多少場所によ
るバラツキがあるため、上述と同様な恐れがある。
Furthermore, since the etching by RIB itself has some variation depending on the location, there is a possibility similar to that described above.

又、ゲート酸化膜である多結晶シリコン層23の側面に
形成する酸化膜25Aの形状は、多結晶シリコン層23
の厚さ及び長さ及び幅や酸化膜25の厚さに依存するの
で、所定の形状に制御することは−しい。そのため、そ
の形状がなだらかに伸びてしまい、後工程のイオン注入
におけるマスクとして所定1部分のみを覆うことが難し
い。
Further, the shape of the oxide film 25A formed on the side surface of the polycrystalline silicon layer 23, which is the gate oxide film, is similar to that of the polycrystalline silicon layer 23.
It is difficult to control the shape to a predetermined shape because it depends on the thickness, length, and width of the oxide film 25 and the thickness of the oxide film 25. Therefore, its shape stretches gently, making it difficult to cover only one predetermined portion as a mask for ion implantation in a subsequent process.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、信頼性の高い微細化されたLDD構造
のM08FFiTを容易に得ることができる製造方法を
提供することにある。
An object of the present invention is to provide a manufacturing method that can easily obtain a highly reliable M08FFiT having a miniaturized LDD structure.

〔発明の概要〕[Summary of the invention]

本発明は、半導体基板上にゲート絶縁膜を形成し、その
上にゲート形状に物質を形成し、このゲート形状の物質
をマスクとして半導体基板と反対導電型の高濃度不純物
領域を形成し、全面を酸化した後に総て除去し、酸化さ
れて小さくなったゲート形状の物質をマスクとして半導
体基板と反対導電型の低濃度不純物領域を形成するドレ
インと基板間が高耐圧であるMO8FETの製造方法で
ある。
In the present invention, a gate insulating film is formed on a semiconductor substrate, a material is formed in the shape of a gate on it, and a highly concentrated impurity region of the opposite conductivity type to the semiconductor substrate is formed using this gate-shaped material as a mask. This method of manufacturing MO8FETs has a high breakdown voltage between the drain and the substrate, in which the oxidized gate-shaped material is used as a mask to form a low concentration impurity region of the opposite conductivity type to the semiconductor substrate. be.

〔発明の実施例〕[Embodiments of the invention]

以下本発明の一実施例を図面によって説明する。 An embodiment of the present invention will be described below with reference to the drawings.

第1図は本発明の一実施例を示す製造工程断面図である
FIG. 1 is a sectional view of a manufacturing process showing an embodiment of the present invention.

第1図(a)に示すように、P型シリコン基板ll上に
ドライ酸素雰囲気中で900℃10分間のMd化により
膜厚500Xのゲート酸化膜12を形成し、その上面に
CVD法により膜厚3000Xの多結晶シリコン層13
を形成する。その後反応性イオンエツチング(8丁・E
)により多結晶シリコン層13を、7ツ化アンモニウム
(NH,F)液を用いたウェットエツチングによりゲー
ト酸化膜12を頭次ゲート形状にバターニングする。次
に第1図(b)に示すように、ゲート形状にパターニン
グした多結晶7リコン層13をマスクとして、注入量2
XI011〔副〕、注入エネルギー40 (KeV )
の条件で燐(P)のイオン注入を行ない、深い高濃度不
純物層16を形成する。次に第1図(c)に示すよりV
C,ドライ酸素雰囲気中で950℃、15分間の熱酸化
により全面に酸化膜15を形成する。この際、多結晶シ
リコン層13の表出部側は酸化されるので、多結晶シリ
コン層13Aは小さくなってしまり。
As shown in FIG. 1(a), a gate oxide film 12 with a thickness of 500× is formed on a P-type silicon substrate 11 by Md treatment at 900° C. for 10 minutes in a dry oxygen atmosphere, and a film is deposited on its upper surface by CVD. Polycrystalline silicon layer 13 with a thickness of 3000X
form. After that, reactive ion etching (8 pieces/E
), and the gate oxide film 12 is patterned into a vertical gate shape by wet etching using an ammonium 7tride (NH,F) solution. Next, as shown in FIG. 1(b), using the polycrystalline silicon layer 13 patterned in the gate shape as a mask, the implantation amount is 2.
XI011 [sub], implantation energy 40 (KeV)
Phosphorus (P) ion implantation is performed under these conditions to form a deep high concentration impurity layer 16. Next, as shown in Fig. 1(c), V
C. An oxide film 15 is formed on the entire surface by thermal oxidation at 950° C. for 15 minutes in a dry oxygen atmosphere. At this time, since the exposed side of the polycrystalline silicon layer 13 is oxidized, the polycrystalline silicon layer 13A becomes smaller.

次に第1図(d)に示すように、酸化膜15をフッ化ア
ンモニウム(NH,PJ液を用い九ウェットエツチング
により除去する。ここで、前工程の酸化により、多結晶
シリコン層13人のゲートは小さくなりているので、ゲ
ートとソース・ドレインが重ならないオフセット構造と
なっている。次に第1図(+りに示すように、小さくな
った多結晶シリコン層13Aのゲートをマスクとして注
入量2X10”(m  、l。
Next, as shown in FIG. 1(d), the oxide film 15 is removed by wet etching using ammonium fluoride (NH, PJ solution). Since the gate is smaller, it has an offset structure in which the gate and source/drain do not overlap. Next, as shown in Figure 1 (+), implantation is performed using the gate of the polycrystalline silicon layer 13A, which has become smaller, as a mask. Amount 2X10” (m, l.

注入エネルギー40(KeV”lの条件で燐(P)のイ
オン注入を行ない、浅い低濃度不純物層14を形成する
。その後、1050℃、20分間の熱処理により低濃度
不純物領域14と、高濃度不純物領域16を形成するた
めに注入した燐(Plを活性化する。
Phosphorus (P) ions are implanted under conditions of implantation energy of 40 (KeV"l) to form a shallow low concentration impurity layer 14. Thereafter, a heat treatment at 1050° C. for 20 minutes forms the low concentration impurity region 14 and the high concentration impurity layer. Activate the phosphorus (Pl) implanted to form region 16.

以上のようにして、LDD構造のMOS F )!iT
を得ることができる。
As described above, the LDD structure MOS F)! iT
can be obtained.

以上説明したこの実施例によれば以下の効果が得られる
According to this embodiment described above, the following effects can be obtained.

従来技術ではCVD法による膜厚の不均一な酸化膜25
を、場所によるエツチングのバラツキのあるRIFit
−用いて、多結晶シリコン層23が露出するまで除去す
る。したがって、1%ll1tによるシリコン基板21
表面の損傷が部分的に生じ、又後のイオン注入の際にマ
スクとなる多結晶シリコン層23のゲートの側面に形成
される酸化膜25人の形状制御が難しい。しかし、 こ
の実施例ではRIEによる活性イオンがシリコン基板1
1に直接衝突する可能性はないので、シリコン基板11
表面に損傷を与えることはない。更に、多結晶シリコン
層のゲートの側面に酸化膜15を形成する際、CVD法
ではなく熱酸化法を用いるのでその形状制御が正確にな
るので、微細化が可能となる。
In the conventional technology, an oxide film 25 with a non-uniform thickness is formed using the CVD method.
, RIFit has variations in etching depending on location.
- Remove the polycrystalline silicon layer 23 until it is exposed. Therefore, the silicon substrate 21 by 1%ll1t
The surface is partially damaged, and it is difficult to control the shape of the oxide film 25 formed on the side surface of the gate of the polycrystalline silicon layer 23, which will serve as a mask during subsequent ion implantation. However, in this example, the active ions due to RIE are
Since there is no possibility of direct collision with silicon substrate 11
Will not damage surfaces. Further, when forming the oxide film 15 on the side surface of the gate of the polycrystalline silicon layer, a thermal oxidation method is used instead of a CVD method, so that its shape can be precisely controlled, and miniaturization becomes possible.

なお、本発明は上述し九実施例に限定されるものではな
く、その要旨を脱しない範囲で変更して実施することが
できる。例えば、シリコン基板1.1の導′−型はp形
に限らすル形でもよいのは勿論のことである。又、酸化
工程の際、実施例ではドライ熱酸化法によるが、CVD
法を除く他の酸化法例えばウェット熱酸化法で置きかえ
てもよい。又、多結晶シリコン層13や熱酸化法による
酸化J[15をエツチングする際十分な膜厚であれば、
実施例では几Igt−用いているが、ウェットエツチン
グ等それ以外のエツチング方法で置きかえてもよい。
It should be noted that the present invention is not limited to the nine embodiments described above, and can be implemented with modifications within the scope of the invention. For example, the conductive type of the silicon substrate 1.1 is not limited to the p-type, but it goes without saying that it may be of the round type. In addition, during the oxidation process, although dry thermal oxidation method is used in the example, CVD
Alternatively, other oxidation methods such as wet thermal oxidation may be used instead. Also, if the film thickness is sufficient when etching the polycrystalline silicon layer 13 or the oxidized J[15 by thermal oxidation method,
Although Igt etching is used in the embodiment, other etching methods such as wet etching may be used instead.

又、多結晶シリコン層13のゲートをマスクトシて不純
物のイオン注入を行なう際、実施例では注入する部分の
ゲート酸化[12を除去した後に行なりたが、ゲート酸
化膜12は十分薄いので除去せずにそれを介して行なう
こともできる。又、ゲート物質として、実施例では燐(
PJを含んだ多結晶シリコン層13t−用いているが、
半導体基板よりも酸化速度が早い物質であれば置きかえ
てもよい。
Furthermore, when performing impurity ion implantation by masking the gate of the polycrystalline silicon layer 13, in the embodiment, the implantation was performed after removing the gate oxidation [12] of the implanted portion, but since the gate oxide film 12 is sufficiently thin, it is not necessary to remove it. You can also do it through it. In addition, as a gate material, phosphorus (
Although a polycrystalline silicon layer 13t containing PJ is used,
Any substance may be replaced as long as it has a faster oxidation rate than the semiconductor substrate.

c′発明の効果〕 本発明によれば、製造工程の中でCVD法や半導体基板
表面に損傷を与える恐れのめるRIBt−用いず、又自
己整合的に不純物領域を形成するので、信頼性の高い微
細化されたドレイン基板間が高耐圧のMO8F l1i
Tt−容易に製造できる。
c' Effects of the invention] According to the present invention, impurity regions are formed in a self-aligned manner without using the CVD method or with RIBt, which may damage the semiconductor substrate surface, in the manufacturing process, resulting in high reliability. MO8F l1i with high breakdown voltage between miniaturized drain and substrate
Tt - Easy to manufacture.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例を示すMOSFETの製造工
程断面図、第2図は従来の一例を示すMO8FETの製
造工程断面図である。 11.21・・・シリコン基板。 12.22・・・ゲート酸化膜。 13.23・・・多結晶シリコン層。 14.24・・・低濃度不純物領域。 15.25・・・酸化膜。 16.26・・・高濃度不純物領域。 代理人 弁理士 則 近 憲 佑 (ほか1名) 第1図
FIG. 1 is a cross-sectional view of the manufacturing process of a MOSFET showing an embodiment of the present invention, and FIG. 2 is a cross-sectional view of the manufacturing process of a MO8FET showing an example of the conventional art. 11.21...Silicon substrate. 12.22...Gate oxide film. 13.23...Polycrystalline silicon layer. 14.24...Low concentration impurity region. 15.25...Oxide film. 16.26...High concentration impurity region. Agent: Patent attorney Noriyuki Chika (and 1 other person) Figure 1

Claims (1)

【特許請求の範囲】[Claims]  半導体基板上にゲート絶縁膜を形成する工程と、この
ゲート絶縁膜上にゲートとなる物質を所定形状に形成す
る工程と、この所定形状の物質をマスクとして前記半導
体基板内にこの半導体基板と反対導電型の高濃度不純物
領域を形成する工程と、前記半導体基板及び前記所定形
状の物質の表出部を酸化する工程と、この酸化膜を除去
する工程と、前記所定形状の物質の酸化されない部分を
マスクとして前記半導体基板内にこの半導体基板と反対
導電型の前記高濃度不純物領域より浅い低濃度不純物領
域を形成する工程とを含むことを特徴とするMOSFE
Tの製造方法。
A step of forming a gate insulating film on a semiconductor substrate, a step of forming a material to be a gate in a predetermined shape on the gate insulating film, and a step of forming a material in the semiconductor substrate opposite to the semiconductor substrate using the material in the predetermined shape as a mask. a step of forming a high concentration impurity region of a conductive type; a step of oxidizing the exposed portion of the semiconductor substrate and the material having the predetermined shape; a step of removing the oxide film; and a portion of the material having the predetermined shape that is not oxidized. forming a low concentration impurity region shallower than the high concentration impurity region of a conductivity type opposite to that of the semiconductor substrate in the semiconductor substrate using as a mask.
Method for manufacturing T.
JP27369184A 1984-12-27 1984-12-27 Manufacture of mosfet Pending JPS61154077A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27369184A JPS61154077A (en) 1984-12-27 1984-12-27 Manufacture of mosfet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27369184A JPS61154077A (en) 1984-12-27 1984-12-27 Manufacture of mosfet

Publications (1)

Publication Number Publication Date
JPS61154077A true JPS61154077A (en) 1986-07-12

Family

ID=17531207

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27369184A Pending JPS61154077A (en) 1984-12-27 1984-12-27 Manufacture of mosfet

Country Status (1)

Country Link
JP (1) JPS61154077A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007520879A (en) * 2004-01-14 2007-07-26 東京エレクトロン株式会社 Method for trimming gate electrode

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007520879A (en) * 2004-01-14 2007-07-26 東京エレクトロン株式会社 Method for trimming gate electrode

Similar Documents

Publication Publication Date Title
KR940006702B1 (en) Manufacturing method of mosfet
KR100225409B1 (en) Trench dmos and method of manufacturing the same
JPH10150195A (en) Mosfet and its manufacture
JPS6055665A (en) Manufacture of semiconductor device
US5879995A (en) High-voltage transistor and manufacturing method therefor
KR0183785B1 (en) Method of manufacturing mos transistor
JPH0234936A (en) Semiconductor device and its manufacture
JPS61154077A (en) Manufacture of mosfet
JPS61234077A (en) Mis type field effect transistor
KR0170436B1 (en) Method of manufacturing mosfet
JPH03198349A (en) Manufacture of mos type semiconductor device
JPS61154078A (en) Manufacture of mosfet
JPS61154076A (en) Manufacture of mosfet
KR910009042B1 (en) Method of manufacturing a semiconductor device
KR940002778B1 (en) Manufacturing method for ldd-strucutred tr
KR100873816B1 (en) Method for manufacturing transistor
JP3656867B2 (en) Manufacturing method of fine MOS transistor
KR0186019B1 (en) Method of processing trench capacitor cell
JPH0541516A (en) Semiconductor device and its manufacture
KR100280798B1 (en) Transistor manufacturing method of semiconductor device
KR0160917B1 (en) Method for fabricating self-alignment type mosfet
JPH0778979A (en) Fabrication of semiconductor device
KR930009581B1 (en) Method for manufacturing a semiconductor device
JPH10261795A (en) Insulating gate-type field-effect transistor and its manufacture
JP2002110813A (en) Semiconductor device and its manufacturing method