JPS6055665A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPS6055665A
JPS6055665A JP16366883A JP16366883A JPS6055665A JP S6055665 A JPS6055665 A JP S6055665A JP 16366883 A JP16366883 A JP 16366883A JP 16366883 A JP16366883 A JP 16366883A JP S6055665 A JPS6055665 A JP S6055665A
Authority
JP
Japan
Prior art keywords
gate electrode
layer
oxide film
gate
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP16366883A
Other languages
Japanese (ja)
Inventor
Sanehiro Sekiguchi
関口 修弘
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP16366883A priority Critical patent/JPS6055665A/en
Publication of JPS6055665A publication Critical patent/JPS6055665A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate

Abstract

PURPOSE:To inhibit the effects of short channel and punch-through by a method wherein a gate electrode material layer is selectively removed by the use of a masking member formed on the layer, a gate electrode and an insulation film being formed and the masking member being then removed; thereafter ion implantation is carried out. CONSTITUTION:A field oxide film 22 and oxide film 23, and a phosphorus-doped polycrystalline Si layer 24 are formed on a P type Si substrate 21 the semiconductor substrate, a resist pattern being formed thereon, and the Si layer 24 being then selectively removed by the CDE method, resulting in the formation of a gate electrode 26. The N type source and drain regions 28 and 29 and an MOS transistor are formed by As ion implantation to the substrate with the gate electrode 26, a gate insulation film 27, and the oxide film 22 as a mask, and then by heat treatment. Since the gate insulation film 27 remains also in the periphery of the gate electrode 26, the improvement of withstand voltages of the electrode 26 and the regions 28 and 29, the omission of the treatment of oxidation in a succeeding process, and the shallowing of the junction can be contrived.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は、半導体装置の製造方法の改良に関する。[Detailed description of the invention] [Technical field of invention] The present invention relates to an improvement in a method for manufacturing a semiconductor device.

〔発明の技術的背景とその問題点〕[Technical background of the invention and its problems]

周知の如く、半導体装置例えばMO8型トランジスタに
おいては、素子の微細化、高速化及び高密度化傾向には
めざましいものがあり、これはプロセスにおけるPEP
技術の進歩、浅い接合を形成できるイオン打込技術及び
低温プロセスによるところが大きい。
As is well known, in semiconductor devices such as MO8 type transistors, there is a remarkable trend toward miniaturization, speeding up, and higher density of elements, and this is due to PEP in the process.
This is largely due to advances in technology, ion implantation techniques that can form shallow junctions, and low-temperature processes.

特に、MO8型トランジスタのゲート幅は、近年3μm
から2μmへと微細化されており、素子の高速化、高密
度化に寄与している。しかしながら、ゲート幅が2μm
以下程度になると、いわゆるショートチャネル効果及び
バンチスルー等の不都合な問題が顕在化している。
In particular, the gate width of MO8 type transistors has been increasing to 3 μm in recent years.
It has been miniaturized from 2 μm to 2 μm, contributing to higher speed and higher density devices. However, the gate width is 2μm
Below this level, disadvantageous problems such as the so-called short channel effect and bunch-through become apparent.

従来、MO8型トランジスタとして社、例えば第1図に
示すものが知られている。図中の1はP型の半導体基板
でおる。この基板1表面には、N型のソース、ドレイン
領域2,3が形成されている。同基板1上にはフィール
ド酸化膜4が形成されており、このフィールド酸化膜4
で囲まれた前記基板1の素子領域5上にはゲート絶縁膜
6を介してゲート電極7が形成されている。こうした第
1図のMO8型トランジスタによれば、ソース、ドレイ
ン領域2,3の形成Vr、ハ、一般にセルファジインで
形成するプロセスが用いられるため、ゲート電極7とソ
ース、ドレイン領域2,3間はマスク合せの必要がなく
、素子の微細化に有利でおる。しかしながら、ソース、
ドレイン領域2,3は最終的に0.5〜1.5μmの拡
散深度となり、横方向への拡散も等方的に考えると、ソ
ース、ドレイン領域2,3にゲート11極7下の基板1
に侵入して形成される。その結果、実効チャネルは設計
チャネルよりも短くなり、しきい値が所定の値よりも低
くなる、いわゆるショートチャネル効果を生じる。
BACKGROUND OF THE INVENTION Conventionally, MO8 type transistors, such as the one shown in FIG. 1, have been known. 1 in the figure is a P-type semiconductor substrate. On the surface of this substrate 1, N-type source and drain regions 2 and 3 are formed. A field oxide film 4 is formed on the substrate 1.
A gate electrode 7 is formed on the element region 5 of the substrate 1 surrounded by a gate insulating film 6 . According to the MO8 type transistor shown in FIG. 1, the formation of the source and drain regions 2 and 3 is generally carried out using a process of cell phasing, so the gap between the gate electrode 7 and the source and drain regions 2 and 3 is masked. There is no need for alignment, which is advantageous for miniaturization of elements. However, the source
The drain regions 2 and 3 will eventually have a diffusion depth of 0.5 to 1.5 μm, and considering the lateral diffusion isotropically, the source and drain regions 2 and 3 will have a diffusion depth of 0.5 to 1.5 μm.
is formed by invading the As a result, the effective channel becomes shorter than the design channel, resulting in a threshold value lower than a predetermined value, a so-called short channel effect.

ま友、このように実効チャネルが短くなると、ソース、
ドレイン領域2,3の空乏層がつなが9、パンチスルー
してしまい、素子の耐圧が劣化する。
Mayu, when the effective channel becomes shorter like this, the source,
The depletion layers of the drain regions 2 and 3 are connected 9 and punch-through occurs, degrading the withstand voltage of the device.

しかるに、前述したショートチャネル効果、パンチスル
ー現象を抑制する最も有効な手段は、ソース、ドレイン
領域の拡散深度を浅くして実効チャネル長の短縮を防止
すればよい。しかしながら、拡散層の深さを全体的に浅
くすると、拡散層の抵抗が高くなり、回路動作上の問題
が発生する。このようなことから、最近、以下に示すL
 D D (Lightly Doped Drain
 )構造のMO8型トランジスタが提案されている。次
に、このトランジスタの製造法を第2図(a)〜(e)
を参照して説明する。
However, the most effective means for suppressing the short channel effect and punch-through phenomenon described above is to reduce the diffusion depth of the source and drain regions to prevent shortening of the effective channel length. However, if the overall depth of the diffusion layer is made shallow, the resistance of the diffusion layer increases, causing problems in circuit operation. For this reason, recently, the following L
D D (Lightly Doped Drain
) structure has been proposed. Next, the manufacturing method of this transistor is shown in Figs. 2(a) to (e).
Explain with reference to.

まず、周知の技術により、P型の半導体基板1上にフィ
ールド酸化膜4を形成した後、このフィールド酸化膜4
で囲まれた基板1の素子領域5上にゲート絶縁膜6を介
してゲート電極7 ′を形成する。つづいて、このゲー
ト電極7等をマスクとして例えば砒素をドーズ′!jk
10 偏でイオン注入し、浅いN型の不純物層11..
11゜を形成する(第2図(a)図示)。次いで、全面
にCVD 5in2膜12 ’l形成Tル(tJf、 
2 図(b)図示)。
First, a field oxide film 4 is formed on a P-type semiconductor substrate 1 using a well-known technique.
A gate electrode 7' is formed on the element region 5 of the substrate 1 surrounded by a gate insulating film 6. Next, using this gate electrode 7 etc. as a mask, for example, arsenic is dosed. jk
10 Ion implantation is performed unevenly to form a shallow N-type impurity layer 11. ..
11° (as shown in FIG. 2(a)). Next, a CVD 5in2 film 12'l is formed on the entire surface (tJf,
2 (as shown in Figure (b)).

なお、CVD 5iQi膜の代りにS i s N4膜
を用いてもよい。更に、前記CVD5iO*膜12を反
応性イオンエツチング(RIE)法でエツチングし、ゲ
ート電極7、ゲート絶縁膜6及びフィールド酸化膜4の
側壁にのみcvpsio、膜12/を残存させる(第2
図<c)図示)。この後、例えは砒素tドーズ1lt2
〜3x10Ism1テ再度イオン注入することによって
深いN型の不純物層13.。
Note that a Si s N4 film may be used instead of the CVD 5iQi film. Furthermore, the CVD5iO* film 12 is etched by reactive ion etching (RIE) to leave the CVPSIO film 12/ only on the side walls of the gate electrode 7, gate insulating film 6, and field oxide film 4 (second
Figure<c)Illustrated). After this, the example is arsenic t dose 1lt2
A deep N-type impurity layer 13.~3x10Ism1 is implanted again. .

132を形成する。その結果、不純物層11.。132 is formed. As a result, the impurity layer 11. .

131によりN型のソース領域14が形成され、かつ不
純物層11* 113MによりN型のドレイン領域15
が形成される(第2図(d)図示)。
131 forms an N-type source region 14, and the impurity layer 11*113M forms an N-type drain region 15.
is formed (as shown in FIG. 2(d)).

しかる後、前記残存cvnstot膜12′を除去しテ
MO5ffl )ランジスタを製造する(第2図(e)
図ボ)。ナオ、前記残存CVD 8102g 72’は
必ずしも除去する必*はない。また、前記製造方法では
浅いN型の不純物層11..112を先に形成したが、
逆にゲート電極7、ゲート絶縁膜6及びフィールド酸化
膜4の側壁に残存CVD5IO,膜12′を残して先に
深いN型の不純物+@131,13.を形成し、しかる
後残存CVD5iO,膜12′を除去して深いN型の不
純物層73.、JJ、を形成してもよい。しかしながら
、前述の如く製造される第2図(e)のMO8型トラン
ジスタによれば、ショートチャネル効果及びパンチスル
ーな改善できるものの、深さの異なる不純物層を形成す
るために2度のイオン打込を必要とし、第1図のMO8
型トランジスタと比べてプロセスが複雑となり、コスト
高を招く。
Thereafter, the remaining CVNSTO film 12' is removed and a transistor is manufactured (FIG. 2(e)).
figure). Nao, the remaining CVD 8102g 72' does not necessarily have to be removed. Further, in the above manufacturing method, the shallow N-type impurity layer 11. .. 112 was formed first, but
Conversely, deep N-type impurities +@131, 13. is formed, and then the remaining CVD 5iO film 12' is removed to form a deep N-type impurity layer 73. , JJ, may be formed. However, according to the MO8 type transistor of FIG. 2(e) manufactured as described above, although the short channel effect and punch-through can be improved, two ion implantations are required to form impurity layers with different depths. MO8 in Figure 1 is required.
Compared to conventional transistors, the process is more complicated, leading to higher costs.

〔発明の目的〕[Purpose of the invention]

本発明は、上記事情に鑑みてなされたもので、ショート
チャネル効果、パンチスルー現象を抑制するとともに、
プロセスを簡略化してコスト低減をなし得る半導体装置
の製造方法を提供することを目的とするものでおる。
The present invention has been made in view of the above circumstances, and suppresses the short channel effect and punch-through phenomenon, and
It is an object of the present invention to provide a method for manufacturing a semiconductor device that can simplify the process and reduce costs.

〔発明の概要〕[Summary of the invention]

本発明は、第1導電型の半導体基板の素子領域上に絶縁
膜を介してゲート電極材料層を堆積した後、このゲート
電極材料層上にマスク材を形成し、しかる後このマスク
材を用いてゲート電極材料層を選択的に除去し、ゲート
電極を形成し、更に同マスク材を用いて絶縁膜を反応性
イオンエツチングによp選択的に除去しゲート絶縁膜を
形成し、つづいてマスク材を除去後イオン注入を施すこ
とによって、例えばLDD構造のMOB型トランジスタ
を形成し、ショートチャネル効果、パンチスルー現象を
抑制するとともに、コスト低減化を図ったことを骨子と
する。
The present invention involves depositing a gate electrode material layer on an element region of a first conductivity type semiconductor substrate via an insulating film, forming a mask material on the gate electrode material layer, and then using this mask material. The gate electrode material layer is selectively removed to form a gate electrode, and the insulating film is selectively removed by reactive ion etching using the same mask material to form a gate insulating film. By performing ion implantation after removing the material, a MOB type transistor with, for example, an LDD structure is formed, and the main idea is to suppress short channel effects and punch-through phenomena, and to reduce costs.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明をL D D構造を有したMO8型トラン
ジスタに適用した場合について第3図(a)〜(d)を
参照して説明する。
Hereinafter, a case where the present invention is applied to an MO8 type transistor having an LDD structure will be described with reference to FIGS. 3(a) to 3(d).

〔1〕 まず、半導体基板としてのPMのSi基板2ノ
土にフィールド酸化膜22を形成した後、このフィール
ド酸化膜22で囲まれた基板21上に酸化膜23を形成
した。つづいて、全面にケート電極材料層としてのリン
ドープ多結晶シリコン層24を形成した(第3図(a)
図示鬼次いで、この多結晶シリコン層24上にレジスト
パターン25を形成した。更に、このレジストパターン
26をマスクとしてリンドープ多結晶シリコン層24を
化学ドライエツチング(CDI)法で選択的にエツチン
グ除去μゲート電極26を形成した(第3図(b)図示
)。
[1] First, a field oxide film 22 was formed on a PM Si substrate 2 serving as a semiconductor substrate, and then an oxide film 23 was formed on the substrate 21 surrounded by the field oxide film 22. Subsequently, a phosphorus-doped polycrystalline silicon layer 24 was formed as a cathode electrode material layer on the entire surface (Fig. 3(a)).
As shown in the figure, a resist pattern 25 was then formed on this polycrystalline silicon layer 24. Furthermore, using this resist pattern 26 as a mask, the phosphorus-doped polycrystalline silicon layer 24 was selectively etched away by chemical dry etching (CDI) to form a μ gate electrode 26 (as shown in FIG. 3(b)).

なお、同図(b)において、リンドープ多結晶シリコン
層24のサイドエッチ量do、リンドープ多結晶シリコ
ン層24の膜厚とほぼ同じ厚さにした。ここで、サイド
エッチ量di、CDE法によるエツチング量をませば大
きくなり、逆に途中までRIE法でエツチングし、残シ
をCDE法でエツチングすれば小さくなシ、適宜調整す
ることが可能である。
In addition, in FIG. 2B, the side etching amount do of the phosphorus-doped polycrystalline silicon layer 24 was set to be approximately the same as the film thickness of the phosphorus-doped polycrystalline silicon layer 24. Here, the side etching amount di can be increased by reducing the etching amount by the CDE method, or conversely can be decreased by etching halfway by the RIE method and etching the remaining portion by the CDE method, so it can be adjusted as appropriate. .

叩 次に、前記レジストパターン25をマスクとして前
記酸化膜23をRIEにて選択的にエツチング除去し、
ゲート絶縁膜26を形成した。つづいて、レジストパタ
ーン25を除去し7j(第3図(c)図示)。次いで、
前記ゲート電極26、ゲート絶縁膜27及びフィールド
酸化膜22をマスクとして基板21に例えば砒素をイオ
ン注し、熱処理を施した。この結果、ゲート電極26近
傍が低濃度で浅く、かつ遠ざかる部分が高濃度で深いN
型のソース、ドレイン領域28.119が自己整合的に
形成され、MO8m)ランジスタが形成された(第3図
(d)図示)。
Next, using the resist pattern 25 as a mask, the oxide film 23 is selectively etched away by RIE,
A gate insulating film 26 was formed. Subsequently, the resist pattern 25 is removed 7j (as shown in FIG. 3(c)). Then,
Using the gate electrode 26, gate insulating film 27, and field oxide film 22 as masks, ions of, for example, arsenic were implanted into the substrate 21, and heat treatment was performed. As a result, the N region near the gate electrode 26 is low-concentration and shallow, and the part farther away is high-concentration and deep N.
The source and drain regions 28 and 119 of the type were formed in a self-aligned manner, and an MO8m) transistor was formed (as shown in FIG. 3(d)).

しかして、本発明によれば、第3図(b)に示す如く、
レジストパターン25をマスクとしリンドープ多結晶シ
リコン層24をCDE法で選択的にエツチング除去し、
ゲート電極26を形成した後、第3図(e)に示す如く
、同レジストパターン25をマスクとして酸化膜23を
RIEにて選択的にエツチング除去し、ゲート絶縁膜2
7を形成するため、ゲート電極26の幅はゲート絶縁膜
27のそれと比べ狭くなる。従って、これらゲート電極
26、ゲート絶縁M27及びフィールド酸化膜22をマ
スクとしてSt基板21に砒素をイオン注入することに
より、ゲート電極26近傍が低濃度で浅くかつ遠ざかる
部分が高濃度で深いN型のソース、ドレイン領域28゜
29を自己整合的に形成でき、従来と比ベニ程を簡略化
してコスト低減を図ることができるとトモに、ショート
チャネル効果、パンチスルー現象を抑制できる。
According to the present invention, as shown in FIG. 3(b),
Using the resist pattern 25 as a mask, the phosphorus-doped polycrystalline silicon layer 24 is selectively etched away using the CDE method.
After forming the gate electrode 26, as shown in FIG. 3(e), the oxide film 23 is selectively etched away by RIE using the same resist pattern 25 as a mask to form the gate insulating film 2.
7, the width of the gate electrode 26 is narrower than that of the gate insulating film 27. Therefore, by ion-implanting arsenic into the St substrate 21 using the gate electrode 26, gate insulator M27, and field oxide film 22 as masks, the vicinity of the gate electrode 26 becomes shallow with a low concentration, and the part farther away becomes a deep N-type with a high concentration. If the source and drain regions 28 and 29 can be formed in a self-aligned manner, and the cost can be reduced by simplifying the process compared to the conventional method, short channel effects and punch-through phenomena can be suppressed.

tfc、第3図(d)に示す如く、ゲート絶縁膜27を
ゲート電極26の真下のみならず、その周辺にも残存さ
せるため、ゲート電極26とソース、ドレイン領域28
.29との耐圧を、通常のMOSプロセスよりも向上で
きるとともに、後工程における酸化処理を省略できる。
tfc, as shown in FIG. 3(d), in order to leave the gate insulating film 27 not only directly under the gate electrode 26 but also around it, the gate electrode 26 and the source and drain regions 28 are
.. The breakdown voltage with respect to No. 29 can be improved compared to the normal MOS process, and the oxidation treatment in the post-process can be omitted.

従って、トランジスタのソース、ドレイン領域2B、i
!9接合のシャロー化をはかれ、微細化に適している。
Therefore, the source and drain regions 2B,i of the transistor
! 9 junctions are made shallower, making it suitable for miniaturization.

なお、上記実施例ではマスク材としてレジストパターン
を用いたが、これに限らない。
Note that in the above embodiments, a resist pattern is used as the mask material, but the present invention is not limited to this.

〔発明の効果〕〔Effect of the invention〕

以上詳述した如く、本発明によれば、ショートチャネル
効果、パンチスルー現象を抑制するとともに、プロセス
を簡略化してコスト低減をなし得るLDD構造のMO8
型トランジスタ等の半導体装置を製造する方法を提供で
きるものである。
As described in detail above, according to the present invention, the MO8 of the LDD structure can suppress the short channel effect and punch-through phenomenon, and also simplify the process and reduce costs.
The present invention can provide a method for manufacturing semiconductor devices such as type transistors.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来のMO8型トランジスタの断面図、第2図
(a)〜(e) U従来の他のMO8型トランジスタの
製造方法を工程順に示す断面図、第3図(a)〜(d)
は本発明の一実施例に係るMO8型トランジスタの製造
方法を工程順に示す断面図である。 21・・・P型の81基板(半導体基板)、22・・・
フィールド酸化膜、23・・・酸化膜、24・・・リン
ドープ多結晶シリコン層(ゲート[極材料(社)、25
・・・レジストハターン、26・・・ゲート電極、27
・・・N型のソース領域、28・・・N型のドレイン領
域。 出願人代理人 弁理士 鈴 江 武 彦第1図 第2図 第 2 図 第3図 4
FIG. 1 is a cross-sectional view of a conventional MO8 type transistor, FIG. )
1A and 1B are cross-sectional views illustrating a method for manufacturing an MO8 type transistor according to an embodiment of the present invention in order of steps. 21... P-type 81 substrate (semiconductor substrate), 22...
Field oxide film, 23... Oxide film, 24... Phosphorus-doped polycrystalline silicon layer (gate [Kiyoku Materials Co., Ltd., 25
...Resist pattern, 26...Gate electrode, 27
. . . N-type source region, 28 . . . N-type drain region. Applicant's Representative Patent Attorney Takehiko Suzue Figure 1 Figure 2 Figure 2 Figure 3 Figure 4

Claims (1)

【特許請求の範囲】[Claims] 第1導電型の半導体基板の素子領域上に絶縁膜を介して
ゲート電極材料層を堆積する工程と、このゲート電極材
料層上にマスク材を形成する工程と、このマスク材を用
いてゲート電極材料層を選択的に除去しゲート電極を形
成する工程と、同マスク材を用いて前記絶縁膜を反応性
イオンエツチングにより選択的に除去しゲート絶縁膜な
形成する工程と、前記マスク材を除去後イオン注入を施
す工程と乞具備することを特徴とする半導体装置の製造
方法。
A step of depositing a gate electrode material layer on the element region of a first conductivity type semiconductor substrate via an insulating film, a step of forming a mask material on this gate electrode material layer, and a step of forming a gate electrode material layer using this mask material. a step of selectively removing a material layer to form a gate electrode; a step of selectively removing the insulating film by reactive ion etching using the same mask material to form a gate insulating film; and removing the mask material. A method for manufacturing a semiconductor device, comprising a step of performing post-ion implantation.
JP16366883A 1983-09-06 1983-09-06 Manufacture of semiconductor device Pending JPS6055665A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16366883A JPS6055665A (en) 1983-09-06 1983-09-06 Manufacture of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16366883A JPS6055665A (en) 1983-09-06 1983-09-06 Manufacture of semiconductor device

Publications (1)

Publication Number Publication Date
JPS6055665A true JPS6055665A (en) 1985-03-30

Family

ID=15778316

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16366883A Pending JPS6055665A (en) 1983-09-06 1983-09-06 Manufacture of semiconductor device

Country Status (1)

Country Link
JP (1) JPS6055665A (en)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4702000A (en) * 1986-03-19 1987-10-27 Harris Corporation Technique for elimination of polysilicon stringers in direct moat field oxide structure
US4818715A (en) * 1987-07-09 1989-04-04 Industrial Technology Research Institute Method of fabricating a LDDFET with self-aligned silicide
US4837180A (en) * 1987-07-09 1989-06-06 Industrial Technology Research Institute Ladder gate LDDFET
US4906589A (en) * 1989-02-06 1990-03-06 Industrial Technology Research Institute Inverse-T LDDFET with self-aligned silicide
US4978626A (en) * 1988-09-02 1990-12-18 Motorola, Inc. LDD transistor process having doping sensitive endpoint etching
US5015598A (en) * 1989-11-03 1991-05-14 U.S. Philips Corporation Method of manufacturing a device comprising MIS transistors having a gate electrode in the form of an inverted "T"
JPH0555573A (en) * 1991-08-26 1993-03-05 Sharp Corp Thin film transistor and manufacture thereof
JPH06120249A (en) * 1991-12-24 1994-04-28 Semiconductor Energy Lab Co Ltd Manufacture of mos transistor and structure thereof
US5619045A (en) * 1993-11-05 1997-04-08 Semiconductor Energy Laboratory Co., Ltd. Thin film transistor
US5648277A (en) * 1993-11-05 1997-07-15 Semiconductor Energy Laboratory Co., Ltd. Method of manufacturing a semiconductor device
US5736414A (en) * 1994-07-14 1998-04-07 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing semiconductor device
US6331723B1 (en) 1991-08-26 2001-12-18 Semiconductor Energy Laboratory Co., Ltd. Active matrix display device having at least two transistors having LDD region in one pixel
US6337231B1 (en) 1993-05-26 2002-01-08 Semiconductor Energy Laboratory Co., Ltd. Method for producing semiconductor device
US6555843B1 (en) 1991-05-16 2003-04-29 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for forming the same
US6867431B2 (en) * 1993-09-20 2005-03-15 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the same
KR100469147B1 (en) * 1997-12-29 2005-04-06 주식회사 하이닉스반도체 Manufacturing method of semiconductor device

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4702000A (en) * 1986-03-19 1987-10-27 Harris Corporation Technique for elimination of polysilicon stringers in direct moat field oxide structure
US4818715A (en) * 1987-07-09 1989-04-04 Industrial Technology Research Institute Method of fabricating a LDDFET with self-aligned silicide
US4837180A (en) * 1987-07-09 1989-06-06 Industrial Technology Research Institute Ladder gate LDDFET
US4978626A (en) * 1988-09-02 1990-12-18 Motorola, Inc. LDD transistor process having doping sensitive endpoint etching
US4906589A (en) * 1989-02-06 1990-03-06 Industrial Technology Research Institute Inverse-T LDDFET with self-aligned silicide
US5015598A (en) * 1989-11-03 1991-05-14 U.S. Philips Corporation Method of manufacturing a device comprising MIS transistors having a gate electrode in the form of an inverted "T"
US6555843B1 (en) 1991-05-16 2003-04-29 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for forming the same
JPH0555573A (en) * 1991-08-26 1993-03-05 Sharp Corp Thin film transistor and manufacture thereof
US7821011B2 (en) 1991-08-26 2010-10-26 Semiconductor Energy Laboratory Co., Ltd. Insulated gate field effect semiconductor devices and method of manufacturing the same
US6331723B1 (en) 1991-08-26 2001-12-18 Semiconductor Energy Laboratory Co., Ltd. Active matrix display device having at least two transistors having LDD region in one pixel
US7087962B1 (en) 1991-12-24 2006-08-08 Semiconductor Energy Laboratory Co., Ltd. Method for forming a MOS transistor having lightly dopped drain regions and structure thereof
JPH06120249A (en) * 1991-12-24 1994-04-28 Semiconductor Energy Lab Co Ltd Manufacture of mos transistor and structure thereof
US6337231B1 (en) 1993-05-26 2002-01-08 Semiconductor Energy Laboratory Co., Ltd. Method for producing semiconductor device
US6867431B2 (en) * 1993-09-20 2005-03-15 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the same
US6617612B2 (en) * 1993-11-05 2003-09-09 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and a semiconductor integrated circuit
US6475839B2 (en) 1993-11-05 2002-11-05 Semiconductor Energy Laboratory Co., Ltd. Manufacturing of TFT device by backside laser irradiation
US6218678B1 (en) 1993-11-05 2001-04-17 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
US5648277A (en) * 1993-11-05 1997-07-15 Semiconductor Energy Laboratory Co., Ltd. Method of manufacturing a semiconductor device
US5619045A (en) * 1993-11-05 1997-04-08 Semiconductor Energy Laboratory Co., Ltd. Thin film transistor
US5736414A (en) * 1994-07-14 1998-04-07 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing semiconductor device
KR100469147B1 (en) * 1997-12-29 2005-04-06 주식회사 하이닉스반도체 Manufacturing method of semiconductor device

Similar Documents

Publication Publication Date Title
US6277675B1 (en) Method of fabricating high voltage MOS device
US6518623B1 (en) Semiconductor device having a buried-channel MOS structure
JPH06326306A (en) Mos transistor and preparation thereof
JPS6055665A (en) Manufacture of semiconductor device
US20010012665A1 (en) Semiconductor device and method for fabricating the same
US6207482B1 (en) Integration method for deep sub-micron dual gate transistor design
US6008100A (en) Metal-oxide semiconductor field effect transistor device fabrication process
JP3744438B2 (en) Semiconductor device
JPH0637309A (en) Semiconductor device and manufacture thereof
JPS60175458A (en) Semiconductor device and manufacture thereof
KR100415191B1 (en) Method for fabricating asymmetric cmos transistor
JPH07106557A (en) Semiconductor device and manufacture of the same
JP3714396B2 (en) Manufacturing method of semiconductor device
KR101004807B1 (en) High voltage transistor provided with bended channel for increasing channel punch immunity and method for manufacturing the same
JP3259479B2 (en) MOS type semiconductor device and method of manufacturing the same
KR100311177B1 (en) A method of fabricating semiconductor device
JPH05283688A (en) Mos-type semiconductor device and its production
KR100333356B1 (en) A method of fabricating a semiconductor device
KR100260366B1 (en) Method for fabricating semiconductor device
KR100334968B1 (en) Method for fabricating buried channel type PMOS transistor
KR100486084B1 (en) Method for fabricating ldd type cmos transistor
JPH10261795A (en) Insulating gate-type field-effect transistor and its manufacture
US7402494B2 (en) Method for fabricating high voltage semiconductor device
JPH11214682A (en) Fabrication of semiconductor device
JPH0964361A (en) Manufacture of semiconductor device