JPS61152698A - Production of alpha-l-aspartyl-l-phenylalanine methyl ester - Google Patents

Production of alpha-l-aspartyl-l-phenylalanine methyl ester

Info

Publication number
JPS61152698A
JPS61152698A JP59273701A JP27370184A JPS61152698A JP S61152698 A JPS61152698 A JP S61152698A JP 59273701 A JP59273701 A JP 59273701A JP 27370184 A JP27370184 A JP 27370184A JP S61152698 A JPS61152698 A JP S61152698A
Authority
JP
Japan
Prior art keywords
aspartyl
phenylalanine
apm
reaction
formyl
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59273701A
Other languages
Japanese (ja)
Inventor
Ryuichi Mita
三田 隆一
Takeshi Oura
剛 大浦
Chojiro Higuchi
長二郎 樋口
Toshio Kato
敏雄 加藤
Teruhiro Yamaguchi
彰宏 山口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Toatsu Chemicals Inc
Original Assignee
Mitsui Toatsu Chemicals Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Toatsu Chemicals Inc filed Critical Mitsui Toatsu Chemicals Inc
Priority to JP59273701A priority Critical patent/JPS61152698A/en
Priority to CA000498219A priority patent/CA1277098C/en
Priority to ES550282A priority patent/ES8703487A1/en
Priority to EP85309481A priority patent/EP0187530A3/en
Priority to BR8506513A priority patent/BR8506513A/en
Priority to KR1019850009883A priority patent/KR890005064B1/en
Publication of JPS61152698A publication Critical patent/JPS61152698A/en
Priority to US07/171,134 priority patent/US4801732A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:N-Formyl-alpha-L-aspartyl-L-phenylalanine is treated with methanol-HCl and the main product is hydrolyzed to give the titled compound in high yield through an industrially simplified process. CONSTITUTION:N-Formyl-alpha-L-aspartyl-L-phenylalanine is treated with methanol-HCl, preferably at 20-60 deg.C for 1-30hr to effect deformylation and diesterification to form alpha-L-aspartyl-L-phenylalanine dimethyl ester as a major product. Then, the resultant dimethyl ester is hydrolyzed in hydrochloric acid to give the objective compound. EFFECT:There is no problem on stability, because L-phenylalanine methyl ester is not used.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、α−L−アスパルチル−L−7エニルアラニ
ンメチルエステルの新規な製造法に関する。さらに詳し
くは、N−ホルミル−α−L−7スバルチルーL−フェ
ニルアラニンをメタノール中、塩化水素の存在下に処理
し、α−L−アスパルチル−し一7エニルアラニンジメ
チルエステルを主生成物として生成させたのち、該α−
L−アスパルチル−L−フェニルアラニンジメチルエス
テルを塩酸中、必要に応じてメタノール存在下に加水分
解することを特徴とするα−L−アスパルチル−L−フ
ェニルアラニンメチルエステルの製造法に関するもので
ある。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a novel method for producing α-L-aspartyl-L-7 enylalanine methyl ester. More specifically, N-formyl-α-L-7subarthyl-L-phenylalanine is treated in methanol in the presence of hydrogen chloride to produce α-L-aspartyl-17-enylalanine dimethyl ester as the main product. Later, the α-
The present invention relates to a method for producing α-L-aspartyl-L-phenylalanine methyl ester, which comprises hydrolyzing L-aspartyl-L-phenylalanine dimethyl ester in hydrochloric acid and optionally in the presence of methanol.

α−L−7スバルチルーし一フェニルアラニンメチルエ
ステル(以下、α−APMと略記する)は、通称、11
アスパルテームI′と呼ばれる化合物で、甘味剤として
重要な物質である。その甘味度はしょ糖の200倍に近
く、甘味の質もしょ糖に類似しており、しかも低カロリ
ーであるため、ダイエツト甘味剤として、最近、その需
要が増大して(・る。
α-L-7 Subarthyl-monophenylalanine methyl ester (hereinafter abbreviated as α-APM) is commonly known as
A compound called aspartame I', which is an important substance as a sweetener. Its sweetness is nearly 200 times that of sucrose, its sweetness is similar to sucrose, and it is low in calories, so its demand as a diet sweetener has increased recently.

(従来技術) α−APMの化学的製造方法は、既に、数多(開示され
ている。すなわち、1)アスパラギン威無水物の塩酸塩
とL−フェニルアラニンメチルエステルを縮合する方法
(例えば、特公昭5l−40069)、2)  N−保
護アスパラギン酸無水物とL−フェニルアラニンメチル
エステルを縮合し、つづいて脱保護する方法(例えば、
特開昭46−1370、特開昭51−113841 )
、3)  N−保護アスパラギン酸−β−ベンジルエス
テルをL−フェニルアラニンメチルエステルとを縮合剤
の存在下に反応し、つづいて脱保護して製造する方法(
特開昭59−130846)、4)  N−カルボキシ
アスパラギン酸無水物とL−フェニルアラニンメチルエ
ステルを反応させる方法(特開昭48−96557 )
など種々の方法がある。
(Prior Art) A number of chemical methods for producing α-APM have already been disclosed (i.e., 1) a method of condensing asparagine anhydride hydrochloride and L-phenylalanine methyl ester (for example, 5l-40069), 2) A method of condensing N-protected aspartic acid anhydride and L-phenylalanine methyl ester, followed by deprotection (e.g.
(Japanese Patent Publication No. 46-1370, Japanese Patent Application Publication No. 51-113841)
, 3) A method for producing N-protected aspartic acid-β-benzyl ester by reacting with L-phenylalanine methyl ester in the presence of a condensing agent, followed by deprotection (
4) Method of reacting N-carboxyaspartic acid anhydride with L-phenylalanine methyl ester (Japanese Patent Application Laid-open No. 48-96557)
There are various methods such as

しかしながら、これらの方法はいずれも一方の反応原料
としてL−フェニルアラニンメチルエステルを用(・る
ものであり、フェニルアラニンをメ9  チルエステル
化する工程が繁雑である。その上、本発明者らの検討結
果によれば、このフェニルアラニンメチルエステルは遊
離の形態では溶液中で2分子縮合して環化し、2,5−
ジベンジルジケトピペラジ/に変化し易い化合物であり
、その安定性に問題があることがわかった。このことは
その製造において工業的には種々のトラブルを引き起す
原因になるものである。
However, all of these methods use L-phenylalanine methyl ester as one of the reaction raw materials, and the process of converting phenylalanine into methyl ester is complicated. According to the authors, this phenylalanine methyl ester, in its free form, condenses two molecules in solution and cyclizes to form 2,5-
It was found that it is a compound that easily changes into dibenzyldiketopiperazi/, and that there is a problem with its stability. This causes various industrial problems in the manufacturing process.

したがって、α−APMの製造に関しては上記欠点のな
い、即ち、L−フェニルアラニンメチルエステルを用(
・ない方法の開発が望まれて(・る。
Therefore, for the production of α-APM, L-phenylalanine methyl ester is used (
・It is desired to develop a method that does not exist.

L−フェニルアラニンメチルエステルを用いな(・方法
としては、N〜ホルミルアスパラギアd1g水物を氷酢
酸中、L−フェニルアラニンと縮合してN−ホルミル−
α−L−アスパルチル−L−フェニルアラニンを製造し
、ついで脱ホルミル化してα−L−アスパルチル−し一
フェニルアラニンとした後、メタノールでエステル化し
てα−APMを製造する方法(特公昭55−26133
号)、およびこの方法におけるα−L−アスパルチル−
L−フェニルアラニンをエステル化してα−APMとす
る工程の改良方法(特開昭53−82752号)が知ら
れているにすぎない。
Using L-phenylalanine methyl ester (method is as follows: 1 g of N-formyl asparagia hydrate is condensed with L-phenylalanine in glacial acetic acid to form N-formyl-
A method for producing α-APM by producing α-L-aspartyl-L-phenylalanine, then deformylating it to α-L-aspartyl-phenylalanine, and then esterifying it with methanol (Japanese Patent Publication No. 55-26133
), and α-L-aspartyl- in this method
There is only one known method for improving the process of esterifying L-phenylalanine to produce α-APM (Japanese Patent Application Laid-open No. 82752/1983).

(発明が解決しようとする問題点) しかしながら、前者の方法はエステル化反応を非水系に
近し・状態で実施するために反応に選択性がなく、目的
のエステル化のみならず、アスパラキ7 e 側のβ−
カルボン酸基へのエステル化やジエステル化反応も多量
に起り、そのためにα−APM収率が低いという欠点が
ある。また、後者の方法はエステル化反応を水の共存下
に行ってα−APMの選択率を高めているが、α−AP
M単離収率はたかだか50〜60%C対α−L−アスパ
ルチル−し−フェニルアラニン)であり、収率面で必ず
しも十分とは言えない。この方法を同一反応器で、N−
ホルミル−α−L−アスパルチル−L−フェニルアラニ
ンからα−L−アスパルチル−し一フェニルアラニンを
その場で生成させて、つ(・でエステル化してα−AP
Mを製造するには、N−ホルミル−α−L−アスパルチ
ル−し一フェニルアラニンの脱ホルミル化反応がペプチ
ド結合の開裂を抑えるために低レベルの塩酸存在下に実
施せねばならず、しかも、引きつづき行うエステル化反
応がコンパクトな系で行う関係上、少量のメタノール−
水−塩酸系で行わねばならな(・。この場合、原料のN
−ホルミル−α−L−アスパルチル−し一7エニルアラ
ニンはこのメタノール量の少ない塩酸水溶液には比較的
難溶であり、しかも溶媒量が少ないので、原料装入後の
反応混合物は泥状化する。したがって、工業的には攪拌
等に種々のトラブルを生じ易く、操作面で問題がある。
(Problems to be Solved by the Invention) However, in the former method, since the esterification reaction is carried out in a state close to that of a non-aqueous system, there is no selectivity in the reaction. side β−
A large amount of esterification and diesterification reactions to carboxylic acid groups also occur, resulting in a disadvantage that the yield of α-APM is low. In addition, the latter method performs the esterification reaction in the coexistence of water to increase the selectivity of α-APM, but
The isolated yield of M is at most 50 to 60% (C to α-L-aspartyl-phenylalanine), which is not necessarily sufficient in terms of yield. This method was carried out in the same reactor with N-
Formyl-α-L-aspartyl-L-phenylalanine is generated in situ from formyl-α-L-aspartyl-L-phenylalanine, and esterified with
To prepare M, the deformylation reaction of N-formyl-α-L-aspartyl-monophenylalanine must be carried out in the presence of low levels of hydrochloric acid to suppress peptide bond cleavage, and Because the subsequent esterification reaction is carried out in a compact system, a small amount of methanol
It must be carried out in a water-hydrochloric acid system (in this case, the raw material N
-Formyl-α-L-aspartyl-17-enylalanine is relatively poorly soluble in this aqueous hydrochloric acid solution with a small amount of methanol, and since the amount of solvent is small, the reaction mixture becomes muddy after charging the raw materials. . Therefore, industrially, various troubles such as stirring are likely to occur, and there are problems in terms of operation.

さらに、この後者の方法ではα−L−アスパルチル−L
−7二二ルアラニンジメチルエステルハ好マしくない副
生物として、その副生を極力抑制する反応条件の選択が
必要であることが示めされている。
Furthermore, in this latter method, α-L-aspartyl-L
It has been shown that -7 2-22-alanine dimethyl ester is an undesirable by-product and that it is necessary to select reaction conditions to suppress the by-product as much as possible.

このように前記のα−APMの製造方法は中間原料の安
定性、反応操作の点または収率等の点で一長一短があり
、必ずしも満足できる方法ではない。
As described above, the above method for producing α-APM has advantages and disadvantages in terms of stability of intermediate raw materials, reaction operations, yield, etc., and is not necessarily a satisfactory method.

(問題点を解決するための手段) 本発明者らは、前記のよりなα−APM製造技術の現状
を踏まえ、さらに工業的に効率の良い製造法につ(・て
、とくに、原料として、化合物の安定性に問題のあるし
一フェニルアラニンメチルエステルを用いず、またこの
化合物を経由することなく製造できるN−ホルミル−α
−L−アスパルチル−し一フェニルアラニンに着目して
該化合物からのα−APM製造法について鋭意検討した
。その結果、このN−ホルミル−α−L−アスパルチル
−L−フェニルアラニンをメタノール中塩化水素存在下
に処理すると、脱ホルミル化反応とジエステル化反応が
温和な条件下に進行してα−L−アスパルチル−し一フ
ェニルアラニンジメチルエステルが主生成物として生成
すること、ならびにこの化合物を積極的に製造し、引き
つづいて塩酸中必要に応じてメタノール存在下に加水分
解することにより高収率でα−APMが製造できること
を見出し、本発明を完成するに至った。本発明の方法は
、従来、知られていない新規なα−APM製造方法であ
る。
(Means for Solving the Problems) Based on the current state of the above-mentioned α-APM manufacturing technology, the present inventors have developed a more industrially efficient manufacturing method (in particular, as a raw material, N-formyl-α, which has problems with the stability of the compound, can be produced without using phenylalanine methyl ester or via this compound.
Focusing on -L-aspartyl-monophenylalanine, a method for producing α-APM from this compound was intensively investigated. As a result, when this N-formyl-α-L-aspartyl-L-phenylalanine was treated in methanol in the presence of hydrogen chloride, the deformylation reaction and diesterification reaction proceeded under mild conditions, resulting in α-L-aspartyl - phenylalanine dimethyl ester is produced as the main product, and α-APM can be produced in high yield by actively preparing this compound and subsequently hydrolyzing it in hydrochloric acid optionally in the presence of methanol. The present inventors have discovered that it is possible to produce the following, and have completed the present invention. The method of the present invention is a novel method for producing α-APM that has not been previously known.

本発明の方法に用いられる原料はN−ホルミル−α−L
−7スパルチルーL−フェニルアラニ/であり、この化
合物は、N−ホルミル−L−アスパラギン酸無水物とL
−7エニルアラニンとの縮合によって製造できる。例え
ばそれぞれ公知の方法により得られるN−ホルミル−L
−アスパラギン酸無水物とL−フェニルアラニンとを、
氷酢酸中80℃以下の温度で反応させて得ることができ
る(特公昭55−26133号)。
The raw material used in the method of the present invention is N-formyl-α-L
-7 spartyl-L-phenylalani/, and this compound is composed of N-formyl-L-aspartic anhydride and L-
It can be produced by condensation with -7 enylalanine. For example, N-formyl-L obtained by a known method
- aspartic acid anhydride and L-phenylalanine,
It can be obtained by reaction in glacial acetic acid at a temperature of 80°C or lower (Japanese Patent Publication No. 55-26133).

この縮合反応では、N−ホルミル−β−L −7スバル
チルーし一フェニルアラニンが同時に副生ずるが、通常
、この異性体は分離して、原料として用いる。しかしな
がら、必ずしも、高純度のものを用いる必要はなく、前
記異性体が多少混入したものを用いても何ら差し支えな
い。
In this condensation reaction, N-formyl-β-L-7subarthyl-phenylalanine is simultaneously produced as a by-product, but this isomer is usually separated and used as a raw material. However, it is not necessarily necessary to use a highly pure one, and there is no problem even if one containing some of the above-mentioned isomers is used.

本発明の方法は、N−ホルミル−α−L −7スパルチ
ルーL−フェニルアラニンをメタノール中、塩化水素の
存在下に処理して、α−L−アスパルチル−L−フェニ
ルアラニンジメチルエステルを生成する工程とこのα−
L−アスパルチル−L−フェニルアラニンジメチルエス
テルを塩酸中、必要に応じてメタノール存在下に加水分
解してα−APMを生成させる工程より成る。
The method of the present invention comprises the steps of treating N-formyl-α-L-7spartyl-L-phenylalanine in methanol in the presence of hydrogen chloride to produce α-L-aspartyl-L-phenylalanine dimethyl ester; α−
It consists of a step of hydrolyzing L-aspartyl-L-phenylalanine dimethyl ester in hydrochloric acid, optionally in the presence of methanol, to produce α-APM.

先づ第一のN−ホルミル−α−L−アスパルチル−L−
7エニルアラニンからα−L−アスパルチル−L−フェ
ニルアラニンジメチルエステルを製造する工程は、塩化
水素を溶解したメタノール溶[中KN−ホルミルーα−
L−アスパルチル−L−フェニルアラニンを装入するか
、N−ホルミル−α−L−7スバルチルーし一フェニル
アラニンを溶解または懸濁したメタノール溶液中に塩化
水素を導入して反応させる。反応温度および反応時間は
10〜70℃、0,5〜50時間、好ましくは20〜6
0℃、1〜30時間である。この反応によって、N−ホ
ルミル−α−L−アスパルチル−L−フェニルアラニン
は脱ホルミル化ならびにジエステル化が進行してα−L
=アスパルチルーL−フェニルアラニンジメチルエステ
ルカ生成スる。
First, N-formyl-α-L-aspartyl-L-
The process of producing α-L-aspartyl-L-phenylalanine dimethyl ester from 7-enylalanine is carried out using a methanol solution [medium KN-formyl-α-
Hydrogen chloride is introduced into a methanol solution in which L-aspartyl-L-phenylalanine is charged or N-formyl-α-L-7subartyl-phenylalanine is dissolved or suspended, and the reaction is carried out. The reaction temperature and reaction time are 10-70°C, 0.5-50 hours, preferably 20-6
0°C for 1 to 30 hours. Through this reaction, N-formyl-α-L-aspartyl-L-phenylalanine undergoes deformylation and diesterification, resulting in α-L
= Aspartyl-L-phenylalanine dimethyl ester is formed.

この反応において、゛メタノールの使用量は原料のN−
ホルミル−α−L−アスパルチル−L−7二二ルアラニ
ンに対して0.5重量倍、好ましくは1重量倍以上であ
る。使用量の上限については特に制限はないが、あまり
過剰に用いると、容積効率が小さく、また、反応後の濃
縮操作に多くのエネルギーを要し好ましくな(・。通常
、20重量倍以下で使用される。
In this reaction, the amount of methanol used is
The amount is 0.5 times by weight, preferably 1 times or more by weight relative to formyl-α-L-aspartyl-L-7 2-2-2-alanine. There is no particular restriction on the upper limit of the amount to be used, but if it is used in excess, the volumetric efficiency will be low and the concentration operation after the reaction will require a lot of energy, which is undesirable. be done.

また、塩化水素の使用量は、原料のN−ホルミル−α−
L−7スバルチルーし一7エニルアラニンに対して0.
8当量以上、好ましくは1当量以上である。使用量の上
限に特に制限はな(・が、あまり過剰に用いることはペ
プチド結合の開裂のおそれが生じるので、通常、5当量
以下で使用される。
In addition, the amount of hydrogen chloride used is based on the raw material N-formyl-α-
0.0 for L-7 Subarthyl-17-enylalanine.
It is 8 equivalents or more, preferably 1 equivalent or more. There is no particular upper limit to the amount to be used (but if too much is used, there is a risk of cleavage of the peptide bond, so it is usually used in an amount of 5 equivalents or less).

塩化水素の使用量が0.8当量より少ないと、脱ホルミ
ル化反応ならびにジエステル化反応が十分に起こらない
If the amount of hydrogen chloride used is less than 0.8 equivalent, the deformylation reaction and the diesterization reaction will not occur sufficiently.

以上のような反応によって、N−ホルミル−α−L−ア
スパルチル−L−フェニルアラニンがらα−L−7スバ
ルチルーし一フェニルアラニンジメチルエステルを主生
成物として生成させる。°この生成物は塩酸塩の形態で
メタノールに溶解している。
Through the above reaction, N-formyl-α-L-aspartyl-L-phenylalanine is converted into α-L-7 subaltyl-monophenylalanine dimethyl ester as the main product. °This product is dissolved in methanol in the form of hydrochloride.

次にこの生成したα−L−アスパルチル−L−フェニル
アラニンジメチルエステルを塩酸中で加水分解すること
によりα−APMを製造する。この加水分解工程はα−
L−アスパルチル−L7zニルアラニンジメチルエステ
ルを含有する反応生酸液中の溶媒メタノールを留去した
のち、塩酸水溶液を装入して実施される。
Next, α-APM is produced by hydrolyzing the generated α-L-aspartyl-L-phenylalanine dimethyl ester in hydrochloric acid. This hydrolysis step is α-
After distilling off the solvent methanol in the reaction raw acid solution containing L-aspartyl-L7z nylalanine dimethyl ester, the reaction is carried out by charging an aqueous hydrochloric acid solution.

α−L−7スバルチルーし一フェニルアラニノジメチル
エステル生成の反応溶液からの溶媒のメタノールの留去
の方法としては、反応溶液を減圧下に濃縮乾固するか、
または譲縮途中で適当量の水を加えて、引きつづき減圧
下に残存メタノールを留去することによって行われる。
The method for distilling off the methanol solvent from the reaction solution for producing α-L-7 subaltiyl-monophenylalaninodimethyl ester is to concentrate the reaction solution to dryness under reduced pressure,
Alternatively, it can be carried out by adding an appropriate amount of water during the conversion and subsequently distilling off the remaining methanol under reduced pressure.

ここに得られたα−L−アスパルチル−L−フェニルア
ラニノジメチルエステル塩酸塩ある(・はこのものの水
溶液に所定量の塩酸を加えて該α〜L−アスパルチル−
L−フェニルアラニンジメチルエステルからα−APM
を製造する。この際、必要に応じて新たにメタノールを
添加してもよ(・。
The α-L-aspartyl-L-phenylalaninodimethyl ester hydrochloride obtained here is the α-L-aspartyl-L-aspartyl-
α-APM from L-phenylalanine dimethyl ester
Manufacture. At this time, additional methanol may be added if necessary.

この加水分解工程で使用する塩酸量は原料のN−ホルミ
ル−α−L−アスパルチル−L−7エ二ルアルアラニン
して0.5〜10モル比、好ましくは1〜5モル比であ
る。また順/濃度としては系内に残存する水を考慮して
[HC#/(水+HCl)〕×100で規定される濃度
として3〜30重量%、好ましくは5〜25重量%の遊
離塩酸濃度になるようにする。この範囲に調整すること
によってα−APM塩「俊塩が沈殿として析出し易くな
り、高(・α−APM収率を得ることができる。また、
このα−L−アスパルチル−L−フェニルアラニ/ジメ
チルエステルの塩酸加水分解によるα−APMの製造は
、前記のようにメタノールの共存下に実施することもで
きる。この場合、メタノールの使用量としては原料のN
−ホルミル−α−L−アスパルチル−L−フェニルアラ
ニン基準で5モル比以下の範囲で使用するのがα−AP
Mの収率の点から好ましい。
The amount of hydrochloric acid used in this hydrolysis step is 0.5 to 10 molar ratio, preferably 1 to 5 molar ratio, based on the raw material N-formyl-α-L-aspartyl-L-7 enylaralalanine. In addition, the order/concentration is 3 to 30% by weight, preferably 5 to 25% by weight of free hydrochloric acid concentration as defined by [HC#/(water + HCl)] x 100 considering the water remaining in the system. so that it becomes By adjusting to this range, the α-APM salt becomes easy to deposit as a precipitate, and a high α-APM yield can be obtained.
The production of α-APM by hydrochloric acid hydrolysis of α-L-aspartyl-L-phenylalani/dimethyl ester can also be carried out in the coexistence of methanol as described above. In this case, the amount of methanol used is
α-AP is used in a molar ratio of 5 or less based on formyl-α-L-aspartyl-L-phenylalanine.
It is preferable from the viewpoint of the yield of M.

加水分解反応の温度は0〜50℃、好ましくは10〜4
0℃である。反応温度が0℃より低いと、加水分解反応
が著しく緩慢となり、反応完結までに著しく長時間を必
要とし、工業的には好ましくなく、また50℃より高し
・と、α−APM塩酸塩の溶解度が上がり、α−APM
塩酸塩が沈殿として析出しにくく、α−APM収率が低
下すると同時にペプチド結合の開裂等の副反応も生じ易
く、好ましくない。反応時間は1〜7日間でこれによっ
てα−APMが高収率に生成する。
The temperature of the hydrolysis reaction is 0 to 50°C, preferably 10 to 4°C.
It is 0°C. If the reaction temperature is lower than 0°C, the hydrolysis reaction will be extremely slow and it will take a long time to complete the reaction, which is not preferred industrially. Increased solubility and α-APM
The hydrochloride salt is difficult to precipitate, which lowers the α-APM yield and also tends to cause side reactions such as cleavage of peptide bonds, which is not preferable. The reaction time is 1 to 7 days, and α-APM is produced in high yield.

α−L−7スバルチルーし一フェニルアラニンジメチル
エステルの塩酸中での加水分解によって生成したα−A
PMは塩酸塩として系外に析出する。
α-A produced by hydrolysis of α-L-7 subaltiyl monophenylalanine dimethyl ester in hydrochloric acid
PM precipitates out of the system as hydrochloride.

したがって、反応後、α−APMを単離するには、反応
混合物を必要に応じて冷却し、P別することにより、先
づα−APM塩酸塩を単離する。その後このα−APM
塩酸塩を水中、溶解或いは懸濁状態で水酸化ナトリウム
または炭酸ナトリウム等のアルカリでα−APMの等電
点(pH=4.8)に中和することによって遊離のα−
APMを得ることができる。
Therefore, in order to isolate α-APM after the reaction, α-APM hydrochloride is first isolated by cooling the reaction mixture as necessary and separating the P from the reaction mixture. Then this α-APM
Free α-
APM can be obtained.

この加水分解反応にお〜・ては目的物であるα−APM
のをまかにα−L−アスパルチル−し一フェニルアラニ
ンおよびN−L−(α−アミノ−β−メトキシカルボニ
ルプロピオニル)Lフェニルアラニンの副生も起るが、
α−APMの塩酸塩が反応系に難溶のものとして沈殿析
出し、しかもエステルの加水分解によってメタノールの
生成モ起り、そのため反応液中のこれらの副生成物の量
は一定レベルを越えることはなく反応系内に溶解してお
り、α−APMのみが逐次生成し増加してくる。そして
最終的にα−APMの高収率が達成されるものである。
In this hydrolysis reaction, the target product α-APM
However, by-products of α-L-aspartyl-phenylalanine and N-L-(α-amino-β-methoxycarbonylpropionyl)L-phenylalanine also occur.
The hydrochloride of α-APM precipitates as a poorly soluble substance in the reaction system, and methanol is also generated by hydrolysis of the ester, so the amount of these byproducts in the reaction solution never exceeds a certain level. α-APM is not dissolved in the reaction system, and only α-APM is successively produced and increased. Finally, a high yield of α-APM is achieved.

(実施例) 以下、実施例によって本発明の詳細な説明する。(Example) Hereinafter, the present invention will be explained in detail with reference to Examples.

尚、実施例中の高速液体クロマトグラフィーの分析条件
は次の通りである。
The analysis conditions for high performance liquid chromatography in Examples are as follows.

高速液体クロマトグラフィーでの分析条件カラム:YM
CpackA−3126m罵φX150m(充填剤: 
ODS ) 移動相: 0.005M/lヘプタンスルホン酸ナトリ
ウム水溶液:メタノール−65:35 (体積比) (リン酸でpH=2.5に調整) 流量:1ml/min 検出器:紫外分光光度計 実施例1 塩化水素5.51を溶解したメタノール溶、I2s。
Analysis conditions for high performance liquid chromatography Column: YM
Cpack A-3126m φX150m (filler:
ODS) Mobile phase: 0.005 M/l sodium heptane sulfonate aqueous solution: methanol - 65:35 (volume ratio) (Adjusted to pH = 2.5 with phosphoric acid) Flow rate: 1 ml/min Detector: Ultraviolet spectrophotometer implementation Example 1 A methanol solution containing 5.5 liters of hydrogen chloride, I2s.

ml中KN−ホルミル−α−L−アスパルチル、−L−
フェニルアラニン30.8 y−(0,1モル)ヲ加エ
テ溶解し室温で200時間反応せた。反応溶液の一部を
とり高速液体クロマトグラフィーにて分析の結果α−L
−アスパルチル−L−フェニルアラニンジメチルエステ
ルの生成率は100%であった。
KN-formyl-α-L-aspartyl, -L- in ml
30.8 Y-(0.1 mol) of phenylalanine was dissolved in the solution and reacted at room temperature for 200 hours. A portion of the reaction solution was analyzed using high performance liquid chromatography and α-L
The production rate of -aspartyl-L-phenylalanine dimethyl ester was 100%.

反応溶液を減圧下に濃縮乾固した。この残有に水16.
7P及び35%塩酸12.5Pを加え20〜25°Cで
4日間反応させた。その後、反応混合物を0〜5℃に冷
却し3時間かきまぜたのち析出して(・るα−APM塩
酸塩を戸別し、1規定の冷塩酸で洗浄した。α−APM
塩酸塩の湿ケーキ収量36.2?、高速液体クロマトグ
ラフィーでの分析の結果、α−APM含有量(遊離換算
)は22.IP(収率75.2%/N−ホルミルーα−
L−アスパルチル−L−フェニルアラニンノであった。
The reaction solution was concentrated to dryness under reduced pressure. Water 16.
7P and 12.5P of 35% hydrochloric acid were added and reacted at 20-25°C for 4 days. Thereafter, the reaction mixture was cooled to 0 to 5°C and stirred for 3 hours, and α-APM hydrochloride was precipitated from door to door and washed with 1N cold hydrochloric acid.α-APM
Hydrochloride wet cake yield 36.2? As a result of high performance liquid chromatography analysis, the α-APM content (free equivalent) was 22. IP (yield 75.2%/N-formyl α-
It was L-aspartyl-L-phenylalanine.

このα−APM塩酸塩の湿ケーキを水220 、nlに
懸濁し10%水酸化ナトリウムで中和した(pH−4,
8)。0〜5℃に冷却し、析出した遊離のα−APMを
戸別し、冷水で洗浄後真空乾燥した。α−APM収11
20.37、収率690%N−ホルミル−α−L−アス
ノ4ルチルーし−フェニルアラニン〔α〕賃=+ 15
.9’ (C二4.15規定ギ酸) 高速液体クロマトグラフィーでの分析結果はα−APM
O外に不純物は認められなかった。
This wet cake of α-APM hydrochloride was suspended in 220 ml of water and neutralized with 10% sodium hydroxide (pH-4,
8). The mixture was cooled to 0 to 5°C, and the precipitated free α-APM was separated from each other, washed with cold water, and then dried in vacuum. α-APM yield 11
20.37, yield 690% N-formyl-α-L-asno-4-ruty-phenylalanine [α] = + 15
.. 9' (C24.15 normal formic acid) Analysis result by high performance liquid chromatography is α-APM
No impurities were observed outside of O.

実施例2 メタノール9QmJに塩化水素ガス4.4Fを溶解し、
この溶液中にN−ホルミル−α−L−アスパルチル−L
−フェニルアラニン30.87 (0,1モル)を加え
、40〜45°Cで4時間反応させた。反応it高速液
体クロマトグラフィーにて分析の結果、α−L−7スハ
ルチルーL−フェニルアラニンジメチルエステルの生成
率は95%であった。反応溶液を減圧下に濃縮乾固した
。次にこの残有に水287z及び濃塩酸20.9?を加
えて溶解し30°Cで反応を行った。反応開始2時間後
にα−APM塩酸塩の種結晶を添加しさらに2日間同温
度で反応を行った。その後、反応混合物を0〜5°Cに
冷却し同温度で2時間かきまぜたのち、析出して℃・る
α−APM塩酸塩の沈殿を戸別し5℃以下に冷却された
5%塩酸水溶液で洗浄することによりα−APM塩酸塩
の湿ケーキ45.15’を得た。このものを高速液体ク
ロマトグラフィーで分析の結果、α−APM含有量(遊
離換算)は24.1 y−(収率82.1%/N −ホ
ルミル−α−L−アスパルチル−L−フェニルアラニン
)であった。このα−APM塩酸塩の湿ケーキを水25
0 mlに加えて加温溶解し20%炭酸ナトリウム水溶
液でpH=4.8に中和し5℃に冷却して析出した遊離
のα−APMを戸別し冷水で洗浄後真空乾燥した。α−
APM収量22.0ξ収率74.8%/N−ホルミルー
α−L−アスパルチル−L−フェニルアラニン〔α’]
” =+ 15.8°(C−4,15規定ギ酸) 実施例3 実施例2にお(・てα−L−アスパルチル−し一フェニ
ルアラニンジメチルエステルの加水分解の温度時間を2
0℃4日間とする以外は実施例2と全く同様に反応を行
うことによって収率8188%/N−ホルミル−α−L
−アスパルチル−L−フェニルアラニンでα−APM塩
酸塩を得た。中和後の遊離α−APM)収量は2tB(
収率735%/N−ホルミル−α−L−アスパルチル−
し−フェニルアラニン)であった。
Example 2 Hydrogen chloride gas 4.4F was dissolved in methanol 9QmJ,
In this solution, N-formyl-α-L-aspartyl-L
- 30.87 (0.1 mol) of phenylalanine was added and reacted at 40-45°C for 4 hours. As a result of analysis by reaction IT high performance liquid chromatography, the production rate of α-L-7 suharthyl-L-phenylalanine dimethyl ester was 95%. The reaction solution was concentrated to dryness under reduced pressure. Next, add 287 z of water and 20.9 z of concentrated hydrochloric acid to this residue. was added and dissolved, and the reaction was carried out at 30°C. Two hours after the start of the reaction, seed crystals of α-APM hydrochloride were added, and the reaction was continued for another two days at the same temperature. Thereafter, the reaction mixture was cooled to 0 to 5°C and stirred at the same temperature for 2 hours, and the precipitated α-APM hydrochloride was separated from each other in 5% aqueous hydrochloric acid solution cooled to below 5°C. By washing, a wet cake of α-APM hydrochloride 45.15' was obtained. As a result of analyzing this product by high performance liquid chromatography, the α-APM content (free equivalent) was 24.1 y- (yield 82.1%/N-formyl-α-L-aspartyl-L-phenylalanine). there were. This α-APM hydrochloride wet cake was mixed with 25 ml of water.
The solution was added to 0 ml and dissolved by heating, neutralized to pH=4.8 with a 20% aqueous sodium carbonate solution, cooled to 5° C., and the precipitated free α-APM was separated from each other, washed with cold water, and then vacuum-dried. α−
APM yield 22.0ξYield 74.8%/N-formyl-α-L-aspartyl-L-phenylalanine [α']
” = + 15.8° (C-4,15 normal formic acid)
The yield was 8188%/N-formyl-α-L by carrying out the reaction in exactly the same manner as in Example 2 except that the reaction was carried out at 0°C for 4 days.
α-APM hydrochloride was obtained with -aspartyl-L-phenylalanine. The yield of free α-APM after neutralization is 2 tB (
Yield 735%/N-formyl-α-L-aspartyl-
phenylalanine).

実施例4〜8 N−ホルミル−α−L−アスパルチル−L−7エニルア
ラニン30.8% (0,1モル)を用(・て実施例2
と同様にしてα−L−アスパルチル−L−フェニルアラ
ニンジメチルエステルとし、得られた反応溶液を減圧下
に濃縮乾固した。この残有に塩酸及び場合によってメタ
ノールを添加して、それらの量を変えてα−L−アスパ
ルチル−L−フェニルアラニンジメチルエステルを加水
分解してα−APMの製造を行った結果を表−1に示す
Examples 4 to 8 Example 2 using 30.8% (0.1 mol) of N-formyl-α-L-aspartyl-L-7 enylalanine
α-L-aspartyl-L-phenylalanine dimethyl ester was obtained in the same manner as above, and the resulting reaction solution was concentrated to dryness under reduced pressure. Table 1 shows the results of hydrolyzing α-L-aspartyl-L-phenylalanine dimethyl ester and producing α-APM by adding hydrochloric acid and, if necessary, methanol to this residue and varying their amounts. show.

尚、α−APM塩酸塩の単離は反応後0〜5℃に冷却し
て戸別、そして冷1規定塩酸で洗浄することによった。
The α-APM hydrochloride was isolated after the reaction by cooling to 0 to 5° C. and washing with cold 1N hydrochloric acid.

また、遊離α−APMはα−APM塩酸塩を水に溶解ま
たはけんだ(し20%炭酸ナトリウム水溶液で中和し、
0〜5℃に冷却後、戸別、冷水洗浄し、真空乾燥するこ
とによって得た。
Free α-APM can be obtained by dissolving or suspending α-APM hydrochloride in water (and neutralizing it with a 20% aqueous sodium carbonate solution,
After cooling to 0 to 5°C, the samples were washed with cold water and vacuum dried.

実施例9 メタノール’HOIrrl中に塩化水素ガス27.2!
?を溶解した。この溶液中にN−ホルミル−β−L−ア
スパルチル−L−フェニルアラニンを5%含有ス6N−
ホルミルーα−L−アスパルチル−L−フェニルアラニ
ン135.5 P (0,44モル)を塀え45〜50
℃で4時間反応させた。反応溶液を高速液体クロマトグ
ラフィーで分析の結果α−L−アスパルチル−L−フェ
ニルアラニンの生成は95%以上であった。反応溶液を
減圧下に濃縮液の重量がおよそ2005’になるまで濃
縮した。次に水1501を加えJび減圧下に濃縮液の重
量が2001になるまで濃縮し、溶媒のメタノールを留
去した。次にメタノール14.17、水441及び35
%塩酸92.0%を加え、さらにα−APM塩酸塩の種
結晶を添加し30°Cで3日間反応させた。その後反応
混合物を0〜5℃で3時間かきまぜたのち、析出して(
・るα−APM塩酸塩をP別し、5℃以下に冷却された
1規定塩酸で洗浄することによりα−APM塩酸塩の湿
ケーキ170.6y−を得た。高速液体クロマトグラフ
ィー分析の結果、α−APM含有量(遊離換算)は10
2 P (収率83.0%/N−ホルミルーα−L−7
スバルチルーし一フェニルアラニン)であった。このα
−APM塩酸塩を水11にケンダクさせ20〜25℃で
10%水酸化ナトリウム水溶液でpH4,8に中和した
。0〜5℃に冷却しr過、冷水洗浄後、真空乾燥するこ
とにより遊離α−APM 92.5 P (収率75.
3%/N−ホルミルーα−L−7スバルチルーし一フェ
ニルアラニン)ヲ得た。〔α)  =16.1°(C=
4.15規定ギ酸)(発明の効果) 本発明の方法によるα−APM製造方法は、次のような
利点を有する。すなわち、1)原料のN−ホルミル−α
−L−アスパルチル−L−フェニルを アラニンはL−フェニルアラニン/使用するものであり
、安定性の問題があるし一フェニルアラ二つ ンメチルエステルX使用を回避でき、さらに工程1が簡
略化できる、2)  N−ホルミル−α−L−7スパル
チルーL−フェニルアラニン脱ホルミル化ならびにジエ
ステル化反応はこれらをメタノールに溶解して反応させ
るので反応操作性に曖れ、例えば攪拌等のトラブルがな
い、3)α−APMが高収率で得られる等の利点を有す
る。このように、本発明の方法はα−L−アスパルチル
−し一フェニルアラニンメチルエステルの製造方法とし
て工業的意義が大きいものである。
Example 9 Hydrogen chloride gas in methanol'HOIrrl 27.2!
? was dissolved. This solution contains 5% N-formyl-β-L-aspartyl-L-phenylalanine.
Formyl-α-L-aspartyl-L-phenylalanine 135.5 P (0.44 mol) 45-50
The reaction was carried out at ℃ for 4 hours. Analysis of the reaction solution by high performance liquid chromatography revealed that the production of α-L-aspartyl-L-phenylalanine was 95% or more. The reaction solution was concentrated under reduced pressure until the weight of the concentrate was approximately 2005'. Next, 1,501 liters of water was added, and the mixture was concentrated under reduced pressure until the weight of the concentrate became 2,001 ml, and methanol as a solvent was distilled off. Next, methanol 14.17, water 441 and 35
% hydrochloric acid (92.0%) was added, seed crystals of α-APM hydrochloride were further added, and the mixture was reacted at 30° C. for 3 days. Thereafter, the reaction mixture was stirred at 0 to 5°C for 3 hours, and then precipitated (
- The α-APM hydrochloride was separated from P and washed with 1N hydrochloric acid cooled to below 5°C to obtain 170.6y- of a wet cake of α-APM hydrochloride. As a result of high performance liquid chromatography analysis, the α-APM content (free equivalent) was 10
2P (yield 83.0%/N-formyl α-L-7
Subarthyl-phenylalanine). This α
-APM hydrochloride was dissolved in 11 parts of water and neutralized to pH 4.8 with a 10% aqueous sodium hydroxide solution at 20-25°C. After cooling to 0 to 5°C, filtration, washing with cold water, and vacuum drying, 92.5 P of free α-APM (yield 75.
3%/N-formyl-α-L-7subarthyl-phenylalanine) was obtained. [α) = 16.1° (C =
4.15N Formic Acid) (Effects of the Invention) The method for producing α-APM according to the method of the present invention has the following advantages. That is, 1) the raw material N-formyl-α
-L-aspartyl-L-phenyl is used as alanine/L-phenylalanine/L-phenylalanine/alanine, which has a stability problem, but it is possible to avoid the use of one-phenyla-di-done methyl ester X, and furthermore, process 1 can be simplified. ) N-formyl-α-L-7 spalty-L-phenylalanine deformylation and diesterification reactions are performed by dissolving them in methanol, so there is no ambiguity in reaction operability, such as troubles such as stirring, 3) α - It has advantages such as APM can be obtained in high yield. As described above, the method of the present invention has great industrial significance as a method for producing α-L-aspartyl-monophenylalanine methyl ester.

Claims (1)

【特許請求の範囲】[Claims] 1)N−ホルミル−α−L−アスパルチル−L−フェニ
ルアラニンをメタノ−ル中塩化水素存在下に処理してα
−L−アスパルチル−L−フェニルアラニンジメチルエ
ステルを主生成物として生成させたのち、このα−L−
アスパルチル−L−フェニルアラニンジメチルエステル
を塩酸中、必要に応じてメタノール存在下に加水分解す
ることを特徴とするα−L−アスパルチル−L−フェニ
ルアラニンメチルエステルの製造法
1) N-formyl-α-L-aspartyl-L-phenylalanine is treated in methanol in the presence of hydrogen chloride to obtain α
After producing -L-aspartyl-L-phenylalanine dimethyl ester as the main product, this α-L-
A method for producing α-L-aspartyl-L-phenylalanine methyl ester, which comprises hydrolyzing aspartyl-L-phenylalanine dimethyl ester in hydrochloric acid, optionally in the presence of methanol.
JP59273701A 1984-12-27 1984-12-27 Production of alpha-l-aspartyl-l-phenylalanine methyl ester Pending JPS61152698A (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP59273701A JPS61152698A (en) 1984-12-27 1984-12-27 Production of alpha-l-aspartyl-l-phenylalanine methyl ester
CA000498219A CA1277098C (en) 1984-12-27 1985-12-20 Preparation process of -l-aspartyl-l-phenylalanine methyl ester
ES550282A ES8703487A1 (en) 1984-12-27 1985-12-20 Process for the preparation of alpha-L-aspartyl-L-phenylalanine methyl ester.
EP85309481A EP0187530A3 (en) 1984-12-27 1985-12-24 Process for the preparation of alpha-l-aspartyl-l-phenylalanine methyl ester
BR8506513A BR8506513A (en) 1984-12-27 1985-12-26 PROCESS TO PREPARE ALFA-L-ASPARTYL-L-PHENYLALANINE METHYL ESTER
KR1019850009883A KR890005064B1 (en) 1984-12-27 1985-12-27 Process for the preparation of alpha-l-aspartyl-l-phenylalanine methylester
US07/171,134 US4801732A (en) 1984-12-27 1988-03-22 Preparation process of α-L-aspartyl-L-phenylalanine methyl ester

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59273701A JPS61152698A (en) 1984-12-27 1984-12-27 Production of alpha-l-aspartyl-l-phenylalanine methyl ester

Publications (1)

Publication Number Publication Date
JPS61152698A true JPS61152698A (en) 1986-07-11

Family

ID=17531347

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59273701A Pending JPS61152698A (en) 1984-12-27 1984-12-27 Production of alpha-l-aspartyl-l-phenylalanine methyl ester

Country Status (1)

Country Link
JP (1) JPS61152698A (en)

Similar Documents

Publication Publication Date Title
US4173562A (en) Process for the preparation of α-L-aspartyl-L-phenylalanine methyl ester
JPS6050200B2 (en) Improved production method of α-L-aspartyl-L-phenylalanine methyl ester
KR930004053B1 (en) Process for producing n-protected-(alpha)-l-aspartyl-l-phenyallanine methyl ester
JPS61143397A (en) Production of n-formyl-alpha-aspartylphenylalanite
KR890005038B1 (en) Process for the preparation of alpha-l-aspartyl-l-phenyl alanine methyl ester
KR890005064B1 (en) Process for the preparation of alpha-l-aspartyl-l-phenylalanine methylester
GB2140805A (en) Isolation of aspartame
JPS61152698A (en) Production of alpha-l-aspartyl-l-phenylalanine methyl ester
KR910002387B1 (en) Aspartame synthesis
GB2144748A (en) Aspartame synthesis
JPS6344594A (en) Separation of n-protected-alpha-l-aspartyl-l-phenylalanine
JP2662287B2 (en) Method for separating α-L-aspartyl-L-phenylalanine methyl ester
JPH07637B2 (en) Method for producing α-L-aspartyl-L-phenylalanine methyl ester or its hydrochloride
JP2508803B2 (en) Process for producing α-L-aspartyl-L-phenylalanine derivative
JPS61197592A (en) Production of alpha-l-aspartyl-l-phenylalanine methyl ester
JPS61225198A (en) Production of alpha-l-aspartyl-l-phenylalaninemethyl ester or hydrochloride thereof
JP2736567B2 (en) Method for producing polyglutamic acid
JPH0751596B2 (en) Process for producing α-L-aspartyl-L-phenylalanine methyl ester or its hydrochloride
JPS61225196A (en) Production of alpha-l-aspartyl-l-phenylalaninemethyl ester or hydrochloride thereof
JPH07116228B2 (en) Process for producing α-L-aspartyl-L-phenylalanine methyl ester
JPS61268699A (en) Production of alpha-l-aspartyl-l-phenylalanine methyl ester
JPH07116225B2 (en) Process for producing hydrohalide salt of α-L-aspartyl-L-phenylalanine methyl ester
JPH07116226B2 (en) Process for producing α-L-aspartyl-L-phenylalanine methyl ester or hydrohalide thereof
JPH08119928A (en) New arginine derivative and production of peptide with the same
JPH07638B2 (en) Process for producing N-formyl-α-L-aspartyl-L-phenylalanine methyl ester