JPS61225198A - Production of alpha-l-aspartyl-l-phenylalaninemethyl ester or hydrochloride thereof - Google Patents

Production of alpha-l-aspartyl-l-phenylalaninemethyl ester or hydrochloride thereof

Info

Publication number
JPS61225198A
JPS61225198A JP60066095A JP6609585A JPS61225198A JP S61225198 A JPS61225198 A JP S61225198A JP 60066095 A JP60066095 A JP 60066095A JP 6609585 A JP6609585 A JP 6609585A JP S61225198 A JPS61225198 A JP S61225198A
Authority
JP
Japan
Prior art keywords
phenylalanine
formyl
reaction
hydrochloride
aspartyl
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP60066095A
Other languages
Japanese (ja)
Other versions
JPH07639B2 (en
Inventor
Ryuichi Mita
三田 隆一
Toshio Kato
敏雄 加藤
Chojiro Higuchi
長二郎 樋口
Takeshi Oura
剛 大浦
Teruhiro Yamaguchi
彰宏 山口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Toatsu Chemicals Inc
Original Assignee
Mitsui Toatsu Chemicals Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Toatsu Chemicals Inc filed Critical Mitsui Toatsu Chemicals Inc
Priority to JP6609585A priority Critical patent/JPH07639B2/en
Priority to AU54354/86A priority patent/AU561384B2/en
Priority to CA000503684A priority patent/CA1278400C/en
Priority to DE8686301681T priority patent/DE3674830D1/en
Priority to EP86301681A priority patent/EP0200311B1/en
Priority to MX1938A priority patent/MX161989A/en
Priority to SU4027212A priority patent/SU1556542A3/en
Priority to BR8601335A priority patent/BR8601335A/en
Priority to NO861189A priority patent/NO168944C/en
Priority to KR1019860002220A priority patent/KR890005038B1/en
Priority to ES553390A priority patent/ES8705365A1/en
Publication of JPS61225198A publication Critical patent/JPS61225198A/en
Priority to US07/122,583 priority patent/US4778916A/en
Publication of JPH07639B2 publication Critical patent/JPH07639B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Peptides Or Proteins (AREA)

Abstract

PURPOSE:To obtain industrially advantageously the titled compound useful as an artificial sweetener with low calorie, by condensing N-formyl-L-aspartic anhydride with L-phenylalanine, and bringing the reaction product into contact with hydrochloric acid in the presence of methanol without isolating the reaction product. CONSTITUTION:N-Formyl-L-aspartic anhydride is condensed with L-phenylalanine in water at 7-12pH, to give N-formyl-alpha-L-aspartyl-L-phenylalanine. The reaction product is not isolated, the reaction mixture is successively acidified with hydrochloric acid, and brought into contact with hydrochloric acid in the presence of methanol, to precipitate alpha-L-aspartyl-L-phenylalaninemethyl ester hydrochloride. The precipitate is separated, and optionally the hydrochloride is neutralized, to give the aimed compound.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、α−L−アスパルチル−L フェニルアラニ
ンメチルエステルまたはその塩酸塩の製造法に関する。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention relates to a method for producing α-L-aspartyl-L phenylalanine methyl ester or its hydrochloride.

本発明ノα−L−アスパルチル−TJ −フェニルアラ
ニンメチルエステル(以下、α−AP’M、[と略ス)
は“アスパルテーム“の慣用名で称される化合物で人工
甘味剤として有用な物質である。
α-L-Aspartyl-TJ-phenylalanine methyl ester of the present invention (hereinafter referred to as α-AP'M, [abbreviated as S)]
is a compound commonly known as "aspartame" and is a substance useful as an artificial sweetener.

しよ糖のおよそ200倍の甘味度を有し、質的にもしよ
糖に類似しており、しかも低カロリーであるため、ダイ
エツト甘味剤として最近その需要が著しく増大している
It has about 200 times the sweetness of sucrose, is qualitatively similar to sucrose, and is low in calories, so its demand as a dietary sweetener has increased significantly recently.

(従来技術およびその問題点) α−APMの製造法に関しては、既に数多くの方法が開
示されている。
(Prior Art and its Problems) Many methods have already been disclosed for producing α-APM.

すなわち、(1)アスパラギン酸無水物の塩酸塩とL−
フェニルアラニンメチルエステルヲ縮合スる方法(例え
ば、特公昭5l−40069)、(2)N−保護アスパ
ラギン酸無水物とL−フーニルアラニンメチルエステル
を縮合し、つづいて脱保護する方法(例えば、特開昭4
6−1370 、特開昭51−−1.1.3 s 41
. )、(3)N−保護アスパラギン酸−β−ベンジル
エステルとL−フェニルアラニンメチルエステルとを縮
合剤の存在下に反応し、つづいて脱保護して製造する方
法(特開昭59−1.3084.6 )、(4)N−カ
ルボギンアスパラギン酸無水物とL−フェニルアラニン
メチルエステルと反応させる方法(特開昭4.8−96
557)など種々の方法がある。
That is, (1) aspartic anhydride hydrochloride and L-
A method of condensing phenylalanine methyl ester (for example, Japanese Patent Publication No. 51-40069), (2) a method of condensing N-protected aspartic acid anhydride and L-phenylalanine methyl ester, and then deprotecting it (for example, Japanese Patent Publication No. 51-40069). Kaisho 4
6-1370, Japanese Patent Publication No. 51-1.1.3 s 41
.. ), (3) A method for producing by reacting N-protected aspartic acid-β-benzyl ester and L-phenylalanine methyl ester in the presence of a condensing agent, followed by deprotection (Japanese Patent Application Laid-Open No. 1983-13084 .6), (4) A method of reacting N-carboginic aspartic anhydride with L-phenylalanine methyl ester (Japanese Patent Application Laid-open No. 48-96
There are various methods such as 557).

しかしながら、これらの方法はいずれも一方の反応原料
としてL−フェニルアラニンメチルエステルを用いるも
のであり、L−フェニルアラニンをメチルエステル化し
て、アスパラギン酸の活性誘導体との反応につなぐまで
の工程が繁雑である。
However, all of these methods use L-phenylalanine methyl ester as one of the reaction raw materials, and the steps from converting L-phenylalanine into methyl ester to connecting it to the reaction with an active derivative of aspartic acid are complicated. .

その上、本発明者らの検討結果によれば、このL−ツー
ニルアラニンメチルエステルは遊離の形態では溶液中で
2分子縮合して環化し、2,5−ジベンジルジケトピペ
ラジンに変化し易い化合物であることがわかった。この
ことはα−A、 P M製造において種々の厄介な問題
を引き起す原因になるものである。
Furthermore, according to the study results of the present inventors, in the free form, this L-thunylalanine methyl ester condenses two molecules in a solution and cyclizes, changing into 2,5-dibenzyldiketopiperazine. It was found that it is a simple compound. This causes various troublesome problems in the production of α-A and PM.

したがって、α−A P Mの製造に関してはト記欠点
のない、すなわちL−フェニルアラニンメチルエステル
を用いない方法の開発が望まれている。
Therefore, it is desired to develop a method for producing α-APM that does not have the above disadvantages, that is, does not use L-phenylalanine methyl ester.

ところで、]、−フェニルアラニンメチルエステルを用
いない方法としてはN−ホルミルアスパラギン酸無水物
を氷酢酸中、L−フェニルアラニント縮合してN−ホル
ミル−α−L−アスパルチル−L−フェニルアラニンを
製造し、次に脱ホルミル化してα−L−アスパルチル−
L−フェニルアラニンとしたのち、該化合物をメタ、ノ
ール中でエステル化する方法(特公昭55−261.3
3号)、およびα−L−アスパルチル=L−フェニルア
ラニンをエステル化してα−A、 P Mを製造する工
程の改良方法(特開昭53−82752号)が知られて
いる。
By the way, as a method that does not use -phenylalanine methyl ester, N-formyl-aspartic anhydride is condensed with L-phenylalanine in glacial acetic acid to produce N-formyl-α-L-aspartyl-L-phenylalanine. Next, α-L-aspartyl-
A method of converting L-phenylalanine into esterification in methanol and alcohol (Japanese Patent Publication No. 55-261.3)
No. 3) and a method for improving the process of producing α-A, PM by esterifying α-L-aspartyl=L-phenylalanine (Japanese Patent Application Laid-open No. 82752/1982) are known.

しかしながら、前者の方法はエステル化反応を非水系に
近い状態で実施するために反応選択性がなく、目的のエ
ステル化のみならず、アスパラギン酸側のβ−カルボン
酸基へのエステル化やジエステル化反応も多量に起り、
そのためにα−APM収率が低いという欠点がある。ま
た後者の方法はエステル化反応を水の共存下に行ってα
−APMの選択率を高めているが、α−APM単離収率
はたかだか50〜60係(対α−L−アスパルチル−L
−フーニルアラニン)であり、収率面で必ずしも十分と
は言えない。
However, the former method lacks reaction selectivity because the esterification reaction is carried out in a nearly non-aqueous state, and it is not only possible to perform the desired esterification, but also to esterify or diesterify the β-carboxylic acid group on the aspartic acid side. A large number of reactions occur,
Therefore, there is a drawback that the yield of α-APM is low. In addition, the latter method performs the esterification reaction in the coexistence of water and α
-Although the selectivity of APM is increased, the isolation yield of α-APM is at most 50-60% (vs. α-L-aspartyl-L).
-funylalanine), and the yield is not necessarily sufficient.

L−フェニルアラニンメチルエステルヲ用いない別の方
法として、L−アスパラギン酸−β−メチルエステルの
N−カルボキシ酸無水物とL−フェニルアラニンを縮合
しα−L−アスパルチル−L−フェニルアラニン−β−
メチルエステルをMmし、この化合物をメタノールを含
有する塩酸水溶液中で分子内エステル交換反応させてα
−APMを製造する方法が最近開示された(特開昭59
−225152号、特開昭59−225153号)。
Another method that does not use L-phenylalanine methyl ester is to condense the N-carboxylic acid anhydride of L-aspartic acid-β-methyl ester with L-phenylalanine to obtain α-L-aspartyl-L-phenylalanine-β-.
Mm the methyl ester, and intramolecular transesterification of this compound in an aqueous hydrochloric acid solution containing methanol to obtain α.
- A method for manufacturing APM has recently been disclosed (Japanese Patent Application Laid-Open No. 1983-1973)
-225152, JP-A-59-225153).

しかしながら、この方法はアスパラギン酸のβ−メチル
エステルを製造するエステル化反応が選択性に乏しく収
率が低いこと、またこのものをホスグンと反応させて製
造されるN−カルボキシ酸無水物が塩基との接触等によ
り重合し易い性質があるために、工業的には取扱が難し
いなどの欠点を有する方法である。
However, in this method, the esterification reaction to produce β-methyl ester of aspartic acid has poor selectivity and yield is low, and the N-carboxylic acid anhydride produced by reacting this with phosgun is a base. This method has the disadvantage that it is difficult to handle industrially because it tends to polymerize due to contact with other substances.

このように従来のα−A、 P Mの製造法では中間原
料の安定性、収率あるいは安全性等の点で一長一短があ
り、必ずしも効率のよい製造法がないのが現状である。
As described above, conventional methods for producing α-A and PM have advantages and disadvantages in terms of stability, yield, safety, etc. of intermediate raw materials, and the current situation is that there is no necessarily efficient production method.

(問題点を解決するための手段) 本発明者らは、前記のようなα−APM製造技術の現状
を鑑み、また前述したような溶液中での安定性に問題の
あるL−ツーニルアラニンメチルエステルを用いずに、
さらに効率よくα−APMを製造する方法を鋭意検討し
た。とくに、α−APMの製造技術は前述のように一般
に原料からα−A P Mに至るまでの工程が長いこと
を考慮して、できるだけ工程を簡素化して効率よくα−
APMを製造する方法について検討を重ねた。
(Means for Solving the Problems) In view of the current state of α-APM manufacturing technology as described above, the present inventors have discovered that L-tunylalanine, which has the problem of stability in solution as described above, without using methyl ester,
Furthermore, we conducted extensive research into methods for efficiently producing α-APM. In particular, the production technology for α-APM takes into account that the process from raw materials to α-APM is generally long as mentioned above, and the process is simplified as much as possible to efficiently produce α-APM.
We have repeatedly considered methods for manufacturing APM.

本発明者らは、先にN−ホルミル−し−アスパラギン酸
無水物とL−フーニルアラニントノ縮合が水溶媒中で不
純物の副生をほとんど伴うことなく、しかも縮合生成物
はβ−異性体(N−ホルミル−β−L−7スパルチルー
L−フェニルアラニン)よりもα−異性体(N−ホルミ
ル−α−L−アスパルチル−L−フェニルアラニン)カ
圧倒的て多く生成することを見出し、α−APM製造の
ための重要な中間体であるN−ホルミル−α−り一アス
パルチルーL−フェニルアラニンノ改良すれた製造法を
見出し、既に出願した(特願昭59−264618号)
The present inventors have previously demonstrated that the tonocondensation of N-formyl-di-aspartic acid anhydride and L-funylalanine was carried out in an aqueous solvent with almost no by-product of impurities, and that the condensation product was a β-isomer. It was discovered that the α-isomer (N-formyl-α-L-aspartyl-L-phenylalanine) was produced in far greater amounts than the α-isomer (N-formyl-β-L-7spartyl-L-phenylalanine), and α-APM We have discovered an improved method for producing N-formyl-α-ri-aspartyl-L-phenylalanine, which is an important intermediate for the production, and have already filed an application (Japanese Patent Application No. 264,618/1982).
.

さらに、この知見をもとにしてα−APMの製造法を鋭
意検討し、N−ホルミル−L−アスパラギン酸無水物と
L−ツーニルアラニンとを水中で反応させたのち、縮合
生成物を反応系より単離することなく、該反応混合物を
連続的にα−A P Mまで一つの反応器で行える方法
を見出すに至ろた。
Furthermore, based on this knowledge, we intensively investigated the production method of α-APM, and after reacting N-formyl-L-aspartic acid anhydride and L-tunylalanine in water, we reacted the condensation product. We have now discovered a method that allows the reaction mixture to reach α-A PM continuously in one reactor without isolation from the system.

原料から目的のα−A P Mまで多段の反応工程を一
つの反応器で行う場合には、一般的には各反応に付随す
る種々の夾雑物が、目的の反応および最終のα−APM
の品質に望ましくない影響を及ぼすととが考えられる。
When multiple reaction steps from raw materials to the target α-APM are carried out in one reactor, various impurities accompanying each reaction generally interfere with the target reaction and the final α-APM.
It is thought that this may have an undesirable effect on the quality of the product.

と(にN−ホルミル−L −アスパラギン酸無水物とL
−フェニルアラニンとの縮合に際して、目的のα−異性
体のほかに20係以上の収率でβ−異性体が副生じ、し
かもまたこの縮合反応混合物中にはN−ホルミル−し−
アスパラギン酸無水物が、羊に水と反応して開環したN
−ホルミル−L−アスパラギン酸および場合によっては
未反応のL−フェニルアラニンなどを含有し、比較的複
雑な系を形成していることが多い。それにも拘らず、本
発明者らの検討結果によれば、N−ホルミル−L−アス
パラギン酸無水物とL−フェニルアラニンとを水中で反
応させて得られた反応混合物をメタノールの存在下に塩
酸と接触させるごとにより、縮合生成物の脱ホルミル化
反応およびエステル化反応が温和な条件下に進行し、し
かも反応によって生成した種々の化合物のうちα−AP
Mのみが、種々の夾雑物の影響を受けることなく塩酸塩
として系外に析出してくることがわかり、これらの知見
に基づいて本発明を完成するに至った。
and (N-formyl-L-aspartic anhydride and L
- During the condensation with phenylalanine, in addition to the desired α-isomer, the β-isomer is produced as a by-product with a yield of 20 coefficients or more, and furthermore, N-formyl-
Aspartic anhydride reacts with water to form a ring-opened N
It often contains -formyl-L-aspartic acid and, in some cases, unreacted L-phenylalanine, forming a relatively complex system. Nevertheless, according to the study results of the present inventors, a reaction mixture obtained by reacting N-formyl-L-aspartic acid anhydride and L-phenylalanine in water was mixed with hydrochloric acid in the presence of methanol. With each contact, the deformylation reaction and esterification reaction of the condensation product proceed under mild conditions, and among the various compounds produced by the reaction, α-AP
It was found that only M precipitates out of the system as a hydrochloride without being affected by various impurities, and based on these findings, the present invention was completed.

すなわち、本発明はN−ホルミル−L−アスパラギン酸
無水物とL−ツーニルアラニンを水中、pl(7〜12
の範囲で縮合したのち、生成したN−ホルミルーα−L
−アスパルチル−L−フェニルアラニンをIN−:1l
fffすることなく、引きつづき該反応混合物を塩酸酸
性としメタノールの存在下に塩酸と接触させ、析出した
α−APM塩酸塩を分離し、必要に応じて該塩酸塩を中
和することからなるα−APMまたはその塩酸塩の製造
法である。
That is, the present invention provides N-formyl-L-aspartic acid anhydride and L-thunylalanine in water at pl (7 to 12
After condensation in the range of , the generated N-formyl α-L
-Aspartyl-L-phenylalanine IN-: 1l
fff, the reaction mixture is subsequently made acidic with hydrochloric acid, brought into contact with hydrochloric acid in the presence of methanol, the precipitated α-APM hydrochloride is separated, and if necessary, the hydrochloride is neutralized. - A method for producing APM or its hydrochloride.

本発明の方法ではN−ホルミル−L−アスパラギン酸無
水物を原料として用いる。原料のN−ホルミル−L−ア
スパラギン酸無水物は公知の製造方法、例えば、L−ア
スパラギン酸をギ酸および無水酢酸と反応させることに
よって容易に製造することができる。
In the method of the present invention, N-formyl-L-aspartic acid anhydride is used as a raw material. The raw material N-formyl-L-aspartic anhydride can be easily produced by a known production method, for example, by reacting L-aspartic acid with formic acid and acetic anhydride.

本発明の方法は、まず第1にN−ホルミル−L−アスパ
ラギン酸無水物とL−フェニルアラニンを水中pH7〜
12の範囲で縮合し、N−ホルミル−α−T、−7スパ
ルチルーL−フェニルアラニンを生成させる。
In the method of the present invention, first of all, N-formyl-L-aspartic acid anhydride and L-phenylalanine are mixed in water at pH 7 to
12 to produce N-formyl-α-T, -7 spartyl-L-phenylalanine.

N−ホルミル−L−アスパラギン酸無水物の使用量はL
−フェニルアラニンに対して理論量以北用いれば良く、
とくに過剰て用いる必要はない。
The amount of N-formyl-L-aspartic anhydride used is L
- For phenylalanine, it is sufficient to use more than the stoichiometric amount,
There is no need to use it in excess.

本発明の方法において使用する溶媒の水の量は。The amount of solvent water used in the method of the present invention is:

縮合反応後引きつづいて実施するα−A、 P ’M製
造8重量倍以下を用いるのがよい。勿論10重量倍を越
える水中で縮合反応を実施しても反応上は特に問題はな
いが1反応後濃縮操作が必要となる。
It is preferable to use not more than 8 times the weight of α-A and P'M in the subsequent production of α-A and P'M after the condensation reaction. Of course, even if the condensation reaction is carried out in water exceeding 10 times the weight, there is no particular problem in terms of the reaction, but a concentration operation is required after one reaction.

反応の方法は水にL−フェニルアラニンおよびアルカリ
を装入して溶解または懸濁した液中にN−ホルミルアス
パラギン酸無水物を少量づつ連続的にまたは分割して装
入する。この際反応溶液のp I−(は7〜12の範囲
に保つようにアルカリ水溶液を滴下して調整する。初め
にL−]−二ルアラニンを溶解または懸濁させるのに用
いるアルカリおよび反応時のpH調整用のアルカリとし
ては、リチウム、ナトリウムまたはカリウムなどのアル
カリ金属の水酸化物、酸化物、炭酸塩または重炭酸塩、
あるいはカルシウムまたはマグネシウムなどのアルカリ
土類金属の水酸化物、酸化物、炭酸塩または重炭酸塩な
どが多用される。勿論、原料の無水物に対して不活性な
トリエチルアミンで代表される有機塩基を用いても問題
はない。反応液のpHが12を越える強アルカリ性条件
下ではN−ホルミル−L−アスパラギン酸無水物の水に
よる開環反応が増大し、そのためにN−ホルミル−L−
アスパラギン酸無水物の使用量が増加すると同時にβ−
異性体以外の副生物の生成も起るので好ましくない。ま
た、反応時のpHが酸性側に片寄ると反応が緩慢になり
無水物の水による開環反応が優先的に起り易くなり好ま
しくない。
The reaction is carried out by charging L-phenylalanine and an alkali in water, dissolving or suspending them, and adding N-formyl aspartic anhydride in small amounts continuously or in portions. At this time, the p I-( of the reaction solution is adjusted by dropping an aqueous alkali solution so that it is kept in the range of 7 to 12. First, the alkali used to dissolve or suspend L-]-dialanine and Alkali for pH adjustment include hydroxides, oxides, carbonates or bicarbonates of alkali metals such as lithium, sodium or potassium;
Alternatively, hydroxides, oxides, carbonates, or bicarbonates of alkaline earth metals such as calcium or magnesium are often used. Of course, there is no problem in using an organic base represented by triethylamine, which is inert to the raw material anhydride. Under strongly alkaline conditions where the pH of the reaction solution exceeds 12, the ring-opening reaction of N-formyl-L-aspartic anhydride with water increases, and therefore N-formyl-L-
As the amount of aspartic anhydride increases, β-
This is not preferable since by-products other than isomers are also produced. Furthermore, if the pH during the reaction is biased toward the acidic side, the reaction becomes slow and the ring-opening reaction of the anhydride with water tends to occur preferentially, which is not preferable.

反応温度はN−ホルミル−L−アスパラギン酸無水物の
水により加水分解反応を抑制する意味で30°C以下、
さらに好ましくは200C以下である。
The reaction temperature is 30°C or less in order to suppress the hydrolysis reaction of N-formyl-L-aspartic anhydride with water.
More preferably, it is 200C or less.

下限については特に制限はないが工業的見地より一20
°C以上である。尚この縮合反応に際して反応に不活性
で且つ水と混和性の有機溶媒を併用することもできる。
There is no particular limit on the lower limit, but from an industrial standpoint it is 120
It is above °C. In this condensation reaction, an organic solvent which is inert to the reaction and miscible with water may also be used.

上記のようにしてN−ホルミル−L−アスパラギン酸無
水物とL−フェニルアラニンとの水中での縮合反応によ
りN−ホルミル−α−L−アスパチルーL−フェニルア
ラニンが主生成物として生成するが、前述のようにその
異性体であるN−ホルミル−β−L−アスパルチル−L
−フェニルアラニンも一部副生ずる。その生成比は75
 :20〜80:20であり、目的物とβ−異性体とを
併せての総合収率は、通常、L−フェニルアラニンに対
して95係以上である。ここに生成したN −ホルミル
−α−L−7スパルチルーL−フェニルアラニノは本発
明においては単離せずに、反応混合物をそのまま用いて
、次のα−A、 P iVI製造反応を行う。
As described above, N-formyl-α-L-aspatyl-L-phenylalanine is produced as the main product by the condensation reaction of N-formyl-L-aspartic acid anhydride and L-phenylalanine in water. Its isomer N-formyl-β-L-aspartyl-L
- Phenylalanine is also partially produced as a by-product. Its production ratio is 75
:20 to 80:20, and the overall yield of the target product and the β-isomer is usually a factor of 95 or higher relative to L-phenylalanine. In the present invention, the N-formyl-α-L-7 spartyl-L-phenylalanino produced here is not isolated, but the reaction mixture is used as it is to carry out the next reaction for producing α-A and P iVI.

したがって1本発明の方法は、N−ホルミル−α−L−
アスパルチル−L−フェニルアラニンを含有する前記反
応混合物から一つの反応器でα−APMを製造するもの
で、基本的には該反応混合物を塩酸酸性とし、メタノー
ル存在下に塩酸と接触させることにより生成したα−A
PMを塩酸塩として系外に析出させる。
Therefore, 1 the method of the present invention provides N-formyl-α-L-
α-APM is produced in one reactor from the reaction mixture containing aspartyl-L-phenylalanine, and basically the reaction mixture is made acidic with hydrochloric acid and brought into contact with hydrochloric acid in the presence of methanol. α-A
PM is precipitated out of the system as a hydrochloride.

前述の縮合反応混合物を塩酸酸性とするには、反応混合
物中に塩化水素を導入するかまたは濃塩酸を添加する。
To make the aforementioned condensation reaction mixture acidic with hydrochloric acid, hydrogen chloride is introduced into the reaction mixture or concentrated hydrochloric acid is added.

そしてここに得られた混合物をメタノールの存在下に塩
酸と接触させるごとにより脱ホルミル化反応とエステル
化反応が進行し、結果としてα−APMが生成し、どれ
が塩酸塩として系外に析出してくる。
Each time the resulting mixture is brought into contact with hydrochloric acid in the presence of methanol, deformylation and esterification reactions proceed, resulting in the production of α-APM, which is precipitated out of the system as a hydrochloride. It's coming.

メタノールの使用量は縮合反応によって生成したN−ホ
ルミル−α−L−アスパルチル−L−フェニルアラニン
に対して少なくとも1当量以上、好ましくは出発原料の
し一フェニルアラニンに対して1当量以上用いるのが良
い。メタノール使用量の上限については、あまり過剰に
用いると反応系のメタノール濃度が高くなり、反応によ
って生成したα−APM塩酸塩の溶解度が上がり、α−
APM塩酸塩が析出しにくくなると同時に生成したα−
APMがさらにエステル化され、α−L−アスパルチル
−L−フェニルアラニンジメチルニスチルの副生が増加
して好ましくない。
The amount of methanol used is at least 1 equivalent or more based on N-formyl-α-L-aspartyl-L-phenylalanine produced by the condensation reaction, preferably 1 equivalent or more based on the starting material phenylalanine. Regarding the upper limit of the amount of methanol used, if it is used in excess, the methanol concentration in the reaction system will increase, the solubility of α-APM hydrochloride produced by the reaction will increase, and α-
α- generated at the same time as APM hydrochloride becomes difficult to precipitate.
APM is further esterified and the by-product of α-L-aspartyl-L-phenylalanine dimethylnystyl increases, which is undesirable.

したがって、通常はL−フェニルアラニンに対して6モ
ル比以下、また 〔(メタノール)/(メタノール+T−(CI+I(2
0) ]×100で規定される濃度として30重量係以
下が好ましい。メタノールは前記縮合反応混合物を塩酸
酸性にする前に添加してもよいし、あるいは塩酸酸性と
した後で添加してもよい。
Therefore, the molar ratio to L-phenylalanine is usually 6 or less, and [(methanol)/(methanol+T-(CI+I(2)
0) ]×100, preferably 30% by weight or less. Methanol may be added before the condensation reaction mixture is made acidic with hydrochloric acid, or may be added after the mixture is made acidic with hydrochloric acid.

接触させる塩酸は出発原料のL−フェニルアラニンに対
して1〜10当量の範囲の量で使用するのがよい。また
本発明は反応によって生成したα−APMを塩酸塩とし
て遂次系外に析出させることによってα−APMの高い
収率を達成できるものであり、α−APM塩酸塩を析出
し易くするために接触時の反応系の塩酸濃度も重要な因
子である。塩酸濃度としては((HCI )/(HC1
+H20))×100で規定される濃度として3〜33
重量係。
The hydrochloric acid to be brought into contact is preferably used in an amount ranging from 1 to 10 equivalents based on the starting material L-phenylalanine. Furthermore, the present invention can achieve a high yield of α-APM by sequentially precipitating α-APM produced by the reaction as a hydrochloride out of the system, and in order to facilitate the precipitation of α-APM hydrochloride, The concentration of hydrochloric acid in the reaction system during contact is also an important factor. The hydrochloric acid concentration is ((HCI)/(HC1)
3 to 33 as the concentration defined by +H20))×100
Weight staff.

好ましくは5〜30重量係である。Preferably it is 5 to 30 weight ratio.

塩酸濃度が低すぎると目的のエステル化反応が起りにく
くなる。また塩酸濃度が高すぎると生成したα−A、 
P M塩酸塩の溶解度が一部がり系外に〆出しにくくな
り、α−APM収率が低下する。
If the hydrochloric acid concentration is too low, the desired esterification reaction will be difficult to occur. In addition, when the concentration of hydrochloric acid is too high, α-A generated,
The solubility of PM hydrochloride is partially reduced, making it difficult to get it out of the system, resulting in a decrease in α-APM yield.

本発明の方法において、縮合反応混合物と塩酸とを接触
させる温度は0°C乃至反応混合物の沸点、好ましくは
O〜608Cである。低すぎると脱ホルミル化及びエス
テル化反応が進行しにくくなり完応完結まで著しく長時
間を要し工業的には好ましくなく、また高すぎる場合に
はペプチド結合の解裂等の望ましくない副反応が誘起さ
れて、同じく好ましくない。
In the method of the present invention, the temperature at which the condensation reaction mixture and hydrochloric acid are brought into contact is from 0°C to the boiling point of the reaction mixture, preferably from 0 to 608°C. If it is too low, the deformylation and esterification reactions will be difficult to proceed and it will take a very long time to complete the reaction, which is not desirable from an industrial perspective.If it is too high, undesirable side reactions such as cleavage of peptide bonds may occur. Induced is also undesirable.

尚、本発明の方法においては、縮合反応混合物を塩酸と
接触させる際に縮合反応に用いたアルカリと塩酸との中
和により相当する無機塩が生成する力瓢接触時に系外に
析出していれば接触の途中で分離することも可能である
In the method of the present invention, when the condensation reaction mixture is brought into contact with hydrochloric acid, the alkali used in the condensation reaction is neutralized with hydrochloric acid to produce a corresponding inorganic salt. For example, it is also possible to separate in the middle of contact.

本発明においては反応によって生成したα−APMは塩
酸塩として系外に析出する。従って反応後は必要に応じ
て反応混合物を冷却後r過することによりα−APM塩
酸塩が単離される。ここて単離されたα−APM塩酸塩
は水中、懸濁または溶液状態で水酸化ナトリウム、炭酸
ナトリウム。
In the present invention, α-APM produced by the reaction is precipitated out of the system as a hydrochloride. Therefore, after the reaction, if necessary, the reaction mixture is cooled and then filtered to isolate α-APM hydrochloride. The α-APM hydrochloride isolated here is dissolved in water, in suspension or solution state, in the form of sodium hydroxide or sodium carbonate.

炭酸水素ナトリウムまたはアンモニア等のアルカリで中
和することにより遊離のα−APMに変換することがで
きる。
It can be converted to free α-APM by neutralization with an alkali such as sodium hydrogen carbonate or ammonia.

(実施例) 以下実施例により本発明の詳細な説明する。(Example) The present invention will be explained in detail below with reference to Examples.

尚、実施例中の高速液体クロマトグラフィの分析条件は
次の通りである。
The analysis conditions for high performance liquid chromatography in Examples are as follows.

高速液体クロマトグラフィーでの分析条件カーy ム:
 YMCpackA−3126mmφX 1.50 m
u(充填剤:0DS) 移動相: 0.005M/l  へブタンスルホン酸ナ
トリウム水溶液:メタノール−65:35(体積比) (リン酸でpf(二2.5に調整) 流量: 1 ml / min 検出器:紫外分光光度計 実施例1 66りの水中に固形の水酸化ナトリウム5.09を加え
て溶かし、さらにL−フェニルアラニン19.8 り(
0,1,2モル)を装入して溶解し、0°Cに冷却した
Analysis conditions for high performance liquid chromatography:
YMCpackA-3126mmφX 1.50m
u (filling agent: 0DS) Mobile phase: 0.005 M/l sodium hebutanesulfonate aqueous solution: methanol - 65:35 (volume ratio) (pf (adjusted to 2.5 with phosphoric acid) Flow rate: 1 ml/min Detector: Ultraviolet spectrophotometer Example 1 Add and dissolve 5.09 g of solid sodium hydroxide in 66 g of water, and then add 19.8 g of L-phenylalanine (
0,1,2 mol) was charged and dissolved, and cooled to 0°C.

つぎにこの溶液中にN−ホルミル−し−アスパラギン酸
無水物1.8.8 ’7 (0,13モル)を0〜5°
Cで30分間で徐々に装入した。この際45係水酸化ナ
トリウム水溶液を滴下して反応液のpHを9〜11に保
った。その後同温度で1時間反応させた。反応液の一部
をとり高速液体クロマトグラフィーにて分析の結果、N
−ホルミル−α−L−アスパルチル−L−フェニルアラ
ニンとN−ホルミル−β−L−アスパルチル−L−フェ
ニルアラニンの生成比は75.4:24,6であり、ま
た両者併せての総合収率は96.8 % (対し一フェ
ニルアラニン)であった。
Next, 1.8.8'7 (0.13 mol) of N-formyl-di-aspartic acid anhydride was added to this solution at 0 to 5°C.
It was gradually charged at C for 30 minutes. At this time, a 45% aqueous sodium hydroxide solution was added dropwise to maintain the pH of the reaction solution at 9-11. Thereafter, the mixture was reacted at the same temperature for 1 hour. A portion of the reaction solution was analyzed using high performance liquid chromatography, and as a result, N
The production ratio of -formyl-α-L-aspartyl-L-phenylalanine and N-formyl-β-L-aspartyl-L-phenylalanine was 75.4:24.6, and the total yield of both was 96. .8% (to one phenylalanine).

この反応混合物中にメタノール14,4 !7を加え、
ついで26.89の塩化水素を55°C以下の温度で導
入し、さら[50〜55℃で1時間反応させた。
Methanol 14,4! in this reaction mixture! Add 7,
Then, 26.89 g of hydrogen chloride was introduced at a temperature below 55°C, and the reaction was further carried out at 50-55°C for 1 hour.

その後25°Gに冷却し20〜25℃で4日間反応させ
た。反応混合物を5℃以下に冷却し0〜5℃で3時間か
きまぜたのち析出しているα−APM塩酸塩をr過し、
冷水で洗浄することにより白色のα−APM塩酸塩の湿
ケーキを得た。この湿ケーキを高速液体クロマトグラフ
ィーにて分析の結果1.9.3!7のα−A P−Mを
含有していた。収率54.7 係(対し一フェニルアラ
ニノ)実施例2 実施例1で得られたα−APM塩酸塩の湿ケーキを水2
00−に懸濁させ20〜25°Gで20%炭酸す) I
Jウム水溶液で中和した( pH=5 、 O)。
Thereafter, it was cooled to 25°G and reacted at 20 to 25°C for 4 days. After cooling the reaction mixture to below 5°C and stirring at 0 to 5°C for 3 hours, the precipitated α-APM hydrochloride was filtered,
A white wet cake of α-APM hydrochloride was obtained by washing with cold water. Analysis of this wet cake by high performance liquid chromatography revealed that it contained α-A PM of 1.9.3!7. Yield 54.7 Example 2 The wet cake of α-APM hydrochloride obtained in Example 1 was dissolved in water 2
00- and carbonated 20% at 20-25°G) I
It was neutralized with an aqueous solution of Jumium (pH=5, O).

その後5°Cに冷却し同温度で1時間かきまぜてから析
出している結晶を沢過し、冷水で洗浄後真空乾燥するこ
とによって遊離のα−A P−Mを得た。
Thereafter, the mixture was cooled to 5°C, stirred at the same temperature for 1 hour, and precipitated crystals were filtered off, washed with cold water, and dried under vacuum to obtain free α-A PM.

収量17.42 このものを高速液体クロマトグラフィーにて分析の結果
、α−APM以外に不純物は検出されなかった。また比
旋光度は以下の通りであった。
Yield: 17.42 As a result of analyzing this product by high performance liquid chromatography, no impurities other than α-APM were detected. Further, the specific optical rotation was as follows.

実施例3 フレーク状水酸化カリウム7.02を110gの水に;
容かしさらKL−ツーニルアラニン 1.9.11(0
,1,2モル)を装入して溶解し0℃に冷却した。
Example 3 7.02 g of flaked potassium hydroxide in 110 g of water;
Ukasashisara KL-tunylalanine 1.9.11 (0
, 1.2 mol) was charged, dissolved and cooled to 0°C.

この水溶液中にN−ホルミルアスパラギン酸無水物1.
8.8 !7 (0,13モル)を0〜5°Cで30分
間で徐々に装入した。この間50係水酸化カリウム水溶
液16.0を同時に滴下して反応液のpHを8〜11に
保った。その後同温度でさらに1時間攪拌した。反応液
の一部をとり高速液体クロマトグラフィーにて分析の結
果、N−ホルミル−α−り一アスパルチルーL−フェニ
ルアラニントN  i/lzミル−β−L−アスパルチ
ル−L−フェニルアラニンの生成比は77:23であり
、また両者併せての総合収率は98.9%であった。こ
の反応混合物中にメタノール〕9.2りを加え、ついで
40,2Qの塩化水素を55℃以下の温度で導入し、さ
らに50〜55°Cで30分間反応させた。その後室温
まで冷却し室温でさらに5日間反応させた。
In this aqueous solution, 1.N-formylaspartic anhydride was added.
8.8! 7 (0.13 mol) was introduced gradually over a period of 30 minutes at 0-5°C. During this time, 16.0% of a 50% potassium hydroxide aqueous solution was simultaneously added dropwise to maintain the pH of the reaction solution at 8-11. Thereafter, the mixture was further stirred at the same temperature for 1 hour. A portion of the reaction solution was analyzed using high performance liquid chromatography, and the production ratio of N-formyl-α-ri-aspartyl-L-phenylalanine N i/lzmil-β-L-aspartyl-L-phenylalanine was 77. :23, and the total yield of both was 98.9%. 9.2 ml of methanol was added to the reaction mixture, and then 40.2Q hydrogen chloride was introduced at a temperature below 55°C, and the reaction was further carried out at 50-55°C for 30 minutes. Thereafter, the mixture was cooled to room temperature and reacted at room temperature for an additional 5 days.

反応後、反応混合物を5°C以下に冷却し0〜5℃で3
時間かきまぜたのち析出しているα−APM塩酸塩をf
過し冷水で洗浄することにより白色のα−APM塩酸塩
を得た。高速液体クロマトグラフィーにて分析の結果1
7.4 !7のα−A P Mを含有していた。 収率
49.3%(対し−)=ニルアラニン) 実施例4 水酸化ナトリウム5.0シを66!7の水に溶かしさら
に■」−フェニルアラニン 19.8 !7 (0,1
,2モル)を装入して溶解し一5℃に冷却した。つぎに
この水溶液中にN−ホルミル−L−アスパラギン酸無水
物18.8 ’7 (0,13モル)を10℃以下の温
度を保っておよそ1時間で少しづつ装入した。
After the reaction, the reaction mixture was cooled to below 5°C and incubated at 0-5°C for 3
After stirring for an hour, the precipitated α-APM hydrochloride was
White α-APM hydrochloride was obtained by washing with filtered and cold water. Results of analysis by high performance liquid chromatography 1
7.4! It contained 7 α-APM. Yield: 49.3% (vs. -) = Nylalanine) Example 4 5.0% of sodium hydroxide was dissolved in 66!7% of water, and ■ - Phenylalanine 19.8%! 7 (0,1
, 2 mol) was charged, dissolved and cooled to -5°C. Next, 18.8'7 (0.13 mol) of N-formyl-L-aspartic acid anhydride was charged into this aqueous solution little by little over approximately 1 hour while maintaining the temperature at 10 DEG C. or lower.

この間30係水酸化す) IJウム水溶液(1,9,0
g)を滴下して反応液のpHを8〜11に保った。その
後同温度で1時間反応させた。反応液の一部をとり高速
液体クロマトグラフィーにて分析の結果N−ホルミル−
α−L−7スパルチルーL−フェニルアラニンとN−ホ
ルミル−β−L−7スノクルチルーL−フーニルアラニ
ンの生成比は76.1 :24.9でありまた両者併せ
ての総合収率は97.4係(対し一フェニルアラニン)
であった。
During this period, IJum aqueous solution (1,9,0
g) was added dropwise to maintain the pH of the reaction solution at 8-11. Thereafter, the mixture was reacted at the same temperature for 1 hour. A portion of the reaction solution was analyzed using high performance liquid chromatography, and the results showed that N-formyl-
The production ratio of α-L-7 spartyl-L-phenylalanine and N-formyl-β-L-7 snocurti-L-phenylalanine was 76.1:24.9, and the total yield of both was 97.4. Section (vs. phenylalanine)
Met.

この反応混合物中にメタノール8.3gを加え、ついで
35.99の塩化水素を55℃以下の温度で導入し、さ
らに50〜55℃で1時間反応させたのち30°Cに冷
却して同温度でさらに7日間反応させた。反応後実施例
1と同様に処理することによりα−APM20.5!7
を含有するα−APM塩酸塩を得た。収率53.6%(
対し一フーニルアラニン) (発明の効果) 本発明の方法はその溶液中での安定性に問題のあるL−
フェニルアラニンメチルエステルヲ用1.−ることなく
、L−ツーニルアラニンを直接使用できる利点がある。
8.3 g of methanol was added to this reaction mixture, then 35.99 g of hydrogen chloride was introduced at a temperature below 55°C, and the reaction was further carried out at 50-55°C for 1 hour, then cooled to 30°C and kept at the same temperature. The reaction was continued for another 7 days. After the reaction, α-APM20.5!7 was obtained by the same treatment as in Example 1.
α-APM hydrochloride containing .alpha.-APM hydrochloride was obtained. Yield 53.6% (
(Effects of the Invention) The method of the present invention is applicable to L-4, which has a problem with stability in solution.
For phenylalanine methyl ester 1. There is an advantage that L-thunylalanine can be used directly without -

その上、このL−フェニルアラニンを原料として一つの
反応器で最終目的物であるα−APMまでを製造できる
。従来、中間体を単離してα−APMを製造する種々の
方法があるが、これらに比較して原料的に高価なL−ツ
ーニルアラニンの損失もな(、また作業性の点からも極
めて効率の良(・α−APMの製造法である。しかも、
N−ホルミル−L−アスパラギン酸無水物とL−フェニ
ルアラニンの縮合時に副生ずるβ−異性体は、メタノー
ル存在下での塩酸との接触により脱ホル゛ミルならびに
エステル化され種々の化合物を生成するが。
Moreover, using this L-phenylalanine as a raw material, the final target product, α-APM, can be produced in one reactor. Conventionally, there are various methods for producing α-APM by isolating intermediates, but compared to these methods, there is no loss of L-tunylalanine, which is an expensive raw material (and it is also extremely easy to work with). It is an efficient method for producing α-APM.Moreover,
The β-isomer produced by the condensation of N-formyl-L-aspartic anhydride and L-phenylalanine is deformylated and esterified by contact with hydrochloric acid in the presence of methanol to produce various compounds. .

α−APM塩酸塩の析出に悪影響を及ぼすことなく、こ
れらは析出したα−APM塩酸塩を分離したあとの母液
に全て移行する。したがって、この母液を加水分解すれ
ば、出発原料のL−ツーニルアラニンおよびL−アスパ
ラギン酸としてそれぞれが比較的高い濃度で回収される
ことになり、そのため加水分解後これらの物質を単離す
るに際してエネルギー的に損失の大きい濃縮操作が不要
になるなどの副次的特徴も持ち併せる。
All of these are transferred to the mother liquor after separating the precipitated α-APM hydrochloride without adversely affecting the precipitation of α-APM hydrochloride. Therefore, if this mother liquor is hydrolyzed, the starting materials L-thunylalanine and L-aspartic acid will be recovered in relatively high concentrations, so that it will be difficult to isolate these substances after hydrolysis. It also has secondary features such as eliminating the need for concentration operations that involve large energy losses.

Claims (1)

【特許請求の範囲】 1)N−ホルミル−L−アスパラギン酸無水物とL−フ
ェニルアラニンを水中pH7〜12の範囲で縮合したの
ち、生成したN−ホルミル−α−L−アスパルチル−L
−フェニルアラニンを単離することなく、引きつづき反
応混合物を塩酸酸性としメタノールの存在下に塩酸と接
触させ、析出したα−L−アスパルチル−L−フェニル
アラニンメチルエステル塩酸塩を分離し、必要に応じて
該塩酸塩を中和することを特徴とするα−L−アスパル
チル−L−フェニルアラニンメチルエステルまたはその
塩酸塩の製造法。 2)N−ホルミル−L−アスパラギン酸無水物とL−フ
ェニルアラニンとの水中での縮合反応をL−フェニルア
ラニンに対して10重量倍以下の水を用いて行う特許請
求の範囲第1項記載の方法
[Claims] 1) N-formyl-α-L-aspartyl-L produced by condensing N-formyl-L-aspartic acid anhydride and L-phenylalanine in water at a pH in the range of 7 to 12.
- Without isolating phenylalanine, the reaction mixture is subsequently acidified with hydrochloric acid and brought into contact with hydrochloric acid in the presence of methanol to separate the precipitated α-L-aspartyl-L-phenylalanine methyl ester hydrochloride; A method for producing α-L-aspartyl-L-phenylalanine methyl ester or its hydrochloride, which comprises neutralizing the hydrochloride. 2) The method according to claim 1, in which the condensation reaction of N-formyl-L-aspartic acid anhydride and L-phenylalanine in water is carried out using water in an amount not more than 10 times the weight of L-phenylalanine.
JP6609585A 1985-03-26 1985-03-29 Process for producing α-L-aspartyl-L-phenylalanine methyl ester or its hydrochloride Expired - Lifetime JPH07639B2 (en)

Priority Applications (12)

Application Number Priority Date Filing Date Title
JP6609585A JPH07639B2 (en) 1985-03-29 1985-03-29 Process for producing α-L-aspartyl-L-phenylalanine methyl ester or its hydrochloride
AU54354/86A AU561384B2 (en) 1985-03-26 1986-03-06 Preparation of -l-aspartyl-l-phenylalanine methyl ester or hydrochloride thereof
CA000503684A CA1278400C (en) 1985-03-26 1986-03-10 Preparation process of alpha-l-aspartyl-l-phenylalanine methyl ester or hydrochloride thereof
DE8686301681T DE3674830D1 (en) 1985-03-26 1986-03-10 METHOD FOR PRODUCING METHYL ESTER OF ALPHA-L-ASPARTYL-L-PHENYLALANINE OR ITS HYDROCHLORIDE.
EP86301681A EP0200311B1 (en) 1985-03-26 1986-03-10 Preparation process of alpha-l-aspartyl-l-phenylalanine methyl ester or hydrochloride thereof
MX1938A MX161989A (en) 1985-03-26 1986-03-20 PROCEDURE FOR PREPARING METHYLESTER OF ALPHA-L-ASPARTIL-L-PHENYLALANINE OR CHLORHYDRATE THEREOF
BR8601335A BR8601335A (en) 1985-03-26 1986-03-25 PROCESS OF PREPARATION OF ALPHA-1-ASPARTYL-1-PHENYL-ALANINE METHYL STERIL OR ITS CHLORIDATE
SU4027212A SU1556542A3 (en) 1985-03-26 1986-03-25 Method of producing methyl ester of alpha-l-aspartyl-l-phenylalanine or its hydrochloride
NO861189A NO168944C (en) 1985-03-26 1986-03-25 PROCEDURE FOR THE PREPARATION OF ALFA-L-ASPARTYL-L-PHENYLALANINE METHYLESTER OR THE HYDROCHLORIDE thereof
KR1019860002220A KR890005038B1 (en) 1985-03-26 1986-03-25 Process for the preparation of alpha-l-aspartyl-l-phenyl alanine methyl ester
ES553390A ES8705365A1 (en) 1985-03-26 1986-03-25 Preparation process of alpha-L-aspartyl-L-phenylalanine methyl ester or hydrochloride thereof.
US07/122,583 US4778916A (en) 1985-03-26 1987-11-17 Preparation process of α-L-aspartyl-L-phenylalanine methyl ester or hydrochloride thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6609585A JPH07639B2 (en) 1985-03-29 1985-03-29 Process for producing α-L-aspartyl-L-phenylalanine methyl ester or its hydrochloride

Publications (2)

Publication Number Publication Date
JPS61225198A true JPS61225198A (en) 1986-10-06
JPH07639B2 JPH07639B2 (en) 1995-01-11

Family

ID=13305969

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6609585A Expired - Lifetime JPH07639B2 (en) 1985-03-26 1985-03-29 Process for producing α-L-aspartyl-L-phenylalanine methyl ester or its hydrochloride

Country Status (1)

Country Link
JP (1) JPH07639B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63145298A (en) * 1986-12-10 1988-06-17 Mitsui Toatsu Chem Inc Production of alpha-l-aspartyl-l-phenylalanine methyl ester

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63145298A (en) * 1986-12-10 1988-06-17 Mitsui Toatsu Chem Inc Production of alpha-l-aspartyl-l-phenylalanine methyl ester

Also Published As

Publication number Publication date
JPH07639B2 (en) 1995-01-11

Similar Documents

Publication Publication Date Title
EP0127411B1 (en) Method of preparing alpha-l-aspartyl-l-phenylalanine methyl ester and its hydrochloride
EP0092933B1 (en) Process for producing alpha-l-aspartyl-l-phenylalanine methyl ester or its hydrochloride
KR870000811B1 (en) Preparation process fo n-formyl- -aspartyl phenylalanine
KR920002337B1 (en) Process for preparing alpha-l-aspartyl-l-phenylalanine methylester of hydrochloride
KR890005038B1 (en) Process for the preparation of alpha-l-aspartyl-l-phenyl alanine methyl ester
JPH052317B2 (en)
JPS6318959B2 (en)
US4345091A (en) Method of producing N-benzyloxycarbonyl-L-aspartic acid
KR890005064B1 (en) Process for the preparation of alpha-l-aspartyl-l-phenylalanine methylester
JPH0613550B2 (en) Process for producing α-L-aspartyl-L-phenylalanine-lower alkyl ester
JPS62108900A (en) Production of alpha-l-aspartyl-l-phenylalanine hydrochlorideand alpha-l-aspartyl-l-phenylalanine methyl ester
JPS61225198A (en) Production of alpha-l-aspartyl-l-phenylalaninemethyl ester or hydrochloride thereof
JPS61218597A (en) Production of alpha-l-aspartyl-l-phenylalanine methyl ester or its hydrochloride
JPS6344594A (en) Separation of n-protected-alpha-l-aspartyl-l-phenylalanine
IE57662B1 (en) Aspartame isolation
JP2662287B2 (en) Method for separating α-L-aspartyl-L-phenylalanine methyl ester
JPS61227593A (en) Preparation of alpha-l-aspartyl-l-phenylalanine methyl ester or its hydrochloride
US5616766A (en) Method for recovering L-phenylalanine
JPS61268699A (en) Production of alpha-l-aspartyl-l-phenylalanine methyl ester
JPS61225196A (en) Production of alpha-l-aspartyl-l-phenylalaninemethyl ester or hydrochloride thereof
US5371269A (en) Method for production of α-L-aspartyl-L phenylalanine methyl ester hydrochloride
KR920003333B1 (en) Process for preparing alpha-l-aspartyl-l-phenylalanine beta-low methyl ester
JP3316910B2 (en) Method for recovering L-phenylalanine
JPS63159355A (en) Recovery of l-phenylalanine and l-aspartic acid
JP2598470B2 (en) Method for producing N-benzyloxycarbonyl-α-L-aspartyl-L-phenylalanine methyl ester