JPS61150783A - Welding method of low temperature steel - Google Patents

Welding method of low temperature steel

Info

Publication number
JPS61150783A
JPS61150783A JP27239084A JP27239084A JPS61150783A JP S61150783 A JPS61150783 A JP S61150783A JP 27239084 A JP27239084 A JP 27239084A JP 27239084 A JP27239084 A JP 27239084A JP S61150783 A JPS61150783 A JP S61150783A
Authority
JP
Japan
Prior art keywords
weld metal
welding
crack
crack propagation
ferritic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP27239084A
Other languages
Japanese (ja)
Inventor
Masaaki Koshiyou
古生 正昭
Kazuo Akusa
阿草 一男
Noboru Nishiyama
昇 西山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP27239084A priority Critical patent/JPS61150783A/en
Publication of JPS61150783A publication Critical patent/JPS61150783A/en
Pending legal-status Critical Current

Links

Landscapes

  • Arc Welding In General (AREA)

Abstract

PURPOSE:To improve the safety against brittle fracture by using a ferritic welding wire contg. specific weight % of Ni and maintaining the min. width of the weld metal in the crack propagation direction at a prescribed size or above. CONSTITUTION:A groove is formed to low temp. steel materials 1, 2 and a weld metal 3 is deposited thereto by using the ferritic welding rod contg. 8-13% Ni. The arc welding is executed in such a manner that the min. width l of the weld metal 3 in the direction perpendicular to the plate thickness, i.e., the crack propagation direction is maintained at >=10mm in the welded joint part. Since the ferritic wire contains 8-13% Ni component, the required toughness is obtd. with the weld metal 3 and the deterioration of the strength and crack propagation characteristic thereof is prevented. The brittle crack generated in the welded structure is stopped within the joint by the above-mentioned method, by which the safety against brittle fracture is improved.

Description

【発明の詳細な説明】 〈発明の目的〉 産業上の利用分野 本発明は、低温用鋼材の溶接方法に係り、詳しくは、例
えば、−50℃程度の低温で使用される低温用鋼材を、
その鋼材にくらべ低温靭性および破壊靭性にすぐれた溶
接ワイヤを用いて溶接し、低温用タンクなどの構造物の
安全性を改善する溶接方法に係る。
Detailed Description of the Invention <Object of the Invention> Industrial Application Field The present invention relates to a method for welding low temperature steel materials, and more specifically, for example, a method for welding low temperature steel materials used at a low temperature of about -50°C.
The present invention relates to a welding method that improves the safety of structures such as low-temperature tanks by welding using a welding wire that has superior low-temperature toughness and fracture toughness compared to steel materials.

従  来  の  技  術 近年、エネルギー源として種々の液化ガスの利用が増大
し、これらの輸送あるいは貯蔵のための低温用構造物の
需要も増大している。
Conventional Technology In recent years, the use of various liquefied gases as an energy source has increased, and the demand for low-temperature structures for transporting or storing them has also increased.

一方、これらの低温用構造物に対する安全性の評価も構
造物数の増加および大型化にともない厳しく要求されつ
つあり、使用材料のうちで特に鋼材の高級化か、若しく
は、設計の再検討などが考えられている。しかし、構造
物全体の使用材料の高級化は美大なコスト増になるため
、比較的コスト増を少なくおさえることのできる溶接材
料の靭性改善あるいは溶接施工法の改善などによって対
処しようとする動きが一般的である。
On the other hand, the safety evaluation of these low-temperature structures is becoming more demanding as the number and size of the structures increases, and it is necessary to improve the quality of the materials used, especially steel, or to reconsider the design. It is considered. However, increasing the quality of materials used in the entire structure results in a huge increase in costs, so there is a movement to counter this by improving the toughness of welding materials or improving welding methods, which can keep the increase in costs relatively small. Common.

例えば、報文TLPGタンク用鋼の高COD溶接技術の
開発」(製鉄研究第307号1982年)にLPGタン
ク建造用の溶接材料として、COO値の良好な溶接材料
と溶接技術が紹介され、また、特開昭56−66383
号には、GMAWにおける高靭性溶接方法が提案され、
特開昭58−138589号には、高能率でしかも高靭
性を得る溶接方法が提案され、該溶接金属の脆性破壊発
生特性ならひに脆性亀裂停止性能を改善する努力が行な
われている。
For example, in the paper ``Development of high COD welding technology for steel for LPG tanks'' (Steel Research No. 307, 1982), welding materials and welding techniques with good COO values were introduced as welding materials for LPG tank construction. , Japanese Patent Publication No. 56-66383
In the issue, a high toughness welding method in GMAW was proposed,
JP-A-58-138589 proposes a welding method that achieves high efficiency and high toughness, and efforts are being made to improve the brittle crack arrestability of the weld metal.

しがしながら、いかに溶接金属の高級化、例えば、極低
温で溶接のまま十分な低温靭性を有するオーステナイト
系溶接材料を用いたとしても、溶接欠陥あるいは残留応
力といったマイナス面の要因を完全に防止することは困
難である。
However, no matter how high-quality weld metals are used, such as using austenitic welding materials that have sufficient low-temperature toughness as they are welded at extremely low temperatures, negative factors such as weld defects and residual stress cannot be completely prevented. It is difficult to do so.

従って、過去の事故例の多くがそうであるように、溶接
欠陥をはじめとする溶接上のなんらかの要因により脆性
亀裂が発生したときのことも考えて対処する必要がある
。すなわち、溶接部からの脆性亀裂発生を極力防止する
努力をするとともに、万一#Ai亀裂が発生してもこれ
を停止できる特性を備えることにより構造物全体として
の安全性の向上が可能となるのであり、該報文の如き、
比較的小さな亀裂を用いた停止特性試験から、実構造物
の安全性を推定することは困難といえる。
Therefore, as with many past accidents, it is necessary to consider and deal with the occurrence of brittle cracks due to some welding-related factors such as welding defects. In other words, by making efforts to prevent the occurrence of brittle cracks from welds as much as possible, and by providing characteristics that can stop #Ai cracks even if they occur, it is possible to improve the safety of the structure as a whole. As stated in the report,
It can be said that it is difficult to estimate the safety of an actual structure from a stopping characteristic test using relatively small cracks.

発明が解決しようとする問題点 本発明は上記欠点の解決を目的とし、具体的には、従来
例の如く、単に溶接金属を高級化するだけでは亀裂発生
特性や停止特性が改善できない問題点を解決する口とを
目的とする。
Problems to be Solved by the Invention The present invention aims to solve the above-mentioned drawbacks. Specifically, it solves the problem that crack initiation and arrest characteristics cannot be improved simply by upgrading the weld metal as in the conventional example. The purpose is to solve problems.

〈発ルjの構成〉 問題点を解決するための 手段ならびにその作用 まず、本発明者等は、使用鋼材を高級化せずに脆性亀裂
の発生特性ならびに停止特性にすぐれた溶接材料を用い
て溶接して構造物をつくってこのfi構造物安全性を向
上させ、更に、構造物に脆性亀裂が発生したときには、
この脆性亀裂をつぎの鋼材に伝播させることなく停止さ
せることができる溶接継手が1qられる溶接方法につい
て鋭意研究を進めたところ、溶接金属の主たる成分組成
を決定する溶接ワイヤとしては、8〜13重間%(以下
、単に%という。)のNiを含み、しかも、フェライト
系の溶接ワイヤが適切であり、更に、このワイヤにより
溶接する際に、溶接金属の亀裂伝播方向の距離、つまり
、鋼材の板厚に対して直角方向の最小幅を一定値より大
きくすることがきわめて有効であることを知見した。
<Structure of Fire Lever J> Means for Solving the Problems and Their Effects First, the present inventors developed a welding material that has excellent brittle crack initiation and arrest characteristics without upgrading the steel used. Welding structures to improve the safety of this fi structure, and furthermore, when brittle cracks occur in the structure,
We conducted intensive research on a welding method that can stop this brittle crack without propagating it to the next steel material, and found that the welding wire that determines the main component composition of the weld metal is 8 to 13 layers. A ferritic welding wire that contains Ni in the range of % (hereinafter simply referred to as %) is suitable, and furthermore, when welding with this wire, the distance in the crack propagation direction of the weld metal, that is, the distance of the steel material It has been found that it is extremely effective to make the minimum width in the direction perpendicular to the plate thickness larger than a certain value.

従って、本発明の要旨は、例えば、−50℃程度の低温
で使用される低温用鋼を溶接する際に、8〜13重最%
のNiを含有しかつフェライト系の溶接ワイヤを用い、
溶接金属の横断面形状において板厚に直角な方向の最小
幅が10 mm以上になるよう、溶接することを特徴と
する。
Therefore, the gist of the present invention is, for example, when welding low-temperature steel used at a low temperature of about -50℃,
Using a ferritic welding wire containing Ni,
It is characterized by welding so that the minimum width in the cross-sectional shape of the weld metal in the direction perpendicular to the plate thickness is 10 mm or more.

そこで、これらの特徴を十分説明すると、次の通りであ
る。
Therefore, a thorough explanation of these characteristics is as follows.

まず、本発明方法においては、少なくとも8〜13%の
Niを含有しかつフェライト系であ−る溶接ワイヤを用
いて溶接する。
First, in the method of the present invention, welding is performed using a ferritic welding wire containing at least 8 to 13% Ni.

すなわち、N1は低温靭性を得るために不可欠な成分で
あり、8%未満では低温靭性が不足し、本発明法の効果
が得られ難くなる。
That is, N1 is an essential component for obtaining low-temperature toughness, and if it is less than 8%, low-temperature toughness is insufficient, making it difficult to obtain the effects of the method of the present invention.

一方、13%をこえると、溶接金属の耐割れ性が劣化す
るとともに、溶接ワイヤのコスト増にもつながり、口の
点から適正含有量は8〜13%である。また、フェライ
ト系であることの必要性は、オーステナイト系とすると
、溶接金属の強度低下をきたし、亀裂伝播停止特性が劣
化するとともに、ワイヤのコスト増となるからである。
On the other hand, if it exceeds 13%, the cracking resistance of the weld metal deteriorates and it also leads to an increase in the cost of the welding wire, so the appropriate content is 8 to 13%. Further, it is necessary to use a ferritic material because if an austenitic material is used, the strength of the weld metal will decrease, the crack propagation arresting property will deteriorate, and the cost of the wire will increase.

また、この溶接ワイヤ中にはNiが主成分として含まれ
るほか、その他の成分として、C,SiおよびMnが適
正量であることが好ましく、更に、Mo、 Ti、 A
Iおよび希土類元素等を含有し、それぞれの効果を有効
に発揮させることもできる。
In addition to Ni as a main component, this welding wire preferably contains appropriate amounts of C, Si, and Mn as other components, and further contains Mo, Ti, and A.
It can also contain I, rare earth elements, and the like to effectively exhibit their respective effects.

もちろん、0.Nをはじめとする不可避不純物元素は、
溶接金属中のそれを低減する目的から、ワイヤにおいて
も可及的微量とすることが望ましい。
Of course, 0. Unavoidable impurity elements such as N are
For the purpose of reducing it in the weld metal, it is desirable to keep the amount as small as possible in the wire as well.

なお、これらNi以外の各成分元素の適正含有範囲につ
いて説明すると、次の通りである。
The appropriate content range of each component element other than Ni is explained as follows.

Cは溶接金属の強度に影響するほか、溶接金属の組織ひ
いては低温靭性にも多大な影響をおよぼす成分であり、
0.005%未満ではこれらの性質が劣化するため十分
な効果が得られず、一方、0.05%を越えても、溶接
金属の低温靭性が劣化するため、適正含有量は0.00
5〜0.05%である。
C is a component that not only affects the strength of the weld metal, but also has a great effect on the structure of the weld metal and the low-temperature toughness.
If it is less than 0.005%, these properties will deteriorate and sufficient effects will not be obtained.On the other hand, if it exceeds 0.05%, the low temperature toughness of the weld metal will deteriorate, so the appropriate content is 0.00%.
It is 5% to 0.05%.

Siは脱酸元素として作用するほか、溶接金属の低温靭
性にも影響するが、o、 oos%未満では介在物の増
大による低温靭性の劣化をきたし、一方、0.35%を
越えても低温靭性を劣化させる。
In addition to acting as a deoxidizing element, Si also affects the low-temperature toughness of the weld metal, but if it is less than 0.00%, the low-temperature toughness will deteriorate due to an increase in inclusions, while if it exceeds 0.35%, the low-temperature toughness will deteriorate. Degrades toughness.

従って、o、oos〜0.35%の範囲が適当である。Therefore, a range of o,oos to 0.35% is appropriate.

Mnも脱酸元素として作用するが、溶接金属の強度なら
びに低温靭性にも作用し、0.3%未満では強度不足を
生じる。一方、0.8%を越えると低温靭性が劣化する
ため、0.3〜0.8%の範囲が適当である。
Mn also acts as a deoxidizing element, but it also acts on the strength and low-temperature toughness of the weld metal, and if it is less than 0.3%, the strength will be insufficient. On the other hand, if it exceeds 0.8%, low-temperature toughness deteriorates, so a range of 0.3 to 0.8% is appropriate.

MOは溶接金属の組織ひいては低温靭性に作用する成分
であり、適量を加えることにより、靭性の改善が可能で
ある。しかし、1%を越えると、その効果がないばかり
かコスト増にもつながるので、1%以下の範囲とするの
が良い。
MO is a component that affects the structure of the weld metal and thus the low-temperature toughness, and by adding an appropriate amount, it is possible to improve the toughness. However, if it exceeds 1%, it not only has no effect but also leads to increased costs, so it is better to keep it within a range of 1% or less.

口は溶接金属の組織の微細化に有効であるが、多すぎる
と低温靭性を劣化させるため、0.5%以上が好ましい
Although the content is effective in refining the structure of the weld metal, too much content deteriorates low-temperature toughness, so it is preferably 0.5% or more.

八gは脱酸作用を有するが、あまり多いと靭性を劣化さ
已るために、0.1%以下で使用するべきである。
Although 8g has a deoxidizing effect, it should be used in an amount of 0.1% or less, since too much will deteriorate toughness.

希土類元素は脱酸効果を有するとともに、特開昭55−
114469号で開示した如< 、 MIGアーク溶接
にお(プる不活性ガス中でのアークの安定化にも有効で
ある。しかし、0.3%を越えると、靭性を劣化させる
ため、0.3%以下の範囲で添加する。
Rare earth elements have a deoxidizing effect and are
As disclosed in No. 114469, it is also effective in stabilizing the arc in inert gas in MIG arc welding.However, if it exceeds 0.3%, the toughness deteriorates, so 0. Add in a range of 3% or less.

次に、上記組成の溶接ワイヤを用いて溶接するほか、こ
の溶接で得られる溶接継手部、とくに、溶接金属の横断
面形状は鋼材板厚に直角な方向(つまり、亀裂伝播方向
)の最小幅が少なくとも10mm以上になるよう溶接す
る。
Next, in addition to welding using a welding wire with the above composition, the welded joint obtained by this welding, especially the cross-sectional shape of the weld metal, has a minimum width in the direction perpendicular to the steel sheet thickness (that is, the direction of crack propagation). Weld so that the distance is at least 10 mm.

すなわち、溶接金属の一部に幅10 rAm未満のとこ
ろが存在すると、亀裂は溶接金属で停止せず、その部分
を亀裂は選択的に進行し、もう一方の鋼材に亀裂先端が
到達し、新たな脆性亀裂となって進展する。従って、亀
裂伝播方向(板厚に直角な方向)の溶接金属の最小幅は
10 mm以上にする必要がある。
In other words, if there is a part of the weld metal with a width of less than 10 rAm, the crack will not stop at the weld metal, but will selectively propagate through that part, and the crack tip will reach the other steel material, creating a new crack. It develops as a brittle crack. Therefore, the minimum width of the weld metal in the direction of crack propagation (direction perpendicular to the plate thickness) must be 10 mm or more.

以上の通り、本発明方法は、適正組成の溶接ワイヤを用
いて溶接金属の亀裂伝播方向の幅を調整して溶接するも
のであって、これにより、脆性亀裂の発生ならびに伝播
停止特性に優れた溶接金属が形成でき、長大亀裂となっ
た脆性亀裂を溶接継手部で停止するものである。
As described above, the method of the present invention uses a welding wire with an appropriate composition to adjust the width of the weld metal in the direction of crack propagation. Weld metal can form, and long brittle cracks can be stopped at welded joints.

実  施  例 次に、実施例について説明する。Example Next, examples will be described.

実施例1゜ まず、第1表に示す成分組成のA−Fのワイヤ(径1.
2mmφ)を用いて下記の溶接条件でMIG溶接し、こ
の時に得られた溶接継手部の脆性亀裂伝播停止特性を比
較したところ、第2表の通りであった。なお、継手溶接
部における亀裂伝播方向の溶接金属の最小幅は開先角度
を変化させることにより調整した。また、脆性亀裂伝播
停止特性は、第1図に示す如き混成ESSOSS法によ
って判定した。
Example 1 First, wires A-F (diameter 1.
2 mmφ) under the following welding conditions, and the brittle crack propagation arresting characteristics of the welded joints obtained at this time were compared, and the results were as shown in Table 2. The minimum width of the weld metal in the direction of crack propagation at the joint weld was adjusted by changing the groove angle. Further, the brittle crack propagation arresting property was determined by the hybrid ESSOSS method as shown in FIG.

符号1は試験板、2は脆性亀裂助走板、3は溶接金属(
試験ビード)、4は亀裂進展方向、矢印は圧延方向を示
す。
Reference numeral 1 is the test plate, 2 is the brittle crack run-up plate, and 3 is the weld metal (
(test bead), 4 indicates the crack propagation direction, and the arrow indicates the rolling direction.

実験条件 開先形状:第2図(a)、(b)(開先角度:θ−45
°、50°、55°、60’) 溶接方法: 横向姿勢MrG(直流逆極性)溶接ワイヤ
 : 第1表A〜Fの1.2nnnφワイヤ溶接条件:
 250〜300A1118.23〜28Volt、3
0〜45cm7m1 nシールドガス; Ar+20%
C02若しくはAr+35%He試験温度ニー50℃ 口荷応カニ 22kgr/s2 なお、第2図(a)、(blで1は試験板、2は脆性亀
裂助走板、[1は25111m、t2は8〜9mm、点
線はガウジングを示す。
Experimental conditions Groove shape: Fig. 2 (a), (b) (Groove angle: θ-45
°, 50°, 55°, 60') Welding method: Lateral position MrG (DC reverse polarity) welding wire: 1.2nnnφ wire in Table 1 A to F Welding conditions:
250~300A1118.23~28Volt, 3
0~45cm7m1n shielding gas; Ar+20%
C02 or Ar + 35% He test temperature knee 50°C loading capacity 22 kgr/s2 In addition, in Fig. 2 (a), (bl, 1 is the test plate, 2 is the brittle crack run-up plate, [1 is 25111 m, t2 is 8 ~ 9 mm, dotted line indicates gouging.

第2表の結果から、溶接ワイヤのNi含有量が本発明で
特定した成分組成の範囲にあるA、BおよびFを用い、
かつ、その溶接継平部横断面における板厚に直角な方向
の溶接金属幅がiomm以上となった実験No、3およ
び5〜8.11〜13、さらには、28および30〜3
3において亀裂長さが1500mmに達した脆性亀裂を
溶接金属部で延性亀裂に転換し、しかも、停止し得たの
であり、本発明の目的を′14足する結果が得られた。
From the results in Table 2, using welding wires A, B, and F whose Ni content is within the range of the composition specified in the present invention,
Experiment Nos. 3 and 5 to 8. 11 to 13, furthermore, 28 and 30 to 3, in which the weld metal width in the direction perpendicular to the plate thickness in the cross section of the weld joint flat part was iomm or more.
In No. 3, the brittle crack that reached a crack length of 1,500 mm was converted into a ductile crack at the weld metal part, and the crack was stopped, and the object of the present invention was achieved by 14 times.

一方、実験No、 24.25では第1表のワイヤEを
用いており、このワイヤ成分組成は、従来、極低温用溶
接材料として用いられているオーステナイト系ワイヤで
あり、極低温靭性は良好である。
On the other hand, in experiment No. 24.25, wire E in Table 1 was used, and this wire composition was an austenitic wire conventionally used as a welding material for cryogenic temperatures, and had good cryogenic toughness. be.

しかし、降伏強さが比較的低いため、亀裂は延性に転換
されたもののその進展を停止し得なかった。また、実験
&20〜23もまた溶接金属の幅は10mm以上である
が、亀裂を停止することができなかった。これは溶接金
属のNi含有量の過剰により、耐割れ性の低下によるた
めと判断される。
However, due to the relatively low yield strength, the crack could not be stopped from growing, although it was converted to ductile. Further, in Experiments &20 to 23, although the width of the weld metal was 10 mm or more, cracking could not be stopped. This is considered to be due to a decrease in crack resistance due to the excessive Ni content of the weld metal.

さらに、溶接ワイヤCを用いた実験N114〜19では
溶接全屈部内で完全延性亀裂に転換し得ず、溶接金属の
最小幅が147mmの実験翫19でも溶接金属中の脆性
破面率が40%以上であり、溶接金属の靭性不足のため
亀裂を停止できないのである。
Furthermore, in experiments N114 to 19 using welding wire C, the crack could not be converted to a completely ductile crack within the entire weld bend, and even in experiment No. 19 where the minimum width of the weld metal was 147 mm, the brittle fracture surface ratio in the weld metal was 40%. This is the reason why cracks cannot be stopped due to the lack of toughness of the weld metal.

なお、第2表中に開先aおよびbで示した項は上記の如
くそれぞれ第2図(a)および(b)の各開先に対応す
るものであり、継手部の横断面形状は、それぞれ第3図
(atおよび(b)の如くである。
Note that the items indicated by grooves a and b in Table 2 correspond to the grooves in FIGS. 2(a) and (b), respectively, as described above, and the cross-sectional shape of the joint is as follows: They are as shown in FIGS. 3(at) and (b), respectively.

図中番号1〜4で示したのは第1図、第2図ならびに第
3図に共通しており、上記の如く、1は試験板、2は脆
性亀裂の助走板および3は試験溶接ビード、4で示した
矢印は亀裂の進展方向であり、第3図に明らかなように
、第2表の開先(a)は、横向溶接部に上方から亀裂を
進ませたもの、一方、開先(b)は同様に下方から亀裂
を進ませたものである。なお、第3図中!で示す量が本
発明法における最小溶接金属幅(板厚に直角な方向)を
示すものである。この口とから、第2表に示した本発明
法の範囲内では、亀裂が上若しくは下方の何れから進ん
できてもこれを停止し得ることが確認されたのである。
The numbers 1 to 4 in the figure are common to Figures 1, 2, and 3, and as mentioned above, 1 is the test plate, 2 is the run-up plate with brittle cracks, and 3 is the test weld bead. , 4 indicates the propagation direction of the crack, and as is clear from Fig. 3, the groove (a) in Table 2 shows the crack propagating from above in the transverse weld; In the case shown in (b), the crack is similarly propagated from below. In addition, in Figure 3! The amount shown by is the minimum weld metal width (direction perpendicular to the plate thickness) in the method of the present invention. From this point, it was confirmed that within the range of the method of the present invention shown in Table 2, cracks can be stopped regardless of whether they are propagating from above or below.

実施例2゜ 第1表に示す成分組成の溶接ワイヤAの2.4nunφ
を用いて下記の溶接条件でサブマージアーク溶接を行な
って、その際に得られた溶接継手部の脆性亀裂伝播停止
特性を比較したところ、第3表の通りであった。
Example 2゜2.4nunφ of welding wire A having the composition shown in Table 1
Submerged arc welding was performed under the following welding conditions using the following welding conditions, and the brittle crack propagation arresting characteristics of the welded joints obtained at that time were compared, and the results were as shown in Table 3.

なお、溶接継手部における亀裂伝播方向の溶接金属の最
小幅は、開先角度θとインサート材5の高さhを第4図
(a)、(b)ならびに(C)(ただし、t3=10m
m、 t4=20mlll、 t、 =30mm、 t
c=5mm)の如く変化させて調整し、第4図(a)、
(b)、(C)や第5図において各符号は上記のところ
と同等で点線はガウジングを示し、第5図は第4図(b
)の開先により得られた溶接継手である。また、脆性亀
裂伝播停止特性の判定は、第1図に示す形状の試験片を
用いて混成ESSOSS法により行なった。
The minimum width of the weld metal in the direction of crack propagation at the welded joint is calculated using the groove angle θ and the height h of the insert material 5 as shown in Figs. 4 (a), (b) and (C) (however, t3 = 10 m
m, t4=20mlll, t, =30mm, t
Figure 4(a),
In (b), (C) and Fig. 5, each symbol is the same as above, the dotted line indicates gouging, and Fig. 5 is the same as in Fig. 4 (b).
) is a welded joint obtained by a groove. Further, the brittle crack propagation arresting characteristics were determined by the hybrid ESSOSS method using a test piece having the shape shown in FIG.

実験条件 板厚:試験板と同厚 開先形状: 第4図(a)、(1))、(C)(開先角
度;θ=45°、50°、55’ 、 60°) (インサート材の高さ;h=0〜7mm )溶接方法:
 横向サブマージアーク溶接(直流逆極性)溶接ワイヤ
 : 第1表Aの成分組成の2.4mmφワイヤ溶接フ
ラックス: 溶融型非水砕フラックス溶接条件: 30
0〜380Amp、 28〜35Volt、30〜60
cm/m i nフィニツシング側からのガウジング深
さく板厚方向)は約173とし、かつインサート材を完
全に除去する深さとした。
Experimental conditions Plate thickness: same thickness as the test plate Groove shape: Fig. 4 (a), (1)), (C) (Group angle; θ = 45°, 50°, 55', 60°) (Insert Material height: h=0~7mm) Welding method:
Horizontal submerged arc welding (DC reverse polarity) welding wire: 2.4 mmφ wire with the composition shown in Table 1 A Welding flux: Melting type non-hydrocratic flux Welding conditions: 30
0~380Amp, 28~35Volt, 30~60
The gouging depth from the finishing side (in the plate thickness direction) was approximately 173cm/min, and the depth was such that the insert material was completely removed.

試験塩IJIニー50°C 負荷応カニ 22kur/mm2 口の結果からも、継手部横断面における板厚に直角な方
向の溶接金属幅の最小部分が10 m1未満の場合は亀
裂を停止できなかった。しかし、開先角度あるいはイン
サート材高さの何れを調整しても、この溶接金属の最小
幅を10III11以上にした場合には亀裂が停止する
ことが明らかである。なお、板厚が薄い場合には、溶接
金属の最小幅を大きくしにくいが、このような場合はあ
らかじめ開先面に肉感溶接することも考えられる。
From the results of the test salt IJI knee 50°C load response 22kur/mm2 mouth, cracking could not be stopped if the minimum width of the weld metal in the direction perpendicular to the plate thickness in the cross section of the joint was less than 10 m1. . However, it is clear that cracking stops when the minimum width of the weld metal is set to 10III11 or more, regardless of whether the groove angle or the height of the insert material is adjusted. Note that when the plate thickness is thin, it is difficult to increase the minimum width of the weld metal, but in such a case, it may be possible to perform tactile welding on the groove surface in advance.

〈発明の効果〉 以上詳しく説明した通り、本発明方法は、N1含有量が
8〜13%でかつフェライト系の溶接ワイヤを用いる一
方、溶接継手部の一横断面形状における板厚に直角な方
向の溶接金属の最小幅が少なくとも10 mm以上にな
るよう、アーク溶接する方法である。かくの如く、この
方法で溶接された溶接構造物に発生した脆性亀裂は溶接
継手部において停止できる。従って、本発明方法により
溶接した構造物を構成する鋼材の高級化を要しないため
、大幅なコスト増が回避できる。
<Effects of the Invention> As explained in detail above, the method of the present invention uses a ferritic welding wire with an N1 content of 8 to 13%, and a direction perpendicular to the plate thickness in one cross-sectional shape of the welded joint. This is a method of arc welding such that the minimum width of the weld metal is at least 10 mm. In this way, brittle cracks generated in a welded structure welded by this method can be stopped at the welded joint. Therefore, since it is not necessary to upgrade the steel materials constituting the structure welded by the method of the present invention, a significant increase in cost can be avoided.

更に、構造物の脆性破壊に対する安全性を十分に向上さ
せることができる。なお、本発明の実施例としては、M
IGアークや、サブマージアーク等の例のみを記したが
、T j Gアーク溶接法を含む溶接金属の低温靭性に
悪影響を及ぼさない溶接方法であれば、本発明法を適用
し、良好な結果を得ることができる。
Furthermore, the safety of the structure against brittle fracture can be sufficiently improved. In addition, as an example of the present invention, M
Although only examples such as IG arc and submerged arc are described, the method of the present invention can be applied to any welding method that does not adversely affect the low-temperature toughness of the weld metal, including T j G arc welding, and can achieve good results. Obtainable.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明法の優れた脆性亀裂伝播停止特性の判定
のために用いた混成ESSOSS法の試験片形状を示す
説明図、第2図(alならびに(b)は実施例1に用い
た各開先形状の説明図、第3図(alならびに(blは
第2図(atならびに(b)に示す各開先を溶接して得
られる各溶接継手部の横断面図、第4図(a)、(b)
ならびに(c)は実施例2に用いた各開先形状の説明図
、第5図は第4図(b)における溶込み状態の説明図で
ある。 符号1・・・・・・試験板    2・・・・・・助走
板3・・・・・・溶接金属 4・・・・・・混成ESSO試験の亀裂伝播方向5・・
・・・・開先間隔調整用インサート材l・・・・・・溶
接金属横断面における最小幅h・・・・・・インサート
材5の厚さ θ・・・・・・開先部の角度
Figure 1 is an explanatory diagram showing the shape of the test piece of the hybrid ESSOSS method used to determine the excellent brittle crack propagation arresting properties of the method of the present invention, and Figure 2 (al and (b) are the specimens used in Example 1. An explanatory diagram of each groove shape, Fig. 3 (al and (bl) is a cross-sectional view of each welded joint obtained by welding each groove shown in Fig. 2 (at and (b)), Fig. 4 ( a), (b)
5(c) is an explanatory diagram of each groove shape used in Example 2, and FIG. 5 is an explanatory diagram of the penetration state in FIG. 4(b). Code 1: Test plate 2: Run-up plate 3: Weld metal 4: Crack propagation direction of mixed ESSO test 5:
...Insert material l for groove spacing adjustment...Minimum width h in cross section of weld metal...Thickness θ of insert material 5...Angle of groove part

Claims (1)

【特許請求の範囲】[Claims] 低温で使用される鋼材を溶接する際に、8〜13重量%
のNiを含有しかつフェライト系の溶接ワイヤを用いて
、溶接金属の横断面形状において鋼材板厚に対して直角
方向の最小幅が10mm以上になるよう、溶接すること
を特徴とする低温用鋼材の溶接方法。
8 to 13% by weight when welding steel materials used at low temperatures
A low-temperature steel material characterized by being welded using a ferritic welding wire containing Ni such that the minimum width in the cross-sectional shape of the weld metal in the direction perpendicular to the steel plate thickness is 10 mm or more. welding method.
JP27239084A 1984-12-24 1984-12-24 Welding method of low temperature steel Pending JPS61150783A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27239084A JPS61150783A (en) 1984-12-24 1984-12-24 Welding method of low temperature steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27239084A JPS61150783A (en) 1984-12-24 1984-12-24 Welding method of low temperature steel

Publications (1)

Publication Number Publication Date
JPS61150783A true JPS61150783A (en) 1986-07-09

Family

ID=17513215

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27239084A Pending JPS61150783A (en) 1984-12-24 1984-12-24 Welding method of low temperature steel

Country Status (1)

Country Link
JP (1) JPS61150783A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009044808A1 (en) * 2007-10-05 2009-04-09 Kabushiki Kaisha Kobe Seiko Sho Welding solid wire
JP2009101414A (en) * 2007-10-05 2009-05-14 Kobe Steel Ltd Welding solid wire
JP2016093823A (en) * 2014-11-14 2016-05-26 株式会社神戸製鋼所 Solid wire for welding, welding method and weld metal

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009044808A1 (en) * 2007-10-05 2009-04-09 Kabushiki Kaisha Kobe Seiko Sho Welding solid wire
JP2009101414A (en) * 2007-10-05 2009-05-14 Kobe Steel Ltd Welding solid wire
US8043407B2 (en) 2007-10-05 2011-10-25 Kobe Steel, Ltd. Welding solid wire
JP2016093823A (en) * 2014-11-14 2016-05-26 株式会社神戸製鋼所 Solid wire for welding, welding method and weld metal

Similar Documents

Publication Publication Date Title
EP0867520B1 (en) Welded high-strength steel structures and methods of manufacturing the same
EP2130937B1 (en) High-strength welded steel pipe and process for manufacturing it
JP2008161932A (en) Wire, flux and process of welding steel cotaining nickel in high content
Moore et al. Microstructures and properties of laser/arc hybrid welds and autogenous laser welds in pipeline steels
US4041274A (en) Maraging stainless steel welding electrode
KR20210136132A (en) Manufacturing method of high strength welded joint for cryogenic use
WO2010082675A1 (en) Weld dtructure having brittle fracture arresting characterstics
KR101360593B1 (en) Gas tungsten arc welding method having improved welding speed and steel material produced by using the same
JP5000476B2 (en) Fillet welded joints with excellent fatigue crack initiation characteristics
JP3770106B2 (en) High strength steel and its manufacturing method
WO2012008056A1 (en) Weld structure having resistance to brittle crack propagation
JP2023504413A (en) Stainless steel welding wire used in LNG tank manufacturing
US6852175B2 (en) High strength marine structures
JPS61150783A (en) Welding method of low temperature steel
KR20180074826A (en) Welded member having excellent welded portion porosity resistance and fatigue property and method of manufacturing the same
JP3433790B2 (en) Welding material for martensitic stainless steel
JP2002239722A (en) Lap fillet welding method for steel sheet excellent in fatigue strength of weld zone
JP4818467B1 (en) Welded joint and welded structure excellent in brittle crack propagation resistance
JP2004261858A (en) Wire for welding martensitic stainless steel pipe
JP2004230392A (en) Welding material for martensitic stainless steel pipe and welding method therefor
JP4213830B2 (en) Laser welding steel
Mohammadijoo Development of a welding process to improve welded microalloyed steel characteristics
WO2022265011A1 (en) Welded structure
JP2004181527A (en) Wire for mig welding of martensitic stainless steel pipe and welding method for the same pipe
JP6950294B2 (en) Manufacturing method of joints by multi-layer welding