JPS61130407A - Production of metallic magnetic powder - Google Patents

Production of metallic magnetic powder

Info

Publication number
JPS61130407A
JPS61130407A JP25161484A JP25161484A JPS61130407A JP S61130407 A JPS61130407 A JP S61130407A JP 25161484 A JP25161484 A JP 25161484A JP 25161484 A JP25161484 A JP 25161484A JP S61130407 A JPS61130407 A JP S61130407A
Authority
JP
Japan
Prior art keywords
iron
hydroxide
ferric
salt
soln
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP25161484A
Other languages
Japanese (ja)
Inventor
Kyoji Odan
恭二 大段
Yasuo Bando
坂東 康夫
Mizuho Oda
水穂 小田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ube Corp
Original Assignee
Ube Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ube Industries Ltd filed Critical Ube Industries Ltd
Priority to JP25161484A priority Critical patent/JPS61130407A/en
Publication of JPS61130407A publication Critical patent/JPS61130407A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To produce metallic magnetic powder having a narrow grain size distribution and ferromagnetism by adding an aq. soln. of a ferric salt and a small amount of zinc salt to an aq. alkali hydroxide soln. and depositing the metallic salt of copper, etc. to the resulted iron oxyhydroxide then reducing the same. CONSTITUTION:The aq. soln. of ferric choride, etc. and about 2-10atm% zinc chloride, etc. with respect to iron atoms is added to the aq. soln. of sodium hydroxide and the soln. is brought into reaction at about >=10pH and <=50 deg.C to prepare the ferric hydroxide slurry contg. zinc hydroxide. Such slurry is matured for about 4-6hr at about 30-90 deg.C to convert the ferric hydroxide to iron oxyhydroxide. The acicular iron oxyhydroxide is separated by the conventional practice and is dispersed in an aq. soln. of the metallic salt selected from copper, Ni, Co and Cr to deposit the metallic salt to the iron oxyhydroxide at about 5atom% in terms of metallic atoms with respect to iron atoms. The powder is then subjected to a reduction treatment at 300-500 deg.C in a reducing atmosphere. The excellent metallic magnetic powder having excellent dispersibility, oxidation stability and magnetic characteristic is thus obtd.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、第二鉄塩から磁気記録用材料に使用する金属
磁性粉末を製造する方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for producing metal magnetic powder for use in magnetic recording materials from ferric salts.

更に詳しくは1本発明は1粒度分布幅が狭く1分散性、
酸化安定性、磁気特性などのすぐれた鉄を主体とする強
磁性の金属磁性粉末の製法に関する。
More specifically, 1) the present invention has 1 narrow particle size distribution width, 1 dispersibility,
This article relates to a method for producing ferromagnetic metal magnetic powder mainly composed of iron, which has excellent oxidation stability and magnetic properties.

〔従来の技術〕[Conventional technology]

従来、磁気記録用材料としては、針状形を有するγ−F
e2O3かFe3O4などの酸化鉄あるいは、これらに
コバルトを被着したものがある。しかしながら、最近の
磁気記録の高密度化の要請に応じるには鉄を主成分とす
る強磁性金楓粉末が求められている。
Conventionally, as a magnetic recording material, γ-F having an acicular shape has been used.
There are iron oxides such as e2O3 and Fe3O4, or those coated with cobalt. However, in order to meet the recent demand for higher density magnetic recording, a ferromagnetic gold maple powder containing iron as a main component is required.

針状晶強磁性鉄粉に要求される性能としては。What is the performance required of acicular crystal ferromagnetic iron powder?

針状性が良好であること1粒度分布幅が狭いこと。Good acicularity 1. Narrow particle size distribution width.

磁気特性が充分であること1分散性が良好であること、
酸化安定性が良好であること、比表面積が最適であるこ
となどのあらゆる特性の総合結果が優れていることが要
求される。
Sufficient magnetic properties 1. Good dispersibility;
It is required that the overall results of all properties, such as good oxidation stability and optimal specific surface area, be excellent.

針状晶の強磁性鉄粉の製造方法は種々の方法が知られて
いるが、工業的に主に行なわれているのは、針状のオキ
シ水酸化鉄を還元する乾式還元法である。オキ7水酸化
鉄を還元して針状晶の強磁性鉄粉を製造する方法として
は、既にいくつかの方法が提案されている。しかしなが
ら、これらの技術では磁気特性、比表面積、電子顕微鏡
写真で観察される形状や粒度分布、酸化安定性など種々
の評価法で評価した場合、これらの特性は充分とは言え
ない。一般的公知の技術処方で得られるオキシ水酸化鉄
を還元処理して得られた金属磁性粉の電子顕微鏡写真で
は、焼結部分がみられたり。
Various methods are known for producing acicular ferromagnetic iron powder, but the one that is mainly used industrially is a dry reduction method in which acicular iron oxyhydroxide is reduced. Several methods have already been proposed for producing acicular crystal ferromagnetic iron powder by reducing iron oxy-7 hydroxide. However, when these techniques are evaluated using various evaluation methods such as magnetic properties, specific surface area, shape and particle size distribution observed in electron micrographs, and oxidation stability, these properties cannot be said to be sufficient. In an electron micrograph of metal magnetic powder obtained by reducing iron oxyhydroxide obtained using a generally known technical recipe, sintered parts can be seen.

ま尼粒度分布も広く、テープにしても高い特性を示さな
いのが現状である。また、酸化安定性についても不充分
で、60℃−901bRHの条件下でのテストでも飽和
磁化量(σθ)の低下も大きい。
Currently, the grain size distribution is wide, and even when made into tape, it does not exhibit high properties. Further, the oxidation stability is also insufficient, and the saturation magnetization (σθ) decreases significantly even when tested under the conditions of 60° C.-901bRH.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

本発明は2粒度分布幅が狭く1分散性、酸化安定性、磁
気特性などがいずれもすぐれた鉄を主体とする強磁性の
金属磁性粉末の製法を提供することにある。
The object of the present invention is to provide a method for producing a ferromagnetic metal magnetic powder mainly composed of iron, which has a narrow particle size distribution width, excellent dispersibility, oxidation stability, and magnetic properties.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は、水酸化アルカリ水溶液に、第二鉄塩および少
量の亜鉛塩の水溶液を加え150℃以下の温度で反応さ
せて水酸化亜鉛を含有する水酸化第二鉄スラリを得、該
スラリを熟成して水酸化第二鉄をオキシ水酸化鉄にした
後、銅、ニッケル。
In the present invention, an aqueous solution of a ferric salt and a small amount of a zinc salt is added to an aqueous alkali hydroxide solution and reacted at a temperature of 150°C or lower to obtain a ferric hydroxide slurry containing zinc hydroxide. After aging to convert ferric hydroxide into iron oxyhydroxide, copper and nickel.

コバルトおよびクロムよりなる群から選択された金属塩
をオキシ水酸化鉄に被着させて還元または加熱、還元処
理することを特徴とする鉄を主体とする金属磁性粉末の
製造法に関するものである。
The present invention relates to a method for producing metal magnetic powder mainly consisting of iron, which comprises depositing a metal salt selected from the group consisting of cobalt and chromium on iron oxyhydroxide and subjecting it to reduction or heating and reduction treatment.

本発明において第二鉄塩としては塩化第二鉄。In the present invention, the ferric salt is ferric chloride.

硝酸第二鉄、硫酸第二鉄などが挙けられ、これらは水溶
液として使用される。また水酸化アルカリとしては水酸
化ナトリウム、水酸化カリウム、水酸化リチウム、水酸
化セシウムなどが挙げられ。
Examples include ferric nitrate and ferric sulfate, which are used as an aqueous solution. Examples of the alkali hydroxide include sodium hydroxide, potassium hydroxide, lithium hydroxide, and cesium hydroxide.

水酸化アルカリも水溶液として使用される。また亜鉛塩
としては、塩化亜鉛、硝酸亜鉛などの水溶性亜鉛化合物
を挙げることができ、亜鉛塩は第二鉄塩水溶液に溶解さ
せて使用しても、亜鉛塩をあらかじめ水に溶解させて使
用してもよい。
Alkali hydroxides are also used as aqueous solutions. Examples of zinc salts include water-soluble zinc compounds such as zinc chloride and zinc nitrate. Zinc salts can be used by dissolving them in an aqueous ferric salt solution, or by dissolving them in water in advance. You may.

亜鉛塩の使用量は、該金属原子換算で鉄原子に対して2
〜10原子チ、好ましくは3〜8原子チになるようにす
るのが好適である。使用量があまり少ないとオキシ水酸
化鉄粒子の針状性をよくする効果が十分でなく、m比は
3〜7程度であり。
The amount of zinc salt used is 2 per iron atom in terms of the metal atom.
It is suitable that the number is 10 to 10 atoms, preferably 3 to 8 atoms. If the amount used is too small, the effect of improving the acicularity of the iron oxyhydroxide particles will not be sufficient, and the m ratio will be about 3 to 7.

またあまり多いと添加効果が認められず、コロイド状物
が生成して粒子の凝集が生じたりするので。
Also, if the amount is too large, the effect of addition will not be observed, and colloidal substances may be formed, resulting in agglomeration of particles.

最終的に得られる金属磁性粉末粒子の針状性をよくシ、
枝分れした粒子や凝集した粒子の生成を抑えるうえでは
前記範囲の量にするのがよい。
The acicularity of the finally obtained metal magnetic powder particles is well controlled.
In order to suppress the formation of branched particles and agglomerated particles, the amount is preferably within the above range.

水酸化アルカリ水溶液に、第二鉄塩および少量の亜鉛塩
の水浴液を加えて反応させるにあたっては水酸化アルカ
リを過剰にして反応させるのがよく、一般にはpH10
以上のアルカリ領域で反応させるのが適当であるが1反
応温度は50℃よりも高くすると0.5μm以上にも粒
子が長大化するので50℃以下にする必要がある。水酸
化亜鉛を含有する水酸化第二鉄スラリを得る際の反応温
度が低いほどオキシ水酸化鉄粒子さらには金属磁性粉末
粒子が小さくなるが、極度に低くするのは経済的ではな
いので、普通には50℃以下、特には5〜40℃の温度
が好適に採用される。
When reacting by adding a water bath solution of ferric salt and a small amount of zinc salt to an aqueous alkali hydroxide solution, it is best to carry out the reaction with an excess of alkali hydroxide, and generally the pH is 10.
It is appropriate to carry out the reaction in the above alkaline range, but if the reaction temperature is higher than 50°C, the particles will become longer than 0.5 μm, so it is necessary to keep the reaction temperature below 50°C. The lower the reaction temperature when obtaining a ferric hydroxide slurry containing zinc hydroxide, the smaller the iron oxyhydroxide particles and the smaller the metal magnetic powder particles, but it is not economical to lower the temperature to an extremely low temperature, so A temperature of 50°C or lower, particularly 5 to 40°C, is suitably employed.

本発明において、水酸化亜鉛を含有する水酸化第二鉄の
スラリは、これを熟成させる。熟成によって水酸化第二
鉄をオキシ水酸化鉄にすることができる。熟成温度は、
30〜90’C,好ましくは30〜70℃がよく、水酸
化第二鉄を生成させる際の温度よシも若干高い温度、一
般には20”C程度以上高い温度であることが望ましい
。熟成時間は、2〜3時間程度でもよいが、一般には4
〜6時間程度で十分である。熟成は攪拌下に行っても単
に静置する方法で行ってもよい。熟成温度が低すぎたり
高すぎたりすると、また熟成時間が短かすぎたりすると
、針状性の悪いオキシ水酸化鉄が生成したシ、再現性が
悪くなったりしやすい。
In the present invention, a slurry of ferric hydroxide containing zinc hydroxide is aged. Ferric hydroxide can be converted to iron oxyhydroxide by aging. The ripening temperature is
The temperature is preferably 30 to 90'C, preferably 30 to 70°C, and is preferably slightly higher than the temperature at which ferric hydroxide is produced, generally about 20'C or higher.Aging time It may take about 2 to 3 hours, but generally it takes about 4 hours.
~6 hours is sufficient. Aging may be carried out under stirring or simply by standing still. If the ripening temperature is too low or too high, or if the ripening time is too short, iron oxyhydroxide with poor needle-like properties is likely to be produced and reproducibility may be poor.

熟成によって生成させた針状オキシ水酸化鉄は。Acicular iron oxyhydroxide produced by aging.

従来公知の通常の操作1例えば水洗、ろ過などの操作に
よって分離し、銅、ニッケル、コバルトおよびクロムよ
りなる群から選択された金属塩をオキシ水酸化鉄に被着
させる方法によるのが好ましい。
Preferably, the iron oxyhydroxide is separated by conventional operations known in the art, such as washing with water and filtration, and then coated with a metal salt selected from the group consisting of copper, nickel, cobalt and chromium.

銅、ニッケル、コバルトおよびクロムよりなる群から選
択された金属塩を被着させるにあたっては、一般には分
離したオキシ水酸化鉄のpHを酢酸の如き有機酸で処理
して5以下にし、金属塩の水溶液中に分散させる方法を
採用するのが適当である。まだ分散後、ケイ酸ナトリウ
ムの如きケイ酸塩を添加すると、従来知られている焼結
防止剤としての効果とともに金属塩の被着をよりよくす
ることができる利点があるので1分散後にケイ酸塩を加
えるのが好適である。その際必要に応じて水酸化ナトリ
ウム等のアルカリを加えてpHを10以上にするのが望
ましい。
In order to deposit a metal salt selected from the group consisting of copper, nickel, cobalt and chromium, the pH of the separated iron oxyhydroxide is generally reduced to below 5 by treating it with an organic acid such as acetic acid to reduce the pH of the metal salt. It is appropriate to adopt a method of dispersing it in an aqueous solution. Adding a silicate such as sodium silicate after dispersion has the advantage of improving adhesion of metal salts as well as the effect of a conventionally known anti-sintering agent. Preference is given to adding salt. At that time, it is desirable to add an alkali such as sodium hydroxide as necessary to adjust the pH to 10 or higher.

被着させる金属塩は、1種でも複数種でもよく。The metal salt to be deposited may be one type or multiple types.

特にニッケル塩を被着させておくと磁気特性、クロム塩
を被着させておくと酸化安定性の向上効果が大きい。し
かし金属磁性粉末の性能を総合的に高めるため釦は銅、
ニッケル、コバルトおよびクロムの各金属塩を被着させ
ておくのが好ましい。
In particular, depositing a nickel salt has a great effect on improving magnetic properties, and depositing a chromium salt has a large effect on improving oxidation stability. However, in order to improve the overall performance of the metal magnetic powder, the button is made of copper.
Preferably, metal salts of nickel, cobalt and chromium are deposited.

金属塩の被着量は、用いた金属塩の量よシも若干少なく
なるが、その全量が鉄原子に対して金属原子換算で5原
子チ以下、好ましくは0.1〜4原子チにするのが適当
であるが、ニッケルは5原子チ以内、クロムは1原子チ
以内、コバルトは6原子チ以内、銅は2原子チ以内にす
るのが望ましい。
Although the amount of metal salt deposited will be slightly smaller than the amount of metal salt used, the total amount should be 5 atoms or less, preferably 0.1 to 4 atoms, based on metal atoms relative to iron atoms. However, it is preferable that the amount of nickel be within 5 atoms, chromium within 1 atom, cobalt within 6 atoms, and copper within 2 atoms.

金属塩としては一般に前記金塊の硝酸塩、塩酸塩。The metal salts are generally the nitrates and hydrochlorides of the gold bullion.

硫酸塩などが使用される。オキシ水酸化鉄を金属塩の水
溶液に分散させて金属塩を被着させたオキシ水酸化鉄は
1通常の方法で水洗、ろ過、乾燥等の操作で回収する。
Sulfates etc. are used. Iron oxyhydroxide, which is obtained by dispersing iron oxyhydroxide in an aqueous solution of a metal salt and depositing a metal salt thereon, is recovered by washing, filtration, drying, etc. in a conventional manner.

金属塩を被着させたオキシ水酸化鉄は、還元または加熱
、還元処理すると、鉄を主体とした目的とする金属磁性
粉末が得られる。
When iron oxyhydroxide coated with a metal salt is reduced or heated and subjected to a reduction treatment, a desired metal magnetic powder mainly composed of iron can be obtained.

還元処理は、還元性ガス雰囲気下に、一般に水素、水素
と窒素との混合ガス等の雰囲気下に300〜500℃の
温度で行うのが適当である。また還元処理にさきだって
加熱処理する際は、酸素含有ガス雰囲気下に、一般には
空気雰囲気下に300〜750℃の温度で行うのが適当
である。
The reduction treatment is suitably carried out in a reducing gas atmosphere, generally in an atmosphere of hydrogen, a mixed gas of hydrogen and nitrogen, etc., at a temperature of 300 to 500°C. Further, when heat treatment is performed prior to the reduction treatment, it is appropriate to perform the heat treatment in an oxygen-containing gas atmosphere, generally in an air atmosphere, at a temperature of 300 to 750°C.

〔実施例〕〔Example〕

実施例1 塩化第二鉄(FeC43H6H20〕3000 fと(
llfi:酸亜鉛(ZnSO4−7H20:) 160
 f (Feに対するZnは5原子%)を純水に溶解さ
せて60tとした溶液を8℃に冷却した。この溶液を、
純水12otに水酸化ナトリウム(Na0H)4500
 fを溶解させ8゛Cに冷却した水酸化ナトリウム水溶
液中に。
Example 1 Ferric chloride (FeC43H6H20) 3000 f and (
llfi: Zinc acid (ZnSO4-7H20:) 160
A solution prepared by dissolving f (Zn is 5 atomic % with respect to Fe) in pure water to make 60 t was cooled to 8°C. This solution,
Sodium hydroxide (NaOH) 4500 in 12 ot pure water
f in an aqueous sodium hydroxide solution cooled to 8°C.

徐々に加えて10℃で水酸化亜鉛を含む水酸化第二鉄を
生成させ、スラリ温度を50″Cに上けて5時間放置し
て熟成し、オキシ水酸化鉄を生成させた。
Ferric hydroxide containing zinc hydroxide was gradually added at 10° C., and the slurry temperature was raised to 50″C and left to mature for 5 hours to produce iron oxyhydroxide.

次いで上澄液を除去し、沈殿物(オキシ水酸化鉄)を水
洗した後、酢酸でpH3に調製し、硫酸ニッケル87.
6 ? (Feに対するNiは3原子%)および硝酸ク
ロム22.29 (F’sに対するOrは0.5原子%
)を純水に溶解させた溶液中に分散させた。
Next, the supernatant was removed, the precipitate (iron oxyhydroxide) was washed with water, the pH was adjusted to 3 with acetic acid, and the pH was adjusted to 87% with nickel sulfate.
6? (Ni is 3 at% with respect to Fe) and chromium nitrate 22.29 (Or is 0.5 at% with respect to F's)
) was dispersed in a solution of pure water.

次いで、IN−水酸化ナトリウム水溶液にてpHを10
に調節し、ケイ酸ナトリウム2007を純水に溶解させ
て滴下した後、酢酸を用いてpH8に調節した。上澄液
を除去後、水洗、ろ過、乾燥してオキシ水酸化鉄粉末を
得た。
Then, the pH was adjusted to 10 with IN-sodium hydroxide aqueous solution.
After dissolving sodium silicate 2007 in pure water and adding it dropwise, the pH was adjusted to 8 using acetic acid. After removing the supernatant, it was washed with water, filtered, and dried to obtain iron oxyhydroxide powder.

オキシ水酸化鉄粉末は、これを空気雰囲気下に650℃
で1時間アニール処理した後、水素ガス雰囲気下に45
0℃で6時間還元処理して鉄を主体とする金属磁性粉末
を得た。
Iron oxyhydroxide powder is heated at 650°C in an air atmosphere.
After annealing for 1 hour at
A reduction treatment was performed at 0° C. for 6 hours to obtain metal magnetic powder mainly composed of iron.

得られた金属磁性粉末は、透過型電子顕微鏡(TKM)
で粒子形状を観察した。TKM写真によると1粒子50
本の平均粒子長(長軸)は0.28μmで1粒子30本
はすべて0.25〜0.31μm(長軸)の範囲の均斉
のとれたものであった。また比表面積(SA)は49.
8 rr?/ fであった。次に、撮動試料型磁力計(
vsM)で磁気特性を測定した結果、保磁力(Ha)は
14560eで飽和磁化(σ8)は138 emu/ 
fであった。
The obtained metal magnetic powder was examined using a transmission electron microscope (TKM).
The particle shape was observed. According to TKM photo, 1 particle is 50
The average particle length (long axis) of the book was 0.28 μm, and all 30 particles were uniform in the range of 0.25 to 0.31 μm (long axis). Also, the specific surface area (SA) is 49.
8rr? /f. Next, we used an imaging sample magnetometer (
vsM), the coercive force (Ha) was 14560e and the saturation magnetization (σ8) was 138 emu/
It was f.

また、塗料化後の分散性を調べるために、金塊磁性粉2
0部(重量部、以下間&)、メチルエチルケトン26.
7部、メチルイソブチルケトン26.7部、シクロヘキ
サノン 26.7 部、  コロネー) L O,8部
In addition, in order to investigate the dispersibility after making it into a paint, gold bullion magnetic powder 2
0 parts (parts by weight, hereinafter &), methyl ethyl ketone 26.
7 parts, 26.7 parts of methyl isobutyl ketone, 26.7 parts of cyclohexanone, 8 parts of LO, 26.7 parts of cyclohexanone.

V A () H2,7部、ポリウレタン4部、ステア
リン酸0.8部、レシチン0.5部の組成でインク化し
It was made into an ink with a composition of 7 parts of VA()H, 4 parts of polyurethane, 0.8 parts of stearic acid, and 0.5 parts of lecithin.

サンドミルで分散後、塗膜を行ない5 KOe  磁場
で配向して、角型比(SR)および配向比(OR)を求
めた。その結果、 SRo、78. OR1,75であ
った。また、酸化安定性の測定は、60℃−90%RH
条件下で金属磁性粉末を1週間放置し、飽和磁化(σθ
)の低下率を調べる方法で行ったところ14.3チであ
った。
After dispersing in a sand mill, a coating film was applied and oriented in a 5 KOe magnetic field to determine the squareness ratio (SR) and orientation ratio (OR). As a result, SRo, 78. The OR was 1.75. In addition, the oxidation stability was measured at 60℃-90%RH.
The metal magnetic powder was left for one week under the following conditions, and the saturation magnetization (σθ
), it was found to be 14.3 cm.

金属磁性粉末とシートの磁気特性、TKMによる金属磁
性粉末の粒子形状、比表面積および酸化安定性などの測
定結果を第1表に示す。
Table 1 shows the measurement results of the magnetic properties of the metal magnetic powder and sheet, the particle shape, specific surface area, oxidation stability, etc. of the metal magnetic powder by TKM.

実施例2〜7 実施例1の硫酸亜鉛の使用量を鉄原子に対して亜鉛原子
換算で5原子チにかえ、水酸化第二鉄を生成させる際の
温度を20℃にかえ、熟成時間を10時間にかえた(実
施例2)、実施例1の熟成時間を10時間にかえ、また
硫酸ニッケルおよび硝酸クロムとともに硫酸コバルトを
使用して金属原子換算でこれらを鉄原子に対してニッケ
ル1原子チ、クロム0.3原子チおよびコバルト1原子
チの量で用いた(実施例3)、実施例1の使用量を鉄原
子に対して亜鉛原子換算でろ原子チにかえ。
Examples 2 to 7 The amount of zinc sulfate used in Example 1 was changed to 5 atoms per iron atom in terms of zinc atoms, the temperature at which ferric hydroxide was generated was changed to 20°C, and the aging time was changed. (Example 2), the aging time of Example 1 was changed to 10 hours, and cobalt sulfate was used together with nickel sulfate and chromium nitrate, and in terms of metal atoms, one nickel atom per iron atom was used. 0.3 atoms of chromium and 1 atom of cobalt were used (Example 3), but the amounts used in Example 1 were changed to 1 atom in terms of zinc atoms relative to iron atoms.

熟成時間を20時間にかえ、硫酸ニッケルおよび硝酸ク
ロムとともに硫酸鋼を使用して金属原子換算でこれらを
鉄原子に対してニッケル1原子係。
The aging time was changed to 20 hours, and sulfuric acid steel was used together with nickel sulfate and chromium nitrate, and these were converted into metal atoms by one nickel atom per iron atom.

クロム0.5原子チおよび銅0.5原子チの量で用い。Used in amounts of 0.5 atomic atoms of chromium and 0.5 atomic atoms of copper.

また還元処理温度を420’Cにかえた(実施例4)。Further, the reduction treatment temperature was changed to 420'C (Example 4).

実施例1の水酸化第二鉄を生成させる際の温度を20℃
にかえ、熟成時間を10時間にかえ、硫酸ニッケルおよ
び硝酸クロムとともに硫酸銅を使用して金属原子換算で
これらを鉄原子に対してニッケル2原子チ、クロム0.
3原子チおよび銅1原子係の量で用い、また還元処理温
度を420℃にかえた(実施例5)、実施例1の硫酸亜
鉛の使用量を鉄原子に対して亜鉛原子換算で4原子チに
かえ。
The temperature when producing ferric hydroxide in Example 1 was 20°C.
Instead, the aging time was changed to 10 hours, copper sulfate was used together with nickel sulfate and chromium nitrate, and in terms of metal atoms, these were converted to 2 atoms of nickel and 0.0 of chromium per iron atom.
The amount of zinc sulfate used in Example 1 was changed to 4 atoms per iron atom in terms of zinc atoms, and the reduction treatment temperature was changed to 420°C (Example 5). Go back to Chi.

硫酸ニッケルおよび硝酸クロムとともに硫酸銅を使用し
て金属原子換算でこれらをニッケル1原子チ、クロム0
.5原子チおよび銅0.5原子チの量で用い、また還元
処理温度を470℃にかえた(実施例6)、実施例1の
硫酸ニッケルおよび硝酸クロムとともに硫酸コバルトお
よび硫酸銅を使用して金属原子換算でこれらを鉄原子に
対してニッケル1原子チ、クロム0.2原子チ、コバル
ト0.5原子チおよび銅0.5原子チの量で用い、また
還元処理温度を480℃にかえた(実施例7)、ほかは
実施例1と同様にして鉄を主体とする金属磁性粉末を得
た。
Copper sulfate is used together with nickel sulfate and chromium nitrate to convert them into 1 atom of nickel and 0 chromium in terms of metal atoms.
.. Using cobalt sulfate and copper sulfate together with nickel sulfate and chromium nitrate in Example 1, the reduction treatment temperature was changed to 470° C. (Example 6). In terms of metal atoms, these were used in amounts of 1 atom of nickel, 0.2 atom of chromium, 0.5 atom of cobalt, and 0.5 atom of copper per iron atom, and the reduction treatment temperature was changed to 480°C. (Example 7) A metal magnetic powder mainly composed of iron was obtained in the same manner as in Example 1 except for the following.

得られた金属磁性粉末の測定結果は第1表に示す。なお
実施例2〜7で得られた金属磁性粉末は。
The measurement results of the obtained metal magnetic powder are shown in Table 1. Note that the metal magnetic powders obtained in Examples 2 to 7 are as follows.

いずれの例においても実施例1と同様に均斉のとれた粒
度分布幅の狭いものであった。
In each example, the particle size distribution was uniform and narrow, similar to Example 1.

比較例1〜3 実施例1において、硫酸亜鉛を使用しなかった(比較例
1)、水酸化第二鉄スラリを生成させる際の温度を10
℃から60℃にかえた(比較例2)および硫酸ニッケル
と硝酸クロムを使用しなかった(比較例3)ほかは、実
施例1と同様にして鉄を主体とする金属磁性粉末を得た
Comparative Examples 1 to 3 In Example 1, zinc sulfate was not used (Comparative Example 1), and the temperature when producing the ferric hydroxide slurry was changed to 10
A metal magnetic powder mainly composed of iron was obtained in the same manner as in Example 1, except that the temperature was changed from .degree. C. to 60.degree. C. (Comparative Example 2) and nickel sulfate and chromium nitrate were not used (Comparative Example 3).

得られた金属磁性粉末の測定結果は第1表に示す。The measurement results of the obtained metal magnetic powder are shown in Table 1.

〔発明の効果〕〔Effect of the invention〕

本発明によると1分散性(/−ト特性)、酸化安定性、
磁気特性などが総合的にすぐれ、適度の比表面積を有す
る粒度分布幅の狭い均斉のとれた針状晶の鉄を主体とす
る金属磁性粉末が得られる。
According to the present invention, 1 dispersity (/-to characteristic), oxidation stability,
It is possible to obtain a metal magnetic powder mainly consisting of iron in the form of needle-like crystals with a narrow and uniform particle size distribution, which has excellent overall magnetic properties, has an appropriate specific surface area, and has a narrow and uniform particle size distribution.

Claims (2)

【特許請求の範囲】[Claims] (1)水酸化アルカリ水溶液に、第二鉄塩および少量の
亜鉛塩の水溶液を加え、50℃以下の温度で反応させて
水酸化亜鉛を含有する水酸化第二鉄スラリを得、該スラ
リを熟成して水酸化第二鉄をオキシ水酸化鉄にした後、
銅、ニッケル、コバルトおよびクロムよりなる群から選
択された金属塩をオキシ水酸化鉄に被着させて還元また
は加熱、還元処理することを特徴とする鉄を主体とする
金属磁性粉末の製造法。
(1) Add an aqueous solution of a ferric salt and a small amount of a zinc salt to an aqueous alkali hydroxide solution, react at a temperature of 50°C or less to obtain a ferric hydroxide slurry containing zinc hydroxide; After aging and converting ferric hydroxide to iron oxyhydroxide,
A method for producing metal magnetic powder mainly consisting of iron, which comprises depositing a metal salt selected from the group consisting of copper, nickel, cobalt, and chromium on iron oxyhydroxide, reducing or heating it, and subjecting it to reduction treatment.
(2)亜鉛塩の使用量が、鉄原子に対して亜鉛原子換算
で2〜10原子%である特許請求の範囲第1項記載の金
属磁性粉末の製造法。
(2) The method for producing metal magnetic powder according to claim 1, wherein the amount of zinc salt used is 2 to 10 atomic % in terms of zinc atoms relative to iron atoms.
JP25161484A 1984-11-30 1984-11-30 Production of metallic magnetic powder Pending JPS61130407A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25161484A JPS61130407A (en) 1984-11-30 1984-11-30 Production of metallic magnetic powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25161484A JPS61130407A (en) 1984-11-30 1984-11-30 Production of metallic magnetic powder

Publications (1)

Publication Number Publication Date
JPS61130407A true JPS61130407A (en) 1986-06-18

Family

ID=17225438

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25161484A Pending JPS61130407A (en) 1984-11-30 1984-11-30 Production of metallic magnetic powder

Country Status (1)

Country Link
JP (1) JPS61130407A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006028637A (en) * 2004-06-14 2006-02-02 Sumitomo Metal Mining Co Ltd Silver particulate colloid-dispersed solution, coating solution for silver film formation and production method therefor and silver film
CN100464908C (en) * 2006-07-03 2009-03-04 南京大学 Method for preparing nanometer zero-valent iron grain using improved liquid phase reduction method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5812309A (en) * 1981-07-16 1983-01-24 Sony Corp Manufacture of acicular metal powder
JPS5853687A (en) * 1981-09-28 1983-03-30 Hitachi Ltd Chamber structure of closed type motor compressor
JPS58213804A (en) * 1982-06-03 1983-12-12 Chisso Corp Production of fine particle of ferromagnetic metal

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5812309A (en) * 1981-07-16 1983-01-24 Sony Corp Manufacture of acicular metal powder
JPS5853687A (en) * 1981-09-28 1983-03-30 Hitachi Ltd Chamber structure of closed type motor compressor
JPS58213804A (en) * 1982-06-03 1983-12-12 Chisso Corp Production of fine particle of ferromagnetic metal

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006028637A (en) * 2004-06-14 2006-02-02 Sumitomo Metal Mining Co Ltd Silver particulate colloid-dispersed solution, coating solution for silver film formation and production method therefor and silver film
CN100464908C (en) * 2006-07-03 2009-03-04 南京大学 Method for preparing nanometer zero-valent iron grain using improved liquid phase reduction method

Similar Documents

Publication Publication Date Title
EP1085506A1 (en) Spindle-shaped goethite particles containing cobalt and process for producing the same
JPH02167810A (en) Superfine magnetic particles of epsilon&#39; iron carbide and its production
JPS61130407A (en) Production of metallic magnetic powder
JP3164355B2 (en) Method for producing acicular alloy magnetic powder
JP3144683B2 (en) Spindle-shaped iron-based metal magnetic particle powder
JP3337046B2 (en) Spindle-shaped metal magnetic particles containing cobalt and iron as main components and method for producing the same
JPH10226520A (en) Hydrate iron oxide and production of ferromagnetic iron oxide
JPS62139803A (en) Production of ferromagnetic metallic powder
JPS62204B2 (en)
US5989516A (en) Spindle-shaped geothite particles
JPS61124507A (en) Production of magnetic metallic powder
JPH0755832B2 (en) Method for producing cobalt-containing ferromagnetic iron oxide powder
JPS59143004A (en) Production of magnetic alloy powder
JP3303896B2 (en) Spindle-shaped iron-based metal magnetic particle powder and method for producing the same
JP2885253B2 (en) Method of producing spindle-shaped goethite particles
JP2970706B2 (en) Method for producing acicular magnetic iron oxide particles
JPS5888122A (en) Production of cobalt-containing ferromagnetic iron oxide
JP3166809B2 (en) Method for producing acicular magnetic iron oxide particles
JP2897794B2 (en) Method for producing cobalt-coated magnetic iron oxide particles
JP2965606B2 (en) Method for producing metal magnetic powder
JP2970705B2 (en) Method for producing acicular magnetic iron oxide particles
JP4929473B2 (en) Magnetic powder for magnetic recording medium, method for producing the same, and magnetic recording medium using the same
JP2735885B2 (en) Method for producing metal magnetic powder for magnetic recording
JP2651795B2 (en) Method for producing ferromagnetic fine powder for magnetic recording
JP3087808B2 (en) Manufacturing method of magnetic particle powder for magnetic recording