JPS61129026A - Purification of exhaust gas - Google Patents

Purification of exhaust gas

Info

Publication number
JPS61129026A
JPS61129026A JP59250123A JP25012384A JPS61129026A JP S61129026 A JPS61129026 A JP S61129026A JP 59250123 A JP59250123 A JP 59250123A JP 25012384 A JP25012384 A JP 25012384A JP S61129026 A JPS61129026 A JP S61129026A
Authority
JP
Japan
Prior art keywords
exhaust gas
zinc
gas
oxide
copper
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP59250123A
Other languages
Japanese (ja)
Other versions
JPH0457368B2 (en
Inventor
Koichi Kitahara
北原 宏一
Takashi Shimada
孝 島田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NIPPON PAIONIKUSU KK
Japan Pionics Ltd
Original Assignee
NIPPON PAIONIKUSU KK
Japan Pionics Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NIPPON PAIONIKUSU KK, Japan Pionics Ltd filed Critical NIPPON PAIONIKUSU KK
Priority to JP59250123A priority Critical patent/JPS61129026A/en
Publication of JPS61129026A publication Critical patent/JPS61129026A/en
Publication of JPH0457368B2 publication Critical patent/JPH0457368B2/ja
Granted legal-status Critical Current

Links

Abstract

PURPOSE:To dispense with wetting treatment by efficiently removing AsH3, Ph3, B2H6 and H2Se in dried gas, by using a purification agent prepared by compounding copper oxide with oxide of silicon, aluminum or zinc. CONSTITUTION:A precipitate such as hydroxides or oxides obtained by adding alkali such as Na2CO3 to nitrates or sulfates of copper, zinc and aluminum is baked to obtain an oxide mixture. Or, silica gel and an alumina gel are mixed and kneded with a copper oxide powder by a kneader and the resulting mixture is dried. This obtained purification agent is allowed to pack a cylinder and exhaust gas containing harmful components such as AsH3, PH3, B2H6 or H2Se exhausted from a semiconductor manufacturing process is flowed through the cylinder and contacted with the purification agent to remove the harmful components to purify the exhaust gas.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は排ガスの浄化方法に関し、さらに詳細には半導
体製造工程などから排出される有毒成分を含有する排ガ
スの浄化方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a method for purifying exhaust gas, and more particularly to a method for purifying exhaust gas containing toxic components discharged from semiconductor manufacturing processes and the like.

′ 近年、半導体工業やオプトエレクトロニクス工業の
発展とともに、アルシン、ホスフィン、ジボラン、およ
びセレン化水素などの極めて毒性の強い水素化物の使用
量が増加している。
′ In recent years, with the development of the semiconductor industry and optoelectronics industry, the amount of highly toxic hydrides used such as arsine, phosphine, diborane, and hydrogen selenide has increased.

これらの有毒成分は、シリコン半導体や化合物半導体製
造工業あるいは光フアイバー製造工業などにおいて、原
料あるいはドーピングガスとして不可欠な物質である。
These toxic components are essential substances as raw materials or doping gases in silicon semiconductor and compound semiconductor manufacturing industries, optical fiber manufacturing industries, and the like.

半導体製造プロセスあるいは光フアイバー製造プロセス
などから排出される排ガス中には、未反応の有毒成分が
含有される場合が多い。これらの成分はそれぞれ生物に
とって極めて有害であるから、環境を破壊しないために
ガスの排出に先立って除去する必要がある。
Exhaust gas discharged from semiconductor manufacturing processes or optical fiber manufacturing processes often contains unreacted toxic components. Since each of these components is extremely harmful to living organisms, it is necessary to remove them before the gas is discharged in order not to damage the environment.

〔従来技術詔よび解決すべき問題点〕[Prior art edict and problems to be solved]

これらの有毒成分を除去する方法としては、スクラバー
で吸収分解させる湿式法と吸着剤または酸化剤などの浄
化剤を充填した充填筒内を流して除去する方法とが知ら
れている。一般的にいって湿式法は、吸収液による腐食
や後処理などに困難性があるため、装置の保守に費用を
要するという欠点がある。
Known methods for removing these toxic components include a wet method in which they are absorbed and decomposed using a scrubber, and a method in which they are removed by flowing through a cylinder filled with a purifying agent such as an adsorbent or an oxidizing agent. Generally speaking, the wet method has the drawback that maintenance of the equipment is expensive due to corrosion caused by the absorbing liquid and difficulty in post-treatment.

また、浄化剤を用いる方法としては、硝酸銀などの硝酸
塩類を多孔質担体に担持せしめ−たもの、あるいは塩化
二鉄などの金属塩化物を多孔質担体に含浸せしめたもの
を吸着剤として用い、ホスフィン、アルシンを酸化的に
除去する方法(特開昭56−89857号公報)が知ら
れている。しかしながら、この方法は、湿式法における
ような諸欠点は解決されるが、CvD(化学蒸着)プロ
セスなどの排ガスを、予め湿潤化処理する必要があるた
め、装置が複雑になるという欠点を有する。
In addition, as a method of using a purifying agent, a porous carrier is used to support nitrates such as silver nitrate, or a porous carrier is impregnated with a metal chloride such as ferric chloride as an adsorbent. A method for oxidatively removing phosphine and arsine (Japanese Unexamined Patent Publication No. 89857/1983) is known. However, although this method solves the drawbacks of the wet method, it has the disadvantage that the equipment becomes complicated because it is necessary to humidify the exhaust gas from a CvD (chemical vapor deposition) process or the like in advance.

ざらlこ、無機珪酸塩にアルカリ水溶液、酸化剤水溶液
またはアルカリと酸化剤との水溶液をそれぞれ含浸させ
た三極の吸収剤を用いて、アルシン、ホスフィンなどを
処理する方法(特公昭59L49822号公報)も提案
されている。
A method of treating arsine, phosphine, etc. using a tripolar absorbent in which an inorganic silicate is impregnated with an aqueous alkali solution, an aqueous oxidizing agent solution, or an aqueous solution of an alkali and an oxidizing agent (Japanese Patent Publication No. 59L49822) ) has also been proposed.

この方法も前記した方法と同様に結局は湿潤状態におけ
る処理であって湿式法と同様な欠点を有している。
Like the above-mentioned method, this method is ultimately a process in a wet state and has the same drawbacks as the wet method.

〔問題を解決するための手段、作用〕[Means and actions for solving problems]

本発明者らは、これら従来技術・の欠点を補なうべく鋭
意検討した結果、(イ)酸化銅および(ロ)珪素、アル
ミニウムおよび亜鉛などのそれぞれの酸化物を配合した
浄化剤に有毒成分を含有する排ガスを接触させるとこれ
らの有毒成分が効率よく除去されることを見出し、さら
に研究を続は本発明を完成した。
As a result of intensive studies to compensate for the shortcomings of these conventional technologies, the present inventors found that (a) copper oxide and (b) toxic ingredients in purifying agents containing oxides of silicon, aluminum, zinc, etc. They discovered that these toxic components can be efficiently removed by contacting them with exhaust gas containing them.Further research led to the completion of the present invention.

すなわち、本発明は有毒成分として、アルシン、ホスフ
ィン、ジボラン、セレン化水素の一種以上を含有するガ
スから、これら有毒成分を除去する排ガスの浄化方法に
おいて、該ガスをげン酸化鋼および曹珪素、アルミニウ
ムおよび/または亜鉛のそれぞれの酸化物を配合した浄
化剤に接触させることを特徴とする排ガスの浄化方法で
ある。
That is, the present invention provides an exhaust gas purification method for removing toxic components from a gas containing one or more of arsine, phosphine, diborane, and hydrogen selenide as toxic components. This is a method for purifying exhaust gas, which is characterized by bringing the exhaust gas into contact with a purifying agent containing oxides of aluminum and/or zinc.

本発明に使用する浄化剤は完全に乾燥したガス中の有毒
成分をも何ら支障なく除去することが可能なので、湿潤
化処理が不要となり、そのメリットは大きい。
Since the purifying agent used in the present invention can remove toxic components from completely dried gas without any problems, there is no need for wetting treatment, which is a great advantage.

本発明は、窒素ガス、水素ガスまたは空気などと、アル
シン、ホスフィン、ジボランおよびセレン化水素などの
水素化物の1穫以上を含有するガスに適用される。
The present invention applies to gases containing nitrogen gas, hydrogen gas or air, and one or more hydrides such as arsine, phosphine, diborane and hydrogen selenide.

本発明に用いられる浄化剤としては、(イ)酸化銅およ
び(01珪素、アルミニウムおよび/または亜鉛のそれ
ぞれの酸化物を配合した組成物である。
The purifying agent used in the present invention is a composition containing (a) copper oxide and (01) respective oxides of silicon, aluminum and/or zinc.

酸化銅に対する(口)成分の配合割合には特に制限はな
いが、それぞれの金属の原子比でM/M+Cu として
好ましくは0.030〜0.55、特に好ましくは0.
045〜0.65である。
There is no particular restriction on the blending ratio of the (original) components to copper oxide, but the atomic ratio of each metal (M/M+Cu) is preferably 0.030 to 0.55, particularly preferably 0.
045 to 0.65.

ここでMは珪素、アルミニウムおよび/または亜鉛であ
る。
Here M is silicon, aluminum and/or zinc.

浄化剤の調製方法としては、それ自体公知の種々の方法
の適用が可能である。
As a method for preparing the purifying agent, various methods known per se can be applied.

たとえば、銅、亜鉛、アルミニウムそれぞれの硝酸塩、
硫酸塩、塩化物、有機酸塩などに、苛性ソーダ、苛性カ
リ、炭酸ナトリウム、重炭酸ナトリウム、アンモニアな
どのアルカリを加えて得られた水酸化物、酸化物の中間
体などの沈殿物を焼成して酸化物とし、これを浄化剤と
する。またたとえば酸化銅の粉末に酸化珪素としてシリ
カゾル、酸化アルミニウムとしてアルミナゾルなどを混
合してニーグーで混疎し、乾燥して浄化剤としでもよい
。なおこれらの酸化物中には、焼成工程などにおいて分
解されなかった水酸化鋼、水酸化亜鉛、水酸化アルミニ
ウム、水和酸化銅(たとえば4 CuO,H2O)ある
は いは塩基性炭酸銅(たとえばCu(OH) 2−nc記
0s )や塩基性炭酸亜鉛(たとえばZn(OH) 2
 、nZncOi )などの中間体が一部残留すること
が多いが、これらが含有されていてもアルシン、ホスフ
ィン、ジボランおよびセレン化水素などの水素化物の除
去の妨げにはならない。
For example, nitrates of copper, zinc, and aluminum,
By adding alkalis such as caustic soda, caustic potash, sodium carbonate, sodium bicarbonate, and ammonia to sulfates, chlorides, and organic acid salts, the precipitates such as hydroxides and oxide intermediates are calcined. It is made into an oxide and used as a purifying agent. Alternatively, for example, a silica sol as silicon oxide, alumina sol as aluminum oxide, etc. may be mixed with copper oxide powder, mixed with a nigu, and dried to form a purifying agent. These oxides include hydroxide steel, zinc hydroxide, aluminum hydroxide, hydrated copper oxide (e.g. 4 CuO, H2O), and basic copper carbonate (e.g. Cu (OH) 2-nc) or basic zinc carbonate (e.g. Zn(OH) 2
Although some intermediates such as , nZncOi ) often remain, their presence does not impede the removal of hydrides such as arsine, phosphine, diborane, and hydrogen selenide.

これらの浄化剤はそのまま、あるいは成型して用いても
よく、またシリカ、シリカアルミナ、けいそう土、水酸
化カルシウムなどの担体に担持させて用いてもよいが、
浄化剤自体をペレットなどに成型したものを用いるか、
あるいはこの成型物を適当な大きさに破砕するなどして
用いることが好ましい。
These purifying agents may be used as they are or after being molded, or may be supported on a carrier such as silica, silica alumina, diatomaceous earth, or calcium hydroxide.
Either use the purifying agent itself molded into pellets, or
Alternatively, it is preferable to use this molded product by crushing it into an appropriate size.

成型する方法としては、従来公知の乾式法あるいは湿式
法を用いることができる。また成型の際には必要に応じ
て、少量の水グラファイト、滑剤などを使用しても良い
As a molding method, a conventionally known dry method or wet method can be used. Further, during molding, a small amount of water graphite, lubricant, etc. may be used as necessary.

成型物の形状には特に制限はないが、球形、円柱形、お
よび筒形などが代表例として挙げられる。
Although there is no particular restriction on the shape of the molded product, typical examples include a spherical shape, a cylindrical shape, and a cylindrical shape.

本発明で使用される浄化剤は筒内に充填されて用いられ
る。有害成分を含有するガス(以下被処理ガスと記す)
はこの筒内に流され浄化剤と接触せしめられることによ
り、有毒成分である各種水素化物が除去され、浄化され
る。
The cleaning agent used in the present invention is filled into a cylinder. Gas containing harmful components (hereinafter referred to as gas to be treated)
By flowing into this cylinder and coming into contact with a purifying agent, various hydrides, which are toxic components, are removed and purified.

本発明の浄化方法が適用される被処理ガス中の水素化物
の濃度およびガスの流速には特に制限はない。一般に濃
度が高いほど流速を小さくすることが好ましい。
There are no particular limitations on the concentration of hydrides in the gas to be treated and the flow rate of the gas to which the purification method of the present invention is applied. Generally, it is preferable to decrease the flow rate as the concentration increases.

たとえば、被処理ガスが水素ベースの場合には、含有さ
れる有毒ガスの濃度が10%以上で、流速が20 cm
/ sec以上になると発熱によって浄化剤の水素によ
る還元が生じ、活性が失われることもあるので、このよ
うな場合には吸着筒を冷却するなどの処置を構じて操作
することが好ましい。
For example, if the gas to be treated is hydrogen-based, the concentration of toxic gas contained is 10% or more, and the flow rate is 20 cm.
/ sec or more, the purifying agent may be reduced by hydrogen due to heat generation and its activity may be lost. In such a case, it is preferable to take measures such as cooling the adsorption column during operation.

本発明の浄化方法を適用しつる被処理ガスは、通常は乾
燥状態であるが、湿潤状態であっても、浄化剤充填筒内
で結露する程湿っていなければ良い。
The gas to be treated to which the purification method of the present invention is applied is usually in a dry state, but even if it is in a wet state, it is sufficient as long as it is not so wet that dew condenses within the purifying agent filling cylinder.

被処理ガスと浄化剤との接触温度には特に制限はないが
、通常は常温乃至室温でよく特に加熱や冷却をする必要
はない。
There is no particular restriction on the contact temperature between the gas to be treated and the purifying agent, but it is usually at room temperature or room temperature and there is no need for particular heating or cooling.

被処理ガスの圧力には特に制限はなく、通常は常圧であ
るが、減圧、または加圧状態であっても良い。
There is no particular restriction on the pressure of the gas to be processed, and it is usually normal pressure, but may be in a reduced pressure or pressurized state.

〔実施例〕〔Example〕

実施例1〜4、比較例1〜2 硝酸鋼と硝酸亜鉛とをそれぞれ原子比で銅:亜鉛が10
:0,9:1,4:1,7:3,1:1,1 :2の割
合になるように混合したそれぞれの混合物をイオン交換
水に20重量%になるようそれぞれ溶解した。他方、こ
れらの金属酸化物を得るため、化学量論量の炭酸すl−
IJウムを20重量%の水溶液とした。
Examples 1-4, Comparative Examples 1-2 Nitric acid steel and zinc nitrate each have an atomic ratio of copper:zinc of 10
The respective mixtures were mixed at a ratio of :0, 9:1, 4:1, 7:3, 1:1, and 1:2 and were dissolved in ion-exchanged water to a concentration of 20% by weight. On the other hand, to obtain these metal oxides, a stoichiometric amount of carbonate l-
IJum was made into a 20% by weight aqueous solution.

それぞれの硝酸塩混合溶液を攪拌槽中で攪拌しながら、
前記の炭酸すl−IJウム溶液を滴下して塩基性炭酸銅
と塩基性炭酸亜鉛との沈殿物をそれぞれ生成させた。
While stirring each nitrate mixed solution in a stirring tank,
The above sulfur-IJium carbonate solution was added dropwise to form precipitates of basic copper carbonate and basic zinc carbonate, respectively.

これらの沈殿物を濾過、洗浄した後、120℃で乾燥し
、続いて350℃で焼成して酸化銅と酸化亜鉛との割合
が異る6種類の混合物をそれぞれ得た。
After filtering and washing these precipitates, they were dried at 120°C and then calcined at 350°C to obtain six types of mixtures with different proportions of copper oxide and zinc oxide.

これらの混合物をそれぞれ6rpua9!fx6rsm
Hのペレットに打錠成型したものを破砕し、ふるいにか
け、12〜28 meshとしたものを浄化剤として用
いた。
6 rpua9 of each of these mixtures! fx6rsm
H pellets were molded into tablets, crushed and sieved to obtain a 12-28 mesh size, which was used as a purifying agent.

内径13mm52rX 200+IIIHの硬質ポリ塩
化ビニル製の浄化筒内に、前記の浄化剤的12を充填し
、この浄化筒に被処理ガスとしてアルシン1 vo−g
%を含有せしめた窒素ガスを3J3/h  の速度で流
して、それぞれの浄化剤を充填した場合について破過ま
での時間ならびに飽和浄化量を測定した。
A purifying cylinder made of hard polyvinyl chloride with an inner diameter of 13 mm, 52 r x 200 + IIIH, was filled with the purifying agent 12, and the purifying cylinder was filled with Arsine 1 vo-g as the gas to be treated.
% nitrogen gas was flowed at a rate of 3J3/h, and the time until breakthrough and the saturated purification amount were measured for each purifying agent.

破過の検知は浄化筒出口のガスをアルシン用検知管(ガ
スチック社製、/%19L、横19L、検知下限o、o
でモニターし、痕跡が認められた時点とした。
For detection of breakthrough, the gas at the outlet of the purification tube is detected using an arsine detection tube (manufactured by Gastic Co., Ltd., /%19L, horizontal 19L, lower detection limit o, o
This was the point at which traces were observed.

結果を第1表に示す。The results are shown in Table 1.

実施例 5 実施例1で用いたのと同様な条件で、窒素ガスを水素ガ
スに変更して破過までの時間ならびにアルシンの飽和浄
化量を測定した。
Example 5 Under the same conditions as used in Example 1, the time until breakthrough and the saturated purification amount of arsine were measured by changing nitrogen gas to hydrogen gas.

結果を第2表に示す。The results are shown in Table 2.

第2表 実施例6〜8.比較例3 窒素ガスにホスフィン、ジボランまたはセレン化水素を
それぞれ単独に1%含有させたガスをそれぞれ実施例1
と同様な条件で流して、破過までの時間ならびに飽和浄
化量を測定した。
Table 2 Examples 6-8. Comparative Example 3 A gas containing 1% of each of phosphine, diborane, or hydrogen selenide in nitrogen gas was used in Example 1.
The time until breakthrough and the amount of saturated purification were measured under the same conditions as above.

モニター用の検知管としてホスフィン用(ガスチック社
製、A7L、下限0.3PPM )、ジボラン用(理研
−ドレーゲル社製CH−181、下限0.IPPM)お
よびセレン化水素用(光間理化学社製/16167、下
限o、osPPM  )をそれぞれ使用した。
Detection tubes for monitoring include phosphine (manufactured by Gastic Co., Ltd., A7L, lower limit 0.3 PPM), diborane (manufactured by Riken-Dräger Co., Ltd. CH-181, lower limit 0.IPPM), and hydrogen selenide (manufactured by Kouma Rikagaku Co., Ltd./ 16167, lower limit o, and osPPM) were used, respectively.

結果を第3表に示す。The results are shown in Table 3.

実施例 9 酸化銅粉末に、アルミナゾルまたはシリカゾルを銅に対
するアルミニウムまたは珪素の原子比として銅ニアルミ
ニウムが93ニア、銅:珪素が92二8になるように加
えて、それぞれニーグーで混疎し、再び350℃で焼成
した後、6ramy5x6關Hに打錠成型して浄化剤を
それぞれ調製した。
Example 9 Alumina sol or silica sol was added to the copper oxide powder so that the atomic ratio of aluminum or silicon to copper was 93 nia for copper nialium and 9228 nia for copper:silicon, respectively, and mixed in a niegu, and mixed again. After baking at 350° C., the mixture was compressed into a 6ramy5x6mm tablet to prepare each purifying agent.

以下実施例1〜4と同様な条件で破過までの時間ならび
に飽和浄化量を実験により求めた。
The time until breakthrough and the saturated purification amount were determined through experiments under the same conditions as in Examples 1 to 4.

結果を第4表に示す。The results are shown in Table 4.

実施例 10 実施例1〜4と同様な条件で、銅:亜鉛の原子比が9:
1の浄化剤の充填量を3fに増やして、破過までの時間
ならびに飽和浄化量の測定を行なった。破過の検知は、
アルシン用の検知管(ガスチック社製、検知限界0.0
5ppm)でモニターし、痕跡が認められる時点とした
Example 10 Under the same conditions as Examples 1 to 4, the atomic ratio of copper:zinc was 9:
The filling amount of the purifying agent No. 1 was increased to 3 f, and the time until breakthrough and the saturated purification amount were measured. Detection of breakthrough is
Detection tube for arsine (manufactured by Gastic, detection limit 0.0
5 ppm), and the point at which traces were observed was determined.

また比較例12として酸化銅 3fを充填した場合につ
いても破過までの時間ならびに飽和浄化量を測定した。
Also, as Comparative Example 12, when 3f of copper oxide was filled, the time until breakthrough and the amount of saturated purification were measured.

結果を第5表に示す。The results are shown in Table 5.

以北の如く、本発明の浄化方法によって半導体製造工程
から排出される各種水素化物を有毒成分として含有する
ガスを、乾燥状態で効率よく浄化しうることが判る。
As described above, it is found that gases containing various hydrides as toxic components discharged from semiconductor manufacturing processes can be efficiently purified in a dry state by the purification method of the present invention.

〔発明の効果〕〔Effect of the invention〕

′ 本発明の浄化方法は、下記のような優れた特徴を有
しており、工業的に極めて有用である。
' The purification method of the present invention has the following excellent features and is extremely useful industrially.

(1)浄化剤の単位重量当りに対する有毒成分の除去量
および除去速度が大きい。
(1) The amount and rate of removal of toxic components per unit weight of the purifying agent is large.

(2)各種水素化物をその濃度とは関係なくほぼ完全に
除去することができる。
(2) Various hydrides can be almost completely removed regardless of their concentration.

(3)常温乃至室温で浄化操作を行うことができ、特に
加熱や冷却を必要としない。
(3) The purification operation can be carried out at room temperature or room temperature, and no particular heating or cooling is required.

(4)浄化剤に水分などが実質的に含有されていないた
め、常に安定した浄化性能が得られる。
(4) Since the purifying agent does not substantially contain water or the like, stable purifying performance can always be obtained.

特許出願人 日本バイオニクス株式会社代表者 高 崎
 文 夫
Patent applicant Fumio Takasaki Representative of Nippon Bionics Co., Ltd.

Claims (1)

【特許請求の範囲】[Claims] 有毒成分として、アルシン、ホスフィン、ジボラン、お
よびセレン化水素の1種以上を含有するガスからこれら
有毒成分を除去する排ガスの浄化方法において該ガスを
(イ)酸化銅および(ロ)珪素、アルミニウムおよび/
または亜鉛のそれぞれの酸化物を配合した浄化剤に接触
させることを特徴とする排ガスの浄化方法
In an exhaust gas purification method for removing toxic components from a gas containing one or more of arsine, phosphine, diborane, and hydrogen selenide, the gas is treated with (a) copper oxide and (b) silicon, aluminum, and /
Or a method for purifying exhaust gas, characterized by bringing it into contact with a purifying agent containing each oxide of zinc.
JP59250123A 1984-11-27 1984-11-27 Purification of exhaust gas Granted JPS61129026A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59250123A JPS61129026A (en) 1984-11-27 1984-11-27 Purification of exhaust gas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59250123A JPS61129026A (en) 1984-11-27 1984-11-27 Purification of exhaust gas

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP7280863A Division JP2702461B2 (en) 1995-10-27 1995-10-27 Exhaust gas purification method

Publications (2)

Publication Number Publication Date
JPS61129026A true JPS61129026A (en) 1986-06-17
JPH0457368B2 JPH0457368B2 (en) 1992-09-11

Family

ID=17203160

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59250123A Granted JPS61129026A (en) 1984-11-27 1984-11-27 Purification of exhaust gas

Country Status (1)

Country Link
JP (1) JPS61129026A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63200820A (en) * 1987-02-17 1988-08-19 Kikuchi:Kk Treatment of exhaust gas in producing semiconductor
US4869735A (en) * 1987-04-30 1989-09-26 Mitsubishi Jukogyo K.K. Adsorbent for arsenic compound and method for removing arsenic compound from combustion gas
JPH01297129A (en) * 1988-05-26 1989-11-30 Tonen Sekiyukagaku Kk Arsenic removal from liquid
EP1205564A2 (en) 2000-11-14 2002-05-15 Japan Pionics Co., Ltd. Method of recovering a copper and/or a manganese component from a particulate gas cleaning agent
WO2003002235A1 (en) * 2001-06-28 2003-01-09 Sued-Chemie Catalysts Japan, Inc. Treating agent for exhaust gas containing metal hydride, process for producing the same, and method of treating exhaust gas containing metal hydride

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4889892A (en) * 1972-03-03 1973-11-24
JPS4945887A (en) * 1972-08-02 1974-05-01
US3812652A (en) * 1972-04-27 1974-05-28 Gulf Research Development Co Process for regenerating metal oxides used in the removal of arsenic from gaseous streams
JPS5684618A (en) * 1979-12-12 1981-07-10 Seitetsu Kagaku Co Ltd Method of removing harmful gas for semiconductor
JPS5689837A (en) * 1979-12-21 1981-07-21 Toyo Sanso Kk Cleaner composition of exhaust gas
JPS58128146A (en) * 1982-01-27 1983-07-30 Nippon Sanso Kk Absorbing agent
JPS5949822A (en) * 1982-09-14 1984-03-22 Nippon Sanso Kk Treatment of gas comtaining volatile inorganic hydride or the like
US4462896A (en) * 1982-10-26 1984-07-31 Osaka Petrochemical Industries Ltd. Method of removing arsenic in hydrocarbons
JPS6068034A (en) * 1983-09-14 1985-04-18 Nippon Paionikusu Kk Process for removing poisonous component
JPS6071039A (en) * 1983-09-26 1985-04-22 Takeda Chem Ind Ltd Noxious gas adsorbent
JPS60125233A (en) * 1983-12-08 1985-07-04 Mitsui Toatsu Chem Inc High degree treatment of exhaust gas
JPH0417082A (en) * 1990-05-10 1992-01-21 Fujitsu Ltd Picture element information accumulating system for graphic display device

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4889892A (en) * 1972-03-03 1973-11-24
US3812652A (en) * 1972-04-27 1974-05-28 Gulf Research Development Co Process for regenerating metal oxides used in the removal of arsenic from gaseous streams
JPS4945887A (en) * 1972-08-02 1974-05-01
JPS53140293A (en) * 1972-08-02 1978-12-07 Hoppecke Zoellner Sohn Accu Absorbent for removing catalyst poison from oxygen hydrogen mixed gas generated in storage battery and manufacturing method
JPS5684618A (en) * 1979-12-12 1981-07-10 Seitetsu Kagaku Co Ltd Method of removing harmful gas for semiconductor
JPS5689837A (en) * 1979-12-21 1981-07-21 Toyo Sanso Kk Cleaner composition of exhaust gas
JPS58128146A (en) * 1982-01-27 1983-07-30 Nippon Sanso Kk Absorbing agent
JPS5949822A (en) * 1982-09-14 1984-03-22 Nippon Sanso Kk Treatment of gas comtaining volatile inorganic hydride or the like
US4462896A (en) * 1982-10-26 1984-07-31 Osaka Petrochemical Industries Ltd. Method of removing arsenic in hydrocarbons
JPS6068034A (en) * 1983-09-14 1985-04-18 Nippon Paionikusu Kk Process for removing poisonous component
JPS6071039A (en) * 1983-09-26 1985-04-22 Takeda Chem Ind Ltd Noxious gas adsorbent
JPS60125233A (en) * 1983-12-08 1985-07-04 Mitsui Toatsu Chem Inc High degree treatment of exhaust gas
JPH0417082A (en) * 1990-05-10 1992-01-21 Fujitsu Ltd Picture element information accumulating system for graphic display device

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63200820A (en) * 1987-02-17 1988-08-19 Kikuchi:Kk Treatment of exhaust gas in producing semiconductor
JPH0253086B2 (en) * 1987-02-17 1990-11-15 Kikuchi Kk
US4869735A (en) * 1987-04-30 1989-09-26 Mitsubishi Jukogyo K.K. Adsorbent for arsenic compound and method for removing arsenic compound from combustion gas
JPH01297129A (en) * 1988-05-26 1989-11-30 Tonen Sekiyukagaku Kk Arsenic removal from liquid
JPH0364167B2 (en) * 1988-05-26 1991-10-04 Tonen Kagaku Kk
EP1205564A2 (en) 2000-11-14 2002-05-15 Japan Pionics Co., Ltd. Method of recovering a copper and/or a manganese component from a particulate gas cleaning agent
WO2003002235A1 (en) * 2001-06-28 2003-01-09 Sued-Chemie Catalysts Japan, Inc. Treating agent for exhaust gas containing metal hydride, process for producing the same, and method of treating exhaust gas containing metal hydride
US7067091B2 (en) 2001-06-28 2006-06-27 Sued-Chemie Catalysts Japan Inc. Treating agent for metal-hydride-containing exhaust gas and method of preparing the same as well as method of treating metal-hydride-containing exhaust gas

Also Published As

Publication number Publication date
JPH0457368B2 (en) 1992-09-11

Similar Documents

Publication Publication Date Title
EP0546464B1 (en) Process for cleaning harmful gas
KR960003147B1 (en) Method of purifying exhaust gases
EP0194366B1 (en) Method of cleaning exhaust gases
KR100318353B1 (en) How to purify exhaust gas
JPH07308538A (en) Cleaner for harmful gas
JPS6068034A (en) Process for removing poisonous component
JPS61129026A (en) Purification of exhaust gas
JP2691927B2 (en) How to remove harmful components
JP3260825B2 (en) How to purify harmful gases
JPS6295119A (en) Method for removing gaseous hydride
KR20010061933A (en) Cleaning agent and cleaning process of harmful gas
JP2633511B2 (en) Exhaust gas purification method
JP2702461B2 (en) Exhaust gas purification method
JPH074506B2 (en) Exhaust gas purification method
KR101623228B1 (en) Agent for detoxifying discharge gas containing volatile inorganic hydride and method of detoxifying discharge gas containing volatile inorganic hydride
JPH0417082B2 (en)
JPS62286520A (en) Method for purifying exhaust gas
JP3362918B2 (en) Exhaust gas purification method
JPS62286521A (en) Method for purifying exhaust gas
JPS61209030A (en) Purification of exhaust gas
JPS62286522A (en) Method for purifying exhaust gas
JPS62286525A (en) Method for purifying exhaust gas
JPS62286523A (en) Method for purifying exhaust gas
JPS621439A (en) Removal of noxious component
JPS62152515A (en) Removal of silanes

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees