JP2702461B2 - Exhaust gas purification method - Google Patents

Exhaust gas purification method

Info

Publication number
JP2702461B2
JP2702461B2 JP7280863A JP28086395A JP2702461B2 JP 2702461 B2 JP2702461 B2 JP 2702461B2 JP 7280863 A JP7280863 A JP 7280863A JP 28086395 A JP28086395 A JP 28086395A JP 2702461 B2 JP2702461 B2 JP 2702461B2
Authority
JP
Japan
Prior art keywords
purifying
gas
exhaust gas
purifying agent
agent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP7280863A
Other languages
Japanese (ja)
Other versions
JPH09192450A (en
Inventor
宏一 北原
孝 島田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Pionics Ltd
Original Assignee
Japan Pionics Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Pionics Ltd filed Critical Japan Pionics Ltd
Priority to JP7280863A priority Critical patent/JP2702461B2/en
Publication of JPH09192450A publication Critical patent/JPH09192450A/en
Application granted granted Critical
Publication of JP2702461B2 publication Critical patent/JP2702461B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Treating Waste Gases (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Description

【発明の詳細な説明】 【0001】 【産業上の利用分野】本発明は排ガスの浄化方法に関
し、さらに詳細には半導体製造工程などから排出される
有毒成分を含有するガスの浄化方法に関する。近年、半
導体工業やオプトエレクトロニクス工業の発展ととも
に、アルシン、ホスフィン等に加え、ジボラン、および
セレン化水素など極めて毒性の強い水素化物の使用量が
増加している。これらの有毒成分は、シリコン半導体や
化合物半導体製造工業あるいは光ファイバー製造工業な
どにおいて、原料あるいはドーピングガスとして不可欠
な物質である。半導体製造プロセスあるいは光ファイバ
ー製造プロセスなどから排出される排ガスの中には、未
反応の有毒成分が含まれる場合が多い。これらの成分は
それぞれ生物にとって極めて有害であるから、環境を破
壊しないために該ガスの排出に先立って除去する必要が
ある。 【0002】 【従来の技術および解決しようとする課題】これらの有
毒成分を除去する方法としては、スクラバーで吸収分解
させる湿式法と吸着剤または酸化剤など浄化剤を充填し
た充填筒内に排ガスを流して除去する方法が知られてい
る。一般的に湿式法は、吸収液による腐食や後処理など
に困難性があるため、装置の保守に費用を要するという
欠点がある。また、浄化剤を用いる方法としては、アル
シン, ホスフィンについては、硝酸銀などの硝酸塩類を
多孔質担体に担持せしめたもの、あるいは二酸化鉄など
の金属塩化物を多孔質担体に含浸せしめたものを吸着剤
として用い、これらを酸化的に除去する方法(特開昭56
-89837号公報)が知られている。しかしながら、この方
法は、湿式法におけるような諸欠点は解消されるが、C
VD(化学蒸着)プロセスなどの排ガスを、予め湿潤化
処理する必要があるため、装置が複雑になるという欠点
を有する。さらに、無機珪酸塩にアルカリ水溶液、酸化
剤水溶液またはアルカリと酸化剤との水溶液をそれぞれ
含浸させた三種の吸着剤を用いて、ジボラン, セレン化
水素などを処理する方法(特公昭59-49822号公報)も提
案されている。この方法も前記した方法と同様に結局は
湿潤状態における処理であって湿式法と同様な欠点を有
している。 【0003】 【課題を解決するための手段】本発明者らは、これら従
来の欠点を補うべく鋭意研究した結果、酸化第二銅と酸
化亜鉛とを特定の比率で配合し、成型した浄化剤に有毒
成分を含有する排ガスを接触させると、これらの有毒成
分が効率よく除去されることを見出し、さらに研究を続
けて本発明を完成させた。すなわち本発明は、半導体製
造工程から排出されるガスであって、有毒成分としてジ
ボランおよび/またはセレン化水素を含有するガスから
これらの有毒成分を除去する排ガスの浄化方法におい
て、該ガスを酸化第二銅および酸化亜鉛を配合した組成
物を成型してなる浄化剤であって、その組成が金属の原
子比Zn/(Zn+Cu)(式中、Cuは銅の原子数、
Znは亜鉛の原子数を示す。)で0.03〜0.55である
浄化剤に接触させることを特徴とする排ガスの浄化方法
である。 【0004】 【発明の実施の形態】本発明に使用する浄化剤は完全に
乾燥したガス中の有毒成分をも何ら支障なく除去するこ
とが可能なので湿潤化処理が不要となり、そのメリット
は大きい。本発明は、窒素ガス,水素ガスまたは空気な
どと、ジボランおよびセレン化水素などの水素化物の一
種類以上を含有するガスに適用される。 【0005】本発明に係る浄化方法においては、ジボラ
ンおよび/またはセレン化水素の浄化剤として、酸化第
二銅と酸化亜鉛とを特定の配合比で配合してなる組成物
の成形物が適用される。酸化第二銅に対する酸化亜鉛の
配合割合は、それぞれの金属の原子比でZn/(Zn+
Cu)が0.03〜0.55、好ましくは0.045〜0.35
である。式中でCuは銅の原子数を示し、Znは亜鉛の
原子数を示す。 【0006】浄化剤用組成物の調整方法としては種々の
方法が可能である。例えば、銅および亜鉛それぞれの硝
酸塩,硫酸塩,塩化物,有機酸塩などに、苛性ソーダ,
苛性カリ,炭酸ナトリウム,重炭酸ナトリウム,アンモ
ニアなどのアルカリを加えて得られた水酸化物、酸化物
の中間体などの沈殿物を焼成して酸化物とし、これを浄
化剤用組成物とする。なおこれらの酸化物中には、焼成
工程などにおいて分解されなかった水酸化銅,水酸化亜
鉛,水和酸化銅(例えば4CuO・H2 O)あるいは塩
基性炭酸銅〔Cu (OH)2・nCuCO3)や塩基性炭酸
亜鉛、〔Zn(OH)2・nZnCO3〕などの中間体が
一部残留することが多いが、これらが含有されていても
有毒成分の除去の妨げにはならない。 【0007】これらの浄化剤用組成物は成型して用いら
れるが、更に必要に応じて、この成型物を適当な大きさ
に破砕して使用することも好ましく行われる。成型する
方法としては、従来公知の乾式法あるいは湿式法を用い
ることができる。また成型の際には必要に応じて、少量
の水,グラファイト,滑剤などを使用してもよい。成型
物の形状には特に制限はないが、球形,円柱形,および
筒形などが代表例として挙げられる。 【0008】本発明で使用される浄化剤は成型物そのま
ま、または更に破碎されて筒内に充填されて用いられ
る。有毒成分を含有するガス(以下被処理ガスと記す)
はこの筒内に流され、浄化剤と接触せしめられることに
より、有毒成分である各種水素化物が除去され、浄化さ
れる。本発明の浄化方法が適用される被処理ガス中の水
素化物の濃度およびガスの流速には特に制限はない。一
般に濃度が高いほど流速を小さくすることが好ましい。
例えば被処理ガスが水素ベースの場合には、含有される
有毒成分の濃度が10%以上で、流速が20cm/sec以上
になると発熱によって浄化剤の水素による還元が生じ、
活性が失われることもあるので、このような場合には吸
着筒を冷却するなどの処置を講じて操作することが好ま
しい。 【0009】本発明の浄化方法が適用しうる被処理ガス
は、通常は乾燥状態であるが、湿潤状態であっても、浄
化剤充填筒内で結露する程湿っていなければよい。被処
理ガスと浄化剤との接触温度には特に制限はないが、通
常は常温乃至室温でよく特に加熱や冷却をする必要はな
い。被処理ガスの圧力には特に制限はなく、通常は常圧
であるが、減圧、または加圧状態であってもよい。な
お、本発明に係る浄化方法に使用される浄化剤は、前記
ジボラン、セレン化水素以外の有毒ガスのアルシン、ホ
スフィン等の浄化に対しても有効に使用される。また、
ジボラン、セレン化水素とともにアルシン、ホスフィン
等が共存する場合は、同時に除去しうる利点がある。 【0010】 【実施例】 実施例1,2 硝酸銅と硝酸亜鉛とを金属の原子比Zn/(Zn+C
u)で0.1になるように混合して得た混合物をイオン交
換水に20重量%になるように溶解した。他方、これら
の金属酸化物を得るため、化学量論量の炭酸ナトリウム
を20重量パーセントの水溶液とした。硝酸塩混合物溶
液を攪拌槽中で攪拌しながら、炭酸ナトリウム水溶液を
滴下して塩基性炭酸銅と塩基性炭酸亜鉛との混合沈澱物
を生成させた。この沈澱物をろ過、洗浄した後、120
℃で乾燥し、続いて350℃で焼成して酸化第二銅と酸
化亜鉛との混合物(浄化剤用組成物)を得た。この組成
物を6mmφ×6mmHのペレットに打錠成型したものを破
砕し、ふるいにかけ、12〜28メッシュとしたものを
浄化剤として用いた。浄化剤1gを内径13mmφ×20
0mmHの硬質ポリ塩化ビニル製の浄化筒内に充填し、こ
の浄化筒に被処理ガスとしてジボランまたはセレン化水
素1容積%を含有せしめた窒素ガスを3リットル/時間
の速度で流して、それぞれの浄化剤を充填した場合につ
いて破過までの時間ならびに飽和浄化量を測定した。モ
ニター用の検知管としてジボラン用(理研−ドレーゲル
社製CH−181、検出下限0.1ppm)、セレン化水素用
(光明理化学社製 No.167、検出下限0.05ppm)をそ
れぞれ使用した。結果を第1表に示す。以上の如く、本
発明の浄化方法によって半導体製造工程から排出される
各種水素化物を有毒成分として含有するガスを、乾燥状
態で効率よく浄化しうることが判る。 【0011】 【表1】 【0012】 【発明の効果】本発明の浄化方法は、下記のような優れ
た特徴を有しており、工業的に極めて有用である。 (1)浄化剤の単位重量当りに対する有毒成分の除去量
および除去速度が大きい。 (2)各種水素化物をその濃度とは関係なくほぼ完全に
除去することができる。 (3)常温乃至室温で浄化操作を行うことができ、特に
加熱や冷却を必要としない。 (4)浄化剤に水分などが実質的に含有されていないた
め、常に安定した浄化性能が得られる。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for purifying exhaust gas, and more particularly to a method for purifying gas containing toxic components discharged from a semiconductor manufacturing process or the like. In recent years, with the development of the semiconductor industry and the optoelectronics industry, the use of extremely toxic hydrides such as diborane and hydrogen selenide in addition to arsine and phosphine has been increasing. These toxic components are indispensable as raw materials or doping gases in the silicon semiconductor or compound semiconductor manufacturing industry or the optical fiber manufacturing industry. Unreacted toxic components are often included in exhaust gas discharged from a semiconductor manufacturing process or an optical fiber manufacturing process. Each of these components is extremely harmful to living organisms and must be removed prior to the emission of the gas in order not to destroy the environment. 2. Description of the Related Art As a method for removing these toxic components, there are a wet method of absorbing and decomposing with a scrubber and a method of removing exhaust gas into a filling cylinder filled with a purifying agent such as an adsorbent or an oxidizing agent. A method of removing by flowing is known. In general, the wet method has a drawback in that the maintenance of the apparatus is costly because there are difficulties in corrosion and post-treatment by an absorbing solution. As a method using a purifying agent, for arsine and phosphine, a method in which a nitrate such as silver nitrate is supported on a porous carrier, or a method in which a metal carrier such as iron dioxide is impregnated in a porous carrier is adsorbed. Oxidatively remove these by using as an agent (JP-A-56
No. -89837). However, although this method eliminates the disadvantages of the wet method,
Since the exhaust gas such as a VD (chemical vapor deposition) process needs to be wetted in advance, there is a disadvantage that the apparatus becomes complicated. Furthermore, a method of treating diborane, hydrogen selenide, etc. using three kinds of adsorbents in which an inorganic silicate is impregnated with an aqueous alkali solution, an aqueous oxidizing agent solution, or an aqueous alkali and oxidizing agent solution (Japanese Patent Publication No. 59-49822) Gazette) has also been proposed. This method is, similarly to the above-mentioned method, eventually a treatment in a wet state, and has the same drawbacks as the wet method. [0003] The present inventors have conducted intensive studies to compensate for these conventional disadvantages. As a result, the purifying agent was prepared by blending cupric oxide and zinc oxide at a specific ratio. It has been found that contacting exhaust gas containing toxic components with the exhaust gas efficiently removes these toxic components, and further continued the research to complete the present invention. That is, the present invention provides a method for purifying an exhaust gas which is a gas discharged from a semiconductor manufacturing process and which removes these toxic components from a gas containing diborane and / or hydrogen selenide as a toxic component. A purifying agent obtained by molding a composition containing dicopper and zinc oxide, wherein the composition has an atomic ratio of metal Zn / (Zn + Cu) (where Cu is the number of copper atoms,
Zn indicates the number of atoms of zinc. ) Is a method of purifying exhaust gas, wherein the exhaust gas is brought into contact with a purifying agent having a concentration of 0.03 to 0.55. [0004] The purifying agent used in the present invention can remove toxic components in a completely dried gas without any trouble, so that a moistening treatment is not required, and the merit thereof is great. The present invention is applied to a gas containing nitrogen gas, hydrogen gas or air and one or more hydrides such as diborane and hydrogen selenide. [0005] In the purification method according to the present invention, as a purification agent for diborane and / or hydrogen selenide, a molded product of a composition obtained by blending cupric oxide and zinc oxide at a specific blending ratio is applied. You. The mixing ratio of zinc oxide to cupric oxide is Zn / (Zn +
Cu) is 0.03 to 0.55, preferably 0.045 to 0.35.
It is. In the formula, Cu indicates the number of copper atoms, and Zn indicates the number of zinc atoms. Various methods are available for preparing the composition for the purifying agent. For example, copper and zinc nitrates, sulfates, chlorides, organic acid salts, etc.
Precipitates such as hydroxides and oxide intermediates obtained by adding alkalis such as caustic potash, sodium carbonate, sodium bicarbonate, and ammonia are calcined to form oxides, which are used as compositions for purifying agents. In these oxides, copper hydroxide, zinc hydroxide, hydrated copper oxide (for example, 4CuO.H 2 O) or basic copper carbonate [Cu (OH) 2 .nCuCO In some cases, intermediates such as 3 ), basic zinc carbonate, and [Zn (OH) 2 .nZnCO 3 ] remain, but the presence of these does not hinder the removal of toxic components. [0007] These purifying agent compositions are used after being molded, and if necessary, it is also preferable to crush the molded product to an appropriate size before use. As a molding method, a conventionally known dry method or wet method can be used. In molding, a small amount of water, graphite, lubricant or the like may be used as necessary. Although the shape of the molded product is not particularly limited, a spherical shape, a cylindrical shape, a cylindrical shape, and the like can be given as typical examples. [0008] The purifying agent used in the present invention is used as it is, or it is further crushed and filled in a cylinder. Gas containing toxic components (hereinafter referred to as gas to be treated)
Is flowed into this cylinder and is brought into contact with a purifying agent, whereby various hydrides as toxic components are removed and purified. The concentration of the hydride in the gas to be treated and the flow rate of the gas to which the purification method of the present invention is applied are not particularly limited. In general, it is preferable to decrease the flow rate as the concentration increases.
For example, when the gas to be treated is hydrogen-based, when the concentration of the toxic component contained is 10% or more and the flow rate becomes 20 cm / sec or more, reduction of the purifying agent by hydrogen occurs due to heat generation,
Since the activity may be lost, in such a case, it is preferable to take measures such as cooling the adsorption column. The gas to be treated, to which the purification method of the present invention can be applied, is usually in a dry state, but may be in a wet state as long as it is not wet enough to cause dew condensation in the purification agent-filled cylinder. There is no particular limitation on the contact temperature between the gas to be treated and the purifying agent, but it is usually from room temperature to room temperature, and there is no particular need for heating or cooling. The pressure of the gas to be treated is not particularly limited and is usually normal pressure, but may be reduced or increased. The purifying agent used in the purifying method according to the present invention is also effectively used for purifying toxic gases other than diborane and hydrogen selenide, such as arsine and phosphine. Also,
When arsine, phosphine and the like coexist with diborane and hydrogen selenide, there is an advantage that they can be removed at the same time. Examples 1 and 2 Copper nitrate and zinc nitrate were made to have a metal atomic ratio of Zn / (Zn + C).
The mixture obtained by mixing so as to be 0.1 in u) was dissolved in ion-exchanged water so as to be 20% by weight. On the other hand, to obtain these metal oxides, a stoichiometric amount of sodium carbonate was made into a 20 weight percent aqueous solution. While stirring the nitrate mixture solution in a stirring vessel, an aqueous solution of sodium carbonate was added dropwise to form a mixed precipitate of basic copper carbonate and basic zinc carbonate. After filtering and washing this precipitate, 120
C. and subsequently calcined at 350.degree. C. to obtain a mixture of cupric oxide and zinc oxide (composition for purifying agent). A tablet obtained by compressing the composition into pellets of 6 mmφ × 6 mmH was crushed, sieved, and used as a purifying agent having a mesh size of 12 to 28 mesh. 1g of purifying agent with inner diameter 13mmφ × 20
A nitrogen gas containing 1% by volume of diborane or hydrogen selenide as a gas to be treated was flowed at a rate of 3 liter / hour into a purifying cylinder made of hard polyvinyl chloride of 0 mmH. For the case where the purifying agent was filled, the time until breakthrough and the saturated purifying amount were measured. Diborane (CH-181 manufactured by Riken-Dregel, lower limit of detection: 0.1 ppm) and hydrogen selenide (No. 167, lower limit of detection: 0.05 ppm manufactured by Komei Rika Co., Ltd.) were used as detection tubes for monitoring. The results are shown in Table 1. As described above, it is found that the gas containing various hydrides discharged from the semiconductor manufacturing process as a toxic component can be efficiently purified in a dry state by the purification method of the present invention. [Table 1] The purification method of the present invention has the following excellent characteristics and is extremely useful industrially. (1) The removal amount and removal rate of toxic components per unit weight of the purifying agent are large. (2) Various hydrides can be almost completely removed regardless of their concentrations. (3) The purification operation can be performed at room temperature to room temperature, and does not particularly require heating or cooling. (4) Since the purifying agent does not substantially contain moisture or the like, stable purifying performance can always be obtained.

Claims (1)

(57)【特許請求の範囲】 1.半導体製造工程から排出されるガスであって、有毒
成分としてジボランおよび/またはセレン化水素を含有
するガスからこれらの有毒成分を除去する排ガスの浄化
方法において、該ガスを酸化第二銅および酸化亜鉛を配
合した組成物を成型してなる浄化剤であって、その組成
が金属の原子比Zn/(Zn+Cu)(式中、Cuは銅
の原子数、Znは亜鉛の原子数を示す。)で0.03〜0.
55である浄化剤に接触させることを特徴とする排ガス
の浄化方法。
(57) [Claims] In a method for purifying an exhaust gas which is a gas discharged from a semiconductor manufacturing process and which removes these toxic components from a gas containing diborane and / or hydrogen selenide as a toxic component, the gas is converted to cupric oxide and zinc oxide Is a purifying agent obtained by molding a composition containing the following. The composition is expressed by a metal atomic ratio Zn / (Zn + Cu) (wherein, Cu represents the number of copper atoms and Zn represents the number of zinc atoms). 0.03-0.
55. A method for purifying exhaust gas, which comprises contacting the purifying agent with a purifying agent.
JP7280863A 1995-10-27 1995-10-27 Exhaust gas purification method Expired - Fee Related JP2702461B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7280863A JP2702461B2 (en) 1995-10-27 1995-10-27 Exhaust gas purification method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7280863A JP2702461B2 (en) 1995-10-27 1995-10-27 Exhaust gas purification method

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP59250123A Division JPS61129026A (en) 1984-11-27 1984-11-27 Purification of exhaust gas

Publications (2)

Publication Number Publication Date
JPH09192450A JPH09192450A (en) 1997-07-29
JP2702461B2 true JP2702461B2 (en) 1998-01-21

Family

ID=17631021

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7280863A Expired - Fee Related JP2702461B2 (en) 1995-10-27 1995-10-27 Exhaust gas purification method

Country Status (1)

Country Link
JP (1) JP2702461B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6805728B2 (en) * 2002-12-09 2004-10-19 Advanced Technology Materials, Inc. Method and apparatus for the abatement of toxic gas components from a semiconductor manufacturing process effluent stream

Also Published As

Publication number Publication date
JPH09192450A (en) 1997-07-29

Similar Documents

Publication Publication Date Title
EP0194366B1 (en) Method of cleaning exhaust gases
KR960003147B1 (en) Method of purifying exhaust gases
JPH07308538A (en) Cleaner for harmful gas
KR920003770B1 (en) Purifying process of exhaust gas
JP2638215B2 (en) Air purifier
JP2702461B2 (en) Exhaust gas purification method
JP2711463B2 (en) Exhaust gas purification method
JPH0457368B2 (en)
JP2633511B2 (en) Exhaust gas purification method
JP3260825B2 (en) How to purify harmful gases
KR20010061933A (en) Cleaning agent and cleaning process of harmful gas
JP2691927B2 (en) How to remove harmful components
JPS62286520A (en) Method for purifying exhaust gas
JPH074506B2 (en) Exhaust gas purification method
JPS62286521A (en) Method for purifying exhaust gas
JP3362918B2 (en) Exhaust gas purification method
JPH0720533B2 (en) Exhaust gas purification method
JPH0771615B2 (en) Exhaust gas purification method
JPS62286523A (en) Method for purifying exhaust gas
JPS61209030A (en) Purification of exhaust gas
JP6898625B2 (en) Acid exhaust gas treatment agent, acid exhaust gas treatment method, and acid exhaust gas treatment equipment
JPS62286524A (en) Method for purifying exhaust gas
JPH0521624B2 (en)
CN101590354A (en) A kind ofly be used for removing yellow phosphoric tail gas PH 3Dephosphorising agent, its preparation method and application
JPS5932169B2 (en) Adsorbent and adsorption method for hydrogen sulfide-containing gas

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees