JPS6112829A - Method of cooling surface of hot-rolled steel sheet - Google Patents

Method of cooling surface of hot-rolled steel sheet

Info

Publication number
JPS6112829A
JPS6112829A JP13268184A JP13268184A JPS6112829A JP S6112829 A JPS6112829 A JP S6112829A JP 13268184 A JP13268184 A JP 13268184A JP 13268184 A JP13268184 A JP 13268184A JP S6112829 A JPS6112829 A JP S6112829A
Authority
JP
Japan
Prior art keywords
steel sheet
cooling water
slit nozzle
angle
cooling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP13268184A
Other languages
Japanese (ja)
Inventor
Masakazu Nakao
中尾 正和
Akinori Otomo
朗紀 大友
Shigenobu Yasunaga
繁信 安永
Yoshitaka Yamamoto
山本 喜孝
Ryuichi Ishida
石田 隆一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP13268184A priority Critical patent/JPS6112829A/en
Publication of JPS6112829A publication Critical patent/JPS6112829A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/52Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for wires; for strips ; for rods of unlimited length
    • C21D9/54Furnaces for treating strips or wire
    • C21D9/56Continuous furnaces for strip or wire
    • C21D9/573Continuous furnaces for strip or wire with cooling

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Heat Treatment Of Strip Materials And Filament Materials (AREA)

Abstract

PURPOSE:To prevent a decrease in cooling capacity at a site diretly under the slit nozzle on the downstream side by regulating the direction of water discharged from each slit nozzle so that the discharged water may be directed toward the upstream side of a traveling steel sheet with respect to the vertical direction. CONSTITUTION:Cooling water supply headers 14' are arranged in multiple files in the traveling direction of a hot-roled steel sheet 2, and an oblong nozzle, a so-called slit nozzle 14, is provided to the header 14'. Cooling water in the form of a thin film is discharged from the slit nozzle 14 onto the upper surface of the steel sheet 2 to cool the upper surface of the steel sheet 2. An angle theta1 is provided to the slit nozzle 14 so thatt the direction of cooling water discharged from each slit nozzle 14 may form angle with the vertical direction on the upstream side of the traveling steel sheet 2. Accordingly, after the discharged water strikes against th steel sheet 2, more water flows to the upstream side then to the downstream side. Besides, the angle theta1 is determined so that the striking angle theta2 of cooling water with the steel sheet 2 may be regulated to <=80 deg.C.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、熱間圧延鋼板の鋼板上面冷却方法の改良に関
する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to an improvement in a method for cooling the upper surface of a hot rolled steel plate.

(従来技術) 従来例の一つとして、第6図に示す如く、仕上ミル1に
より圧延された鋼板2がコイル3として巻取られる途中
の上方及び下方に、上部スリットノズル4.・・・、4
及び下部スプレーノズル5.・・・、5がそれぞれ通板
方向に多列に配置されていて、各7ズル4,5からの冷
却水の吐出により鋼板2が冷却されながらコイル3とし
て巻取られるようになった熱間圧延設備(ホットストリ
ップミル)は実用化されている。また、下部スプレーノ
ズル5゜・・・、5の代替として、下部スリットラミナ
ノズルを使用した例もある。なお、6は仕上温度計、7
は巻取温度計である。
(Prior Art) As a conventional example, as shown in FIG. 6, upper slit nozzles 4. ..., 4
and lower spray nozzle5. . . , 5 are arranged in multiple rows in the sheet threading direction, and the steel sheet 2 is cooled by the discharge of cooling water from each of the seven nozzles 4 and 5, and is wound as a coil 3. Rolling equipment (hot strip mill) has been put into practical use. There is also an example in which a lower slit laminar nozzle is used as an alternative to the lower spray nozzle 5°..., 5. In addition, 6 is the finishing thermometer, 7
is a winding thermometer.

そして、特開昭57−130716号公報には、第7図
(、)に示す如く、鋼板2の鉛直方向に向けられたスリ
ットノズル4(A)、4(B)か呟冷却水を鋼板2の上
面に吐出して、鋼板2の上面を冷却する方法が開示され
ているが、上流側スリットノズル4(A)の流量QAと
下流側スリットノズル4(B)の流量Qeとが等しく(
QA=QB)、かつ鋼板2カ吐流側から下流側へ速度\
7で移動しているため、下流側スリットノズル4(B)
の直下に干渉流8か発生し、この干渉流8により、第7
図(b)に示す如く、下流側スリット7ズル4(B)の
冷却能力か低下するという問題があった。
In JP-A-57-130716, as shown in FIG. A method is disclosed in which the upper surface of the steel plate 2 is cooled by discharging onto the upper surface.
QA=QB), and the speed of the two steel plates from the discharge flow side to the downstream side\
Since it is moving at 7, the downstream slit nozzle 4 (B)
An interference flow 8 is generated directly below the 7th interference flow 8.
As shown in Figure (b), there was a problem in that the cooling capacity of the downstream slit 7 and the nozzle 4 (B) was reduced.

このため、同公報では、その改善策として第8図(、)
に示す如く、上流側スリット7ズル4(A)の流量QA
を下流側スリットノズル4(B)の流量QBよりも少な
くL(QA<QB)、干渉流8を上。
For this reason, in the same bulletin, as an improvement measure, Figure 8 (,)
As shown in , the flow rate QA of the upstream slit 7zzle 4 (A)
L is less than the flow rate QB of the downstream slit nozzle 4 (B) (QA<QB), and the interference flow 8 is above.

下流側スリット7ズル4(A)、4(B)の中間位置で
発生させるようにして、下流側スリットノズル4(B)
の直下の冷却能力が低下しないように考慮した方法が提
案されている。
The downstream slit nozzle 4 (B) is generated at an intermediate position between the downstream slit nozzle 4 (A) and 4 (B).
A method has been proposed that takes into consideration not to reduce the cooling capacity directly under the

しかしなか呟この改善策であっても、第8図(1〕)に
示す如く、流量QAが最も冷却効率が良い流量であると
した場合、増加された流量QBとの差(QB−QA=Δ
Q)の効果、つまり、流量増加による冷却能力の向上は
殆んど期待できないので、省エネルギーの面から問題と
なる。これは、流量をQAよりも増加しても、ノズル特
性として、冷却能力に及ぼす流量依存性が小さい領域で
あるためである。
However, even with this improvement measure, if the flow rate QA is the flow rate with the highest cooling efficiency, as shown in Figure 8 (1), the difference between the increased flow rate QB (QB - QA = Δ
Since the effect of Q), that is, an improvement in cooling capacity due to an increase in flow rate, can hardly be expected, this poses a problem from the perspective of energy saving. This is because even if the flow rate is increased above QA, the nozzle characteristics are in a region where the dependence on the flow rate on the cooling capacity is small.

また、第8図(c)に示す如く、冷却能力に及ぼす流量
依存性が大きい流量範囲で使用する場合、第8図(1〕
)と比較すると、下流側スリットノズル4(B)の冷却
能ihsは上流側スリ帰7ズル4(A)の冷却能力hA
よりも大きくなる。この場合には、冷却水は有効に使用
されるのであるが、各スリットノズル4(A)、4(B
)毎に冷却能力が異なるために、熱延ランアウトテーブ
ル冷却のような、各バンクおよびスリットノズル毎にオ
ン・オフ制御する冷却設備では、巻取温度制御の制御性
が悪くなり、精度に問題が生しる。
In addition, as shown in Fig. 8(c), when used in a flow rate range where the flow rate dependence on cooling capacity is large, Fig. 8(1)
), the cooling capacity ihs of the downstream slit nozzle 4 (B) is the cooling capacity hA of the upstream slit nozzle 4 (A).
becomes larger than In this case, the cooling water is used effectively, but each slit nozzle 4(A), 4(B
), cooling equipment that controls on/off for each bank and slit nozzle, such as hot rolling runout table cooling, has poor controllability of winding temperature and problems with accuracy. Live.

とくに、実機設備の場合は、多数のスリットノズルが配
置されているので、上記現象はさらに強調される。例え
ば、ノズル数が4個とした場合でも、上流側からのノズ
ルを4A、4B、4C,4Dとすると、ノズルAとノズ
ル8間の干渉原位置を制御するための流量増加分を、ノ
ズルAの流量QAX0.2−ΔQとし、飢のノズル間に
ついても、上流側ノズル流量の2割を流量増加分△Qと
すると、ノズル4Aの流量QAに対しても、ノズル4D
の流量Ql)は、約1,73XQAにもなるのである。
In particular, in the case of actual equipment, since a large number of slit nozzles are arranged, the above phenomenon is further emphasized. For example, even when the number of nozzles is 4, if the nozzles from the upstream side are 4A, 4B, 4C, and 4D, the increase in flow rate for controlling the interference source position between nozzle A and nozzle 8 is If the flow rate QAX is 0.2 - ΔQ, and 20% of the upstream nozzle flow rate is the flow rate increase ΔQ between the two nozzles, then the flow rate QA of nozzle 4A is equal to the flow rate of nozzle 4D.
The flow rate Ql) is approximately 1,73XQA.

(発明の目的) 本発明は、上記従来の諸問題点に鑑みてなされたもので
、上流側スリットノズルと下流側スリットノズルの流量
を異ならせることなく、上、下流側スリットノズルの中
間位置で干渉流を発生させ得る゛ようにして、下流側ス
リットノズルの直下の冷却能力が1氏下しないようにす
ることを目的とするものである。
(Object of the Invention) The present invention has been made in view of the above-mentioned conventional problems. The purpose is to prevent the cooling capacity immediately below the downstream slit nozzle from decreasing by 1 degree by making it possible to generate an interference flow.

(発明の構I&> このため、本発明は、各スリットノズルからの冷却水吐
出方向が、鉛直方向から鋼板の通板方向に対して上流側
に角度をもつように、スリットノズルに角度を設けて配
置して、吐出された冷却水が、鋼板に衝突後、下流側に
比べて上流側へ流れ   。
(Structure of the Invention I &> Therefore, in the present invention, the slit nozzles are provided with an angle so that the cooling water discharge direction from each slit nozzle has an angle from the vertical direction to the upstream side with respect to the steel plate threading direction. After colliding with the steel plate, the discharged cooling water flows to the upstream side compared to the downstream side.

る量が多くなるように構成したものである。This structure is designed to increase the amount of water that can be absorbed.

(発明の効果) 本発明によれば、各スリットノズルからの冷却水吐出方
向を鋼板の通板方向と相対する方向に、所定の角度傾け
て配置したものであるから、下流側スリットノズルの直
下の冷却能力に悪影響を及ぼす干渉流か上、下流側スリ
ットノズル間で発生するように制御でき、下流側スリッ
トノズルの直下の冷却能力が向上するようになる。
(Effects of the Invention) According to the present invention, since the cooling water discharge direction from each slit nozzle is inclined at a predetermined angle in the direction opposite to the direction of steel plate threading, the cooling water is disposed directly below the downstream slit nozzle. The interference flow that adversely affects the cooling capacity of the slit nozzle can be controlled to occur between the upper and downstream slit nozzles, and the cooling capacity immediately below the downstream slit nozzle can be improved.

また、本発明によれば、スリットノズルの直下から干渉
流による悪影響を解消できるとともに、上、下流側スリ
ットノズルとも同一冷却能力、がっ、効率の良い流量範
囲で使用できるため、省エネルギー及び巻取温度制御性
の両面から効果が大きい。
In addition, according to the present invention, it is possible to eliminate the adverse effects of interference flow from directly below the slit nozzle, and the upper and downstream slit nozzles can be used with the same cooling capacity and efficient flow rate range, resulting in energy savings and winding. It is highly effective in terms of temperature control.

(実施例) 第6図以下に示した従来技術と同一構成1作用の箇所は
、同一番号を付して説明を省略する。
(Example) The parts having the same structure and function as those of the prior art shown in FIG. 6 and subsequent figures are given the same numbers and the description thereof will be omitted.

第1図において、鋼板2の上方に配置された上部スリッ
トノズル14.・・・、14は、鉛直方向から鋼板2の
通板方向に対して上流側に角度θ1をもたせて配置され
る。
In FIG. 1, an upper slit nozzle 14 is placed above the steel plate 2. . . , 14 are arranged at an angle θ1 from the vertical direction to the upstream side with respect to the threading direction of the steel plate 2.

そして、第2図(a)に示すように、各スリ・ント7ズ
ル14(A)、14(B)からは等しい流量Q A I
QB(QA=QB)で冷却水が鋼板2の」二面に吐出さ
れる。
As shown in FIG. 2(a), equal flow rates Q A I
Cooling water is discharged onto two sides of the steel plate 2 at QB (QA=QB).

この結果、吐出された冷却水が鋼板2に衝突後、下流側
に比べて上流側へ流れる量が多くなるので、干渉流8か
上、下流側の中間位置で発生するようになり、第2図(
b)゛に示すように、等し0流量QA、QBで゛あって
も、各スリント7ス′ル14(A)、  14(B)の
冷却能力1+A+hBか等しくなるのである。
As a result, after the discharged cooling water collides with the steel plate 2, the amount flowing to the upstream side becomes larger than the downstream side, so that the interference flow 8 is generated at an intermediate position between the upper and downstream sides, and the second figure(
As shown in b), even if the flow rates QA and QB are equal to 0, the cooling capacity of each of the seven slints 14(A) and 14(B) is equal to 1+A+hB.

以下、より兵庫的に説明する。Below, I will explain it in a more Hyogo-based manner.

第3図(a)に示すように、スリット7ズル14を鉛直
方向に対して角度θ1をもたせて配置すると、鋼板2に
対する冷却水衝突角度θ2は、゛ス1ルノト厚さB、ノ
ズルからの吐出流量(単位時間、単位幅当り)Q及びノ
ズル高さHで決定される。
As shown in FIG. 3(a), when the slit 7 nozzle 14 is arranged at an angle θ1 with respect to the vertical direction, the cooling water impingement angle θ2 against the steel plate 2 is determined by It is determined by the discharge flow rate (per unit time, per unit width) Q and nozzle height H.

即ち、スリットノズル14からの吐出速度V。That is, the discharge speed V from the slit nozzle 14.

は、 Vo= Q/B         ・・・・・・(1)
である。
is Vo=Q/B...(1)
It is.

このと外の垂直速度成分Vv、及び水平速度成分Vl+
、は、 Vvl = V、 cosθ1    ・・・・・・(
2)\’l+1= VOsinθI    ・・・・・
・(3)である。
Vertical velocity component Vv and horizontal velocity component Vl+
, Vvl = V, cosθ1 ・・・・・・(
2)\'l+1=VOsinθI...
- (3).

一方、鋼板2に衝突時の各速度成分\’V2+ Vl+
2は、 vV2 ” F−’ + 28丁 ・、−、−(4)V
b2= Vh、         ・・・・・・(5)
である。(g二重力加速度) このとぎの冷却水衝突角度θ2は、 θ2 = jan−’(VV2/V112)  −・=
(6)となる。
On the other hand, each velocity component when colliding with steel plate 2\'V2+ Vl+
2 is vV2 ”F-' + 28 pieces ・,-,-(4)V
b2=Vh, (5)
It is. (g double force acceleration) The next cooling water collision angle θ2 is θ2 = jan-'(VV2/V112) -・=
(6) becomes.

第3図は、スリットノズル14からの吐出水量Q = 
80 m”/ I+、+n幅、ノズル高さH=1.5+
nのときのスリット7ズル14の傾き角度θIと冷却水
衝突角度θ2との関係を、各スリット厚さB(1h+m
、 8mm+ 4nun)について測定したデータであ
る。
FIG. 3 shows the amount of water discharged from the slit nozzle 14 Q =
80 m”/I+, +n width, nozzle height H=1.5+
The relationship between the inclination angle θI of the slit 7 nozzle 14 and the cooling water collision angle θ2 when n is expressed as the thickness of each slit B (1h+m
, 8mm+4nun).

同図から明らかなように、傾き角度θ1が90度のとき
、衝突角度θ2が最も小さい値となる。
As is clear from the figure, when the tilt angle θ1 is 90 degrees, the collision angle θ2 has the smallest value.

このときのθ+iinは、 θ、。in = tan ’(B 0m/Q) −(7
)で表わされる。
θ+iin at this time is θ,. in = tan '(B 0m/Q) -(7
).

第4図(a)及び第4図(b)は、鋼板2への冷却水衝
突角度θ2と、衝突後、上流側へ流れる流量Wl、下流
側へ流れる流量W2の比W 、 /’vV 2との関係
を測定したデータである。
FIGS. 4(a) and 4(b) show the ratio of the cooling water collision angle θ2 to the steel plate 2, the flow rate Wl flowing to the upstream side and the flow rate W2 flowing to the downstream side after the collision W, /'vV 2 This is data measuring the relationship between

同図から明らかなように、衝突角度θ2か90度の場合
は、W、−W2といっ当然の結果がでているが、衝突角
度θ2が90度よりも小さくなるに従って、上流側と下
流側の流量バランスが変化し、W、/W 2が1.0よ
りも大きくなる。
As is clear from the figure, when the collision angle θ2 is 90 degrees, the results of W and -W2 are obvious, but as the collision angle θ2 becomes smaller than 90 degrees, the upstream and downstream sides The flow rate balance changes, and W,/W2 becomes larger than 1.0.

とくに、衝突角度θ2が80度以下になるとその傾向は
強くなり、測定範囲ではW、/W2が1.3まで達した
In particular, this tendency becomes stronger when the collision angle θ2 becomes 80 degrees or less, and W, /W2 reached up to 1.3 in the measurement range.

この測定データから、衝突角度θ、が、jan ’(B
 ”i/Q)≦θ2≦80° ・(8)の範囲となるよ
うに、スリットノズル14の冷却水吐出方向を鉛直方向
から上流側へ角度θ1傾けて配置すれば、第2図(a)
、第2図(b)に示したように、下流側スリット7ズル
14(B)の直下から干渉流を除去することができる。
From this measurement data, the collision angle θ, is jan'(B
"i/Q)≦θ2≦80° If the cooling water discharge direction of the slit nozzle 14 is inclined at an angle θ1 from the vertical direction to the upstream side so that the range of (8) is satisfied, the result shown in FIG. 2(a)
As shown in FIG. 2(b), the interference flow can be removed from directly below the downstream slit 7 nozzle 14(B).

また、衝突角度θ2の絶対値は、ノズルピッチおよび通
板速度に応して選択すればよい。
Further, the absolute value of the collision angle θ2 may be selected depending on the nozzle pitch and the sheet passing speed.

第5図(、)及び第5図(b)は、冷却水衝突角度θ2
と干渉流8の発生位置との関係を測定したデータである
Figure 5(,) and Figure 5(b) show the cooling water impact angle θ2
This is data obtained by measuring the relationship between the position of the interference flow 8 and the position where the interference flow 8 occurs.

(条件) スリット厚さB:8mm 吐出水量Q   : 80m3/l+、 m幅ノズル高
さH:1500m+++ ノズルピッチP : 150 (1111111通板速
度\’   :  1 (’、1m/s同図から明らか
なように、衝突角度θ2か90度の場合、干渉流8はス
リットノズル14(B)の直下に発生し、冷却能力に悪
影響を及ぼす。
(Conditions) Slit thickness B: 8mm Discharge water amount Q: 80m3/l+, m width nozzle height H: 1500m+++ Nozzle pitch P: 150 (1111111 Threading speed\': 1 (', 1m/s clear from the same figure) As shown, when the collision angle θ2 is 90 degrees, the interference flow 8 is generated directly below the slit nozzle 14 (B), which adversely affects the cooling capacity.

そして、スリットノズル34(A)、14(B)を上流
側に傾けていくと、衝突角度θ2か小さくなり、干渉流
8の発生位置が上流側に移動し、スリットノズル]4(
B)の直下の干渉流の悪影響を除去でおることを確認し
た。
Then, as the slit nozzles 34(A) and 14(B) are tilted upstream, the collision angle θ2 becomes smaller, the generation position of the interference flow 8 moves upstream, and the slit nozzle]4(
It was confirmed that the adverse effects of the interference flow directly below B) could be removed.

また、本条件下では、衝突角度θ2か80度以下になる
と急激に効果か現われ、衝突角度θ、か75度のとき(
こは、スリットノズル] 4(B)の直下からの干渉流
8を完全に除去することかでbだ。
In addition, under this condition, the effect suddenly appears when the collision angle θ2 is 80 degrees or less, and when the collision angle θ2 is 75 degrees (
This is b by completely removing the interference flow 8 from directly below the slit nozzle] 4(B).

以上のように、本冷却方法によれば、各スリットノズル
14.・・・、14の流量を変えることなく、下流側ス
リットノズル1.4(B)の直下から干渉流8を除去で
とるため、冷却能力の向上、均一冷却性の両面から効果
が大ぎい。さらに、ノズル数が非常に多い場合について
も、同様の方法で対応できることも大きな利点である。
As described above, according to the present cooling method, each slit nozzle 14. Since the interference flow 8 is removed from directly below the downstream slit nozzle 1.4(B) without changing the flow rate of the flow rate of the flow rate of the flow rate of the flow nozzle 14, the effect is great in terms of both improved cooling capacity and uniform cooling performance. Another great advantage is that the same method can be used even when the number of nozzles is very large.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明に係る冷却装置の側面図、第2図(、)
は第1図の冷却装置による干渉流発生位置を示す側面図
、第2図(b)は@2図(a)の冷却装置による流量と
冷却能力との関係を示すグラフ、第3図(a)はスリッ
トノズルの傾各角度と冷却水衝突角度を示す冷却装置の
側面図、第3図(1〕)は第3図(a)の装置による傾
き角度と衝突角度との関係を示すグラフ、第4図(、)
はスリットノズルによる冷却水衝突角度と上流側と下流
側の流量を示す冷却装置の側面図、第4図(b)は第4
図(、)の装置による衝突角度と流量比との関係を示す
グラフ、第5図(a)はスリットノズルによる冷却水衝
突角度と干渉流発生位置を示す冷却装置の側面図、第5
図(1))は第5図(a)の装置による衝突角度と干渉
流発生位置との関係を示すグラフ、第6図は従来の冷却
装置の側面図、第7図(a)は第1従来技術の冷却装置
による干渉流発生位置を示す側面図、第7図(b)は第
7図(a)の冷却装置による流量と冷却能力との関係を
示すグラフ、第8図(a)は第2従来技術の冷却装置に
よる干渉流発生位置を示す側面図、第8図(!〕)は第
8図(a)の冷却装置による流量と冷却能力との関係を
示すグラフ、第8図(c)は第8図(a)の冷却装置に
よる、冷却能力に及ぼす流量依存性が大きい流量範囲で
の使用における流量と冷却能力との関係を示すグラフで
ある。 8・・・・・・干渉流、 J 4(A)、14(B)・・・・・・スリットノズル
、θ1・・・・・・スリットノズルの傾と角度、θ2・
・・・・冷却水衝突角度、 QAI QB・・・・・・流量、 Wl・・・・・・上流側へ流れる流量、W、・・・・・
・下流側へ流れる流量。
Figure 1 is a side view of the cooling device according to the present invention, Figure 2 (, )
is a side view showing the interference flow generation position by the cooling device in Fig. 1, Fig. 2 (b) is a graph showing the relationship between flow rate and cooling capacity by the cooling device in Fig. 2 (a), and Fig. ) is a side view of the cooling device showing the angle of inclination of the slit nozzle and the angle of collision of cooling water, and FIG. Figure 4 (,)
4(b) is a side view of the cooling device showing the cooling water impingement angle by the slit nozzle and the flow rate on the upstream and downstream sides.
Figure 5(a) is a graph showing the relationship between the collision angle and flow rate ratio by the device shown in Figure 5(a), a side view of the cooling device showing the cooling water collision angle and interference flow generation position by the slit nozzle;
Figure (1)) is a graph showing the relationship between the collision angle and the interference flow generation position using the device in Figure 5 (a), Figure 6 is a side view of the conventional cooling device, and Figure 7 (a) is the FIG. 7(b) is a side view showing the interference flow generation position in the conventional cooling device, FIG. 7(b) is a graph showing the relationship between flow rate and cooling capacity in the cooling device of FIG. 7(a), and FIG. 8(!) is a side view showing the interference flow generation position in the cooling device of the second prior art, and a graph showing the relationship between the flow rate and cooling capacity in the cooling device of FIG. c) is a graph showing the relationship between the flow rate and the cooling capacity when the cooling device of FIG. 8(a) is used in a flow rate range in which the dependence of the cooling capacity on the flow rate is large. 8... Interference flow, J 4 (A), 14 (B)... Slit nozzle, θ1... Slit nozzle inclination and angle, θ2.
... Cooling water impingement angle, QAI QB ... Flow rate, Wl ... Flow rate flowing to the upstream side, W, ...
・Flow rate flowing downstream.

Claims (2)

【特許請求の範囲】[Claims] (1)熱間圧延鋼板の通板方向に多列に配置した冷却水
供給用ヘッダに、長矩形の形状をしたノズル、いわゆる
スリットノズルを設け、該スリットノズルからの薄膜状
の冷却水を鋼板の上面に吐出して、鋼板の上面を冷却す
る方法であって、上記各スリットノズルからの冷却水吐
出方向が、鉛直方向から鋼板の通板方向に対して上流側
に角度をもつように、スリットノズルに角度θ_1を設
けて配置して、吐出された冷却水が、鋼板に衝突後、下
流側に比べて上流側へ流れる量が多くなるようにしたこ
とを特徴とする熱間圧延鋼板の鋼板上面冷却方法。
(1) Long rectangular nozzles, so-called slit nozzles, are installed in the cooling water supply headers arranged in multiple rows in the threading direction of the hot rolled steel sheet, and a thin film of cooling water from the slit nozzles is supplied to the steel sheet. A method of cooling the upper surface of a steel plate by discharging cooling water onto the upper surface, the cooling water being discharged from each of the slit nozzles at an angle from the vertical direction to the upstream side with respect to the threading direction of the steel plate. A hot rolled steel plate characterized in that the slit nozzle is arranged at an angle θ_1 so that the amount of discharged cooling water flows upstream in comparison to downstream after colliding with the steel plate. Method for cooling the top surface of steel plates.
(2)上記スリットノズルの角度θ_1を、鋼板に対す
る冷却水衝突角度θ_2がθ_2≦80度となるような
傾きで配置することを特徴とする特許請求の範囲第(1
)項記載の熱間圧延鋼板の鋼板上面冷却方法。
(2) The angle θ_1 of the slit nozzle is arranged at an inclination such that the cooling water impingement angle θ_2 with respect to the steel plate satisfies θ_2≦80 degrees.
) A method for cooling the top surface of a hot rolled steel sheet as described in item 2.
JP13268184A 1984-06-26 1984-06-26 Method of cooling surface of hot-rolled steel sheet Pending JPS6112829A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13268184A JPS6112829A (en) 1984-06-26 1984-06-26 Method of cooling surface of hot-rolled steel sheet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13268184A JPS6112829A (en) 1984-06-26 1984-06-26 Method of cooling surface of hot-rolled steel sheet

Publications (1)

Publication Number Publication Date
JPS6112829A true JPS6112829A (en) 1986-01-21

Family

ID=15087025

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13268184A Pending JPS6112829A (en) 1984-06-26 1984-06-26 Method of cooling surface of hot-rolled steel sheet

Country Status (1)

Country Link
JP (1) JPS6112829A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007099676A1 (en) * 2006-03-03 2007-09-07 Jfe Steel Corporation Cooling apparatus for hot rolled steel band and method of cooling the steel band
JP2007260774A (en) * 2006-03-03 2007-10-11 Jfe Steel Kk System and method for cooling hot-rolled steel strip
US8318080B2 (en) 2005-11-11 2012-11-27 Jfe Steel Corporation Device and method for cooling hot strip

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8318080B2 (en) 2005-11-11 2012-11-27 Jfe Steel Corporation Device and method for cooling hot strip
US8506879B2 (en) 2005-11-11 2013-08-13 Jfe Steel Corporation Method for cooling hot strip
WO2007099676A1 (en) * 2006-03-03 2007-09-07 Jfe Steel Corporation Cooling apparatus for hot rolled steel band and method of cooling the steel band
JP2007260774A (en) * 2006-03-03 2007-10-11 Jfe Steel Kk System and method for cooling hot-rolled steel strip
KR101144028B1 (en) * 2006-03-03 2012-05-09 제이에프이 스틸 가부시키가이샤 Cooling apparatus for hot rolled steel band and method of cooling the steel band
US8231826B2 (en) 2006-03-03 2012-07-31 Jfe Steel Corporation Hot-strip cooling device and cooling method
US8444909B2 (en) 2006-03-03 2013-05-21 Jfe Steel Corporation Hot-strip cooling device

Similar Documents

Publication Publication Date Title
US8511126B2 (en) Cooling device for cooling a metal strip
JP4238260B2 (en) Steel plate cooling method
JP3397072B2 (en) Apparatus and method for cooling steel sheet
KR100917245B1 (en) Method and device for limiting the vibration of steel or aluminium strips in gas or air blown cooling areas
JPS6112829A (en) Method of cooling surface of hot-rolled steel sheet
JPS59144513A (en) Cooling device of steel sheet
JP4337157B2 (en) Steel plate cooling method and apparatus
JPS62174326A (en) Flange cooler for shape material
JPH08252625A (en) Method for controlling coiling temperature in hot rolling
JPH07214136A (en) Device for cooling lower surface of high temperature metallic plate
JPH01181913A (en) Cooling device for steel plate
JPH0810432Y2 (en) Bottom cooling device for high temperature steel sheet
US20100101243A1 (en) Multipart roller
JPH05138229A (en) Cooling device for hot steel plate or the like
JP3247204B2 (en) Secondary cooling method for continuous casting
JPH09141408A (en) Secondary cooling method in continuous casting
JPS638752Y2 (en)
JPS6115926A (en) Cooling method of hot steel sheet
JP3902568B2 (en) Top surface cooling method for hot rolled steel sheet
JP3905487B2 (en) Method and apparatus for cooling hot-dip galvanized steel strip
JPH11285723A (en) Method for uniformly cooling thin steel plate
JPH04193371A (en) Heat-treating furnace of continuous strip coating line, its operation and method for controlling heat treatment
JPH07178439A (en) Descaling equipment
JPS5818967Y2 (en) Cooling device for high temperature plate objects
JP2780610B2 (en) High temperature steel plate online cooling system