JP3902568B2 - Top surface cooling method for hot rolled steel sheet - Google Patents

Top surface cooling method for hot rolled steel sheet Download PDF

Info

Publication number
JP3902568B2
JP3902568B2 JP2003128760A JP2003128760A JP3902568B2 JP 3902568 B2 JP3902568 B2 JP 3902568B2 JP 2003128760 A JP2003128760 A JP 2003128760A JP 2003128760 A JP2003128760 A JP 2003128760A JP 3902568 B2 JP3902568 B2 JP 3902568B2
Authority
JP
Japan
Prior art keywords
water
cooling
steel sheet
rolled steel
plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003128760A
Other languages
Japanese (ja)
Other versions
JP2004330238A (en
Inventor
正弘 土岐
和式 若狭
博則 上野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2003128760A priority Critical patent/JP3902568B2/en
Publication of JP2004330238A publication Critical patent/JP2004330238A/en
Application granted granted Critical
Publication of JP3902568B2 publication Critical patent/JP3902568B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Heat Treatment Of Strip Materials And Filament Materials (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、熱間圧延鋼板の上面冷却方法に関するものである。なお、本発明は普通鋼及び特殊鋼、厚鋼板及び薄鋼板の別なく適用されるものである。
【0002】
【従来の技術】
熱間圧延された鋼板を上下部より冷却水を用い冷却する方法は従来より行われているが、鋼板の上部は複数のノズルから吹き付けられた水がお互いに干渉し合い、その干渉部で水が滞留する。この滞留した水(以下、板上水と呼ぶ)が冷却能を著しく阻害するだけでなく、さらに板幅方向に板上水の量が異なるため、板幅方向に温度差が生じる。一方、下部は冷却水を吹き付けても水が溜まらないため、鋼板上面と下面の冷却速度も異なるといった不均一冷却状態となり、結果として冷却後の鋼板形状が悪化するだけでなく、鋼板肉厚方向の材質変化など問題が生ずる。
【0003】
一般の製造現場では、各種製造条件に応じて上下面の冷却水量を調節する対策が講じられているが、その調節は精密かつ迅速性が要求されるため、制御機構が複雑になるという不利な面があった。最近では鋼板の品質特性や生産性向上のため、冷却の水量密度を高めて従来以上の急冷却を目指す傾向にあるものの、現状では十分な排水速度が確保できず、要求される冷却速度および均一冷却は満足されていない。
【0004】
図6は従来から用いられているフラットスプレーの水流を示したものであり、(a)は側面図、(b)はスプレー流が衝突した位置の平面図である。フラットスプレーノズル1は他の一般ノズルとは異なり、冷却水が熱間圧延鋼板3に衝突する面5が、同図に示すとおり長楕円形の形状となる。フラットスプレーノズル1から水だけを噴射したスプレー流2は、熱間圧延鋼板3に衝突後、熱間圧延鋼板3の表面に沿って水流4となって排出される。
【0005】
図7は、特許文献1に記載されたフラットスプレーノズル配列を従来技術の一例として示すものである。鋼板幅方向に複数配置されたスプレーノズルを捩ることで板上水の排水性を向上させることが開示されている。また、図7(a)は、各ヘッダー6毎にフラットスプレーが複数設置され、その噴射形状8が同一方向に傾いた配置(以下、平行配置と呼ぶ)を示している。一方、図7(b)は、フラットスプレーの拡がり方向(噴射形状8)を各ヘッダー間中心軸に対して対称に傾ける配置(以下、ハの字配置と呼ぶ)を示している。平行配置は水流4が干渉し合って板上水9が発生しやすいのに対して、ハの字配置は、それぞれ相対するスプレー間で、流水4がほぼ同一方向となるため、お互いの衝突があっても流水4が滞留することなく、いずれかの鋼板幅方向に流れ、外部へ排出されやすくなる。
【0006】
【特許文献1】
特開昭60−121229号公報
【0007】
【発明が解決しようとする課題】
しかし、このような従来の方法を適用しても、高水量密度の冷却を行なうと板上水は非常に多くなり、ノズル噴流が板上水に阻害され、鋼板直上の蒸気膜を突き破ることが出来ずに、冷却能が低下する問題があった。このためスプレー水流が鋼板直上にある蒸気膜を突き破り、鋼板表面に直接当たって冷却能を高める必要がある。そのために、板上水をさらに高速に排出させ、板上水厚みを低減することが要求される。
本発明は、このような要望に応えるためになされたもので、鋼板上部の板上水を悪影響を及ぼさない程度にまでコントロールすることが可能で、鋼板上下面及び幅方向の冷却偏差を解消することができる熱延鋼板の上面冷却方法を提供することを課題とする。
【0008】
【課題を解決するための手段】
上記の課題を解決するための本発明の要旨は次のとおりである。
(1) 熱間圧延鋼板の通板方向に対して直角に複数のヘッダーを配設し、当該ヘッダーには複数の冷却用フラットスプレーノズルが取り付けられ、隣り合うヘッダー毎に当該フラットスプレーノズルの拡がり方向を各ヘッダー間中心軸に対して対称となるように配置され、かつ、当該フラットスプレーノズルの捩り角度が5〜45度の範囲内で傾けられ、さらに、当該フラットスプレーノズルからは気体/液体重量混合比1/50以上、1/1以下の範囲内で気体と液体が混合された冷却媒体が噴射されることにより、板上水高さを低くすることを特徴とする熱間圧延鋼板の上面冷却方法。
【0009】
【発明の実施の形態】
以下、図面に基づいて本発明の実施の形態を説明する。
図1は本発明を適用したノズルからの水と空気を混合した冷却媒体が鋼板に衝突する状態を示すものである。本発明では、フラットスプレーノズル1から水と空気を混合してスプレー水2を噴射するので、熱間圧延鋼板3に衝突した水は、図6の従来例に比べて勢い良く跳ね返って衝突面5の拡がり方向に多く飛散する。このように同じ水圧であっても、水に空気を混合させたほうが水単独の場合よりも、鋼板表面に当たった水は跳ね返る力が強くなり、板上水が滞留することなく排水性が良好となる。さらに付随効果として、熱間圧延鋼板上の蒸気膜を突き破る力が増し、冷却能が向上することも確認されている。これは、液滴の運動エネルギー(流速)が増大するためと考えられる。
なお、本発明の冷却媒体は、空気と水に限定されず、冷却能を有する液体と気体の組合せであれば他の冷却媒体であっても構わない。しかし、液体の中ではコスト、安全衛生、取り扱い易さ等を考慮した場合、水が最も望ましい。一方気体としては、空気以外に窒素ガス、不活性ガス等も適用可能であるが、やはりコストなどを考慮すれば、空気の使用が最も好ましい。
【0010】
排水性の良否を評価する尺度として、図2に示すとおり、隣り合ったスプレーノズル1間に滞留した板上水高さhを用いるものとする。板上水高さhが低いほど、排水性が良好であるということになる。なお図2において、7はピンチロールである。
気体と液体の混合スプレーにおける板上水の排水性は、気体と液体の重量混合比(以下、気水比と呼ぶ)が特定範囲内である時に良好となる。気水比が0.02、すなわち1/50未満であると図3に示すように板上水高さが増加し、板上水の排水性が悪化して鋼板を均一に冷却することができない。一方、気水比が1.0、すなわち1/1を超えるとコストがかかる上、気体が多すぎて冷却能が低下する恐れがある。よって、本発明を実施するに当たっては、気水比を1/50以上、1/1以下にする事が望ましい。特に、気水比が1/50〜1/10とすることが好適である。
【0011】
図4は特許文献1の開示技術に気体、液体混合スプレー冷却を適用した本発明の実施例である。同図において、各ヘッダー6ごとにスプレーノズルからの噴射により形成されるスプレー拡がり方向の衝突形状8を、各ヘッダー間中心軸に対して対称に傾けた配置、いわゆるハの字配置を示している。各スプレーの拡がり方向は、それぞれ相対するスプレー間では同一方向となるため流水4の衝突があっても流水4が滞留することなくいずれかの方向に流れる。そのためスプレー間の流水4は高速となり、板上水が発生するよりも早く排水されることになる。さらに、冷却媒体が水だけの場合に比べて空気を混合したほうが、排水特性が格段に向上する。
【0012】
図5は、ノズル捩り角度θ(この角度はスプレー拡がり方向のヘッダー間中心軸に対する角度と一致する)と板上水高さの関係を表すグラフである。八の字配置であってもノズル捩り角が大きすぎると、隣り合うヘッダーのスプレー間において干渉を起こし板上水が急激に溜まりやすくなり、逆にノズル捩り角度が小さすぎると同一ヘッダー内の隣接スプレーと干渉を起こしスプレーパターンが崩れる傾向を示していることが分かる。従って、板上水の高さを許容範囲内に収めるには、ノズル捩り角度を5〜45度の範囲で選定することが望ましい。
【0013】
【実施例】
下記の条件(各寸法は図2参照)で熱間圧延鋼板の上面を冷却した場合の結果を板上水高さとして表1に示す。表1には冷却媒体の種類、ノズル配置、気水比、水量密度、捩り角度を合わせて示す。
・隣り合うスプレー間の距離:260mm
・スプレーと熱間圧延鋼板との距離:150mm
・スプレーの拡がり角度:90度
・水圧:0.1〜6.0kg/cm2
・水量密度:0.2〜2.5m/min・m2
表1に示すとおり、平行配置の場合(比較例2、比較例3)の板上水高さが、それぞれ220mm、90mmであった。また、冷却媒体が水のみで、ハの字配置の場合(比較例1)の板上水高さは120mmであった。また、ハの字配置で気水混合比が0.010の場合(比較例4)の板上水高さは80mmであった。これに対して、本発明における実施例は、最も高いものでも40mm(本発明例5)であり、有効であることが分かる。特に気水混合比、ノズルの捩り角度を望ましい条件に規定すれば、板上水高さが10mm以下(本発明例2、3、4)になり、相乗効果によって特に有効であることが認められた
【0014】
【表1】

Figure 0003902568
【0015】
【発明の効果】
熱間圧延鋼板を冷却する場合において、気体と液体の混合スプレーノズルを適用することによって、鋼板冷却で必要な広範囲の水量密度(0.2〜2.5m3/min・m2)においても板上水が、ほとんど影響のないレベルにコントロールできるようになる。さらに、鋼板の上下表面間での冷却偏差がなくなり、熱応力による板の変形問題が解決できるようになるので、その効果は十分に大きい。特に、気体と液体の混合冷却媒体による噴射とハの字配列を併用することで、その効果は更に高まる。また、冷却能も従来の水単独の冷却に比べて空気を付与した分、改善する効果が期待できる。
【図面の簡単な説明】
【図1】 本発明におけるフラットスプレーノズルの流れを示した図。
【図2】 板上水高さを表す図。
【図3】 冷却媒体の気水比と板上水高さの関係を表すグラフ。
【図4】 本発明の冷却方法を実施するためのスプレー配置の一例を示す平面略図。
【図5】 ノズル捩り角度と板上水高さの関係を表すグラフ。
【図6】 従来におけるフラットスプレーノズルの流れを示した図であり、(a)は側面図、(b)は鋼板衝突面の平面図。
【図7】 フラットスプレーの配置を示す図であり、(a)は平行配置図、(b)はハの字配置図。
【符号の説明】
1 フラットスプレーノズル
2 フラットスプレーの噴射形状
3 鋼板
4 冷却媒体の流れ
5 鋼板衝突面
6 冷却媒体ヘッダー
7 ピンチロール
8 鋼板面上のスプレー衝突形状
9 板上水[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for cooling an upper surface of a hot-rolled steel sheet. In addition, this invention is applied regardless of normal steel and special steel, a thick steel plate, and a thin steel plate.
[0002]
[Prior art]
The method of cooling hot-rolled steel sheets using cooling water from the upper and lower parts has been conventionally performed, but the water sprayed from a plurality of nozzles interferes with each other at the upper part of the steel sheet. Stays. This accumulated water (hereinafter referred to as “board water”) not only significantly inhibits the cooling ability, but also the amount of water on the board varies in the plate width direction, resulting in a temperature difference in the plate width direction. On the other hand, since water does not accumulate in the lower part even when cooling water is sprayed, it becomes a non-uniform cooling state in which the cooling rate of the upper and lower surfaces of the steel sheet is different, resulting in not only deterioration of the steel sheet shape after cooling, but also in the thickness direction Problems such as material changes occur.
[0003]
In general manufacturing sites, measures are taken to adjust the amount of cooling water on the upper and lower surfaces according to various manufacturing conditions. However, this adjustment requires precision and speed, which is disadvantageous in that the control mechanism becomes complicated. There was a face. Recently, in order to improve the quality characteristics and productivity of steel sheets, there is a tendency to increase the water density of cooling and aim for more rapid cooling than before, but at present, sufficient drainage speed cannot be secured, and the required cooling rate and uniform Cooling is not satisfied.
[0004]
6A and 6B show a water flow of a flat spray conventionally used. FIG. 6A is a side view, and FIG. 6B is a plan view of a position where the spray flow collides. Unlike the other general nozzles, the flat spray nozzle 1 has an oblong shape as shown in FIG. The spray stream 2 in which only water is sprayed from the flat spray nozzle 1 collides with the hot-rolled steel sheet 3 and then is discharged as a water stream 4 along the surface of the hot-rolled steel sheet 3.
[0005]
FIG. 7 shows a flat spray nozzle arrangement described in Patent Document 1 as an example of the prior art. It is disclosed that the drainage of the water on the plate is improved by twisting a plurality of spray nozzles arranged in the width direction of the steel plate. FIG. 7A shows an arrangement in which a plurality of flat sprays are installed for each header 6 and the injection shape 8 is inclined in the same direction (hereinafter referred to as a parallel arrangement). On the other hand, FIG. 7B shows an arrangement (hereinafter referred to as a C-shaped arrangement) in which the spreading direction of the flat spray (injection shape 8) is inclined symmetrically with respect to the central axis between the headers. In the parallel arrangement, the water flow 4 interferes and the on-board water 9 is likely to be generated. On the other hand, in the cross-shaped arrangement, the water flow 4 is in the same direction between the sprays facing each other. Even if it exists, it will flow in one of the steel plate width directions, without flowing water 4 staying, and will become easy to be discharged | emitted outside.
[0006]
[Patent Document 1]
JP-A-60-121229 [0007]
[Problems to be solved by the invention]
However, even if such a conventional method is applied, if the water density is cooled, the water on the plate becomes very large, and the nozzle jet is obstructed by the water on the plate and may break through the vapor film directly above the steel plate. There was a problem that the cooling ability declined without being able to. For this reason, it is necessary that the spray water flow breaks through the vapor film directly above the steel plate and directly hits the surface of the steel plate to enhance the cooling ability. Therefore, it is required to discharge the on-board water at a higher speed and reduce the on-board water thickness.
The present invention has been made to meet such a demand, and can control the water on the upper plate of the steel plate to such an extent that it does not adversely affect the cooling deviation in the upper and lower surfaces of the steel plate and in the width direction. It is an object of the present invention to provide a method for cooling the upper surface of a hot-rolled steel sheet.
[0008]
[Means for Solving the Problems]
The gist of the present invention for solving the above problems is as follows.
(1) A plurality of headers are arranged at right angles to the passing direction of the hot-rolled steel sheet, a plurality of cooling flat spray nozzles are attached to the headers, and the flat spray nozzles are expanded for each adjacent header. The direction is symmetrical with respect to the central axis between the headers, and the twist angle of the flat spray nozzle is tilted within a range of 5 to 45 degrees. A hot-rolled steel sheet characterized by lowering the on-board water height by spraying a cooling medium in which a gas and a liquid are mixed within a weight mixing ratio of 1/50 or more and 1/1 or less . Top surface cooling method.
[0009]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
FIG. 1 shows a state in which a cooling medium mixed with water and air from a nozzle to which the present invention is applied collides with a steel plate. In the present invention, since water and air are mixed from the flat spray nozzle 1 and the spray water 2 is sprayed, the water that collides with the hot-rolled steel plate 3 rebounds more rapidly than the conventional example of FIG. Many scattered in the spreading direction. In this way, even when the water pressure is the same, when water is mixed with water, the water hitting the surface of the steel sheet has a stronger rebounding force than water alone, and the drainage is better without the water on the plate remaining. It becomes. Further, as an accompanying effect, it has been confirmed that the ability to break through the vapor film on the hot-rolled steel sheet is increased and the cooling ability is improved. This is considered because the kinetic energy (flow velocity) of the droplet increases.
The cooling medium of the present invention is not limited to air and water, and may be another cooling medium as long as it is a combination of liquid and gas having cooling ability. However, among liquids, water is most desirable in consideration of cost, safety and health, ease of handling, and the like. On the other hand, as gas, nitrogen gas, inert gas, etc. can be applied in addition to air, but air is most preferable in consideration of cost and the like.
[0010]
As a scale for evaluating the quality of drainage, as shown in FIG. 2, the on-board water height h staying between adjacent spray nozzles 1 is used. The lower the water height h on the plate, the better the drainage. In FIG. 2, 7 is a pinch roll.
The drainage of the water on the plate in the mixed spray of gas and liquid is good when the weight mixing ratio of gas and liquid (hereinafter referred to as air / water ratio) is within a specific range. If the air / water ratio is 0.02, that is, less than 1/50, the water height on the plate increases as shown in FIG. 3, the drainage of the water on the plate deteriorates, and the steel plate cannot be cooled uniformly. . On the other hand, if the air-to-water ratio exceeds 1.0, that is, 1/1, the cost is increased, and there is a risk that the cooling capacity is lowered due to excessive gas. Therefore, in carrying out the present invention, it is desirable to set the air / water ratio to 1/50 or more and 1/1 or less. In particular, the air / water ratio is preferably 1/50 to 1/10.
[0011]
FIG. 4 shows an embodiment of the present invention in which gas and liquid mixed spray cooling is applied to the technology disclosed in Patent Document 1. In the drawing, an arrangement in which the collision shape 8 in the spray spreading direction formed by spraying from the spray nozzle for each header 6 is inclined symmetrically with respect to the central axis between the headers, a so-called C-shaped arrangement is shown. . The spreading direction of each spray is the same between the sprays facing each other, so that even if there is a collision of the flowing water 4, the flowing water 4 flows in any direction without staying. Therefore, the running water 4 between sprays becomes high-speed, and it drains earlier than the on-board water is generated. Furthermore, compared with the case where the cooling medium is only water, mixing the air significantly improves drainage characteristics.
[0012]
FIG. 5 is a graph showing the relationship between the nozzle twist angle θ (this angle coincides with the angle with respect to the central axis between the headers in the spray spreading direction) and the water height on the plate. Even if the nozzle twist angle is too large, the water on the plate tends to accumulate rapidly if the nozzle twist angle is too large, and conversely if the nozzle twist angle is too small, It can be seen that the spray pattern tends to collapse due to interference with the spray. Therefore, in order to keep the height of the water on the plate within the allowable range, it is desirable to select the nozzle twist angle in the range of 5 to 45 degrees.
[0013]
【Example】
The results when the upper surface of the hot-rolled steel sheet is cooled under the following conditions (see FIG. 2 for each dimension) are shown in Table 1 as the on-board water height. Table 1 shows the type of cooling medium, nozzle arrangement, air / water ratio, water density, and twist angle.
・ Distance between adjacent sprays: 260mm
・ Distance between spray and hot-rolled steel sheet: 150 mm
・ Spray spread angle: 90 degrees ・ Water pressure: 0.1-6.0 kg / cm 2
・ Water density: 0.2-2.5 m 3 / min · m 2
As shown in Table 1, the on-board water heights in the case of parallel arrangement (Comparative Example 2 and Comparative Example 3) were 220 mm and 90 mm, respectively. Further, the water height on the plate was 120 mm when the cooling medium was only water and the cross-section arrangement (Comparative Example 1). In addition, when the air-water mixture ratio was 0.010 (Comparative Example 4) in the letter C configuration, the water height on the plate was 80 mm. On the other hand, the example in this invention is 40 mm (invention example 5) even if it is the highest, and it turns out that it is effective. In particular, if the air / water mixing ratio and the twist angle of the nozzle are defined as desirable conditions, the water height on the plate will be 10 mm or less (Examples 2, 3, and 4 of the present invention), and it is recognized that this is particularly effective due to the synergistic effect. It was .
[0014]
[Table 1]
Figure 0003902568
[0015]
【The invention's effect】
In the case of cooling hot-rolled steel sheets, by applying a mixed spray nozzle of gas and liquid, even in a wide range of water density (0.2-2.5 m 3 / min · m 2 ) required for steel sheet cooling Water supply can be controlled to a level that has almost no effect. Furthermore, since the cooling deviation between the upper and lower surfaces of the steel plate is eliminated and the plate deformation problem due to thermal stress can be solved, the effect is sufficiently great. In particular, the effect is further enhanced by using both jetting with a mixed cooling medium of gas and liquid and the C-shaped arrangement in combination. In addition, the cooling ability can be expected to be improved by the amount of air given compared to the conventional cooling of water alone.
[Brief description of the drawings]
FIG. 1 is a diagram showing a flow of a flat spray nozzle in the present invention.
FIG. 2 is a diagram showing the water height on the plate.
FIG. 3 is a graph showing the relationship between the air / water ratio of the cooling medium and the water height on the plate.
FIG. 4 is a schematic plan view showing an example of a spray arrangement for carrying out the cooling method of the present invention.
FIG. 5 is a graph showing the relationship between the nozzle twist angle and the water height on the plate.
6A and 6B are diagrams showing a flow of a conventional flat spray nozzle, in which FIG. 6A is a side view, and FIG. 6B is a plan view of a steel plate collision surface.
7A and 7B are diagrams showing the arrangement of a flat spray, in which FIG. 7A is a parallel arrangement diagram, and FIG.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Flat spray nozzle 2 Flat spray injection shape 3 Steel plate 4 Cooling medium flow 5 Steel plate collision surface 6 Cooling medium header 7 Pinch roll 8 Spray collision shape on steel plate surface 9 Water on plate

Claims (1)

熱間圧延鋼板の通板方向に対して直角に複数のヘッダーを配設し、当該ヘッダーには複数の冷却用フラットスプレーノズルが取り付けられ、隣り合うヘッダー毎に当該フラットスプレーノズルの拡がり方向を各ヘッダー間中心軸に対して対称となるように配置され、かつ、当該フラットスプレーノズルの捩り角度が5〜45度の範囲内で傾けられ、さらに、当該フラットスプレーノズルからは気体/液体重量混合比が1/50以上、1/1以下の範囲内で気体と液体が混合された冷却媒体が噴射されることにより、板上水高さを低くすることを特徴とする熱間圧延鋼板の上面冷却方法。A plurality of headers are arranged at right angles to the passing direction of the hot-rolled steel sheet, a plurality of cooling flat spray nozzles are attached to the headers, and the spreading direction of the flat spray nozzles is set for each adjacent header. The flat spray nozzle is arranged so as to be symmetrical with respect to the central axis between the headers, and the twist angle of the flat spray nozzle is tilted within a range of 5 to 45 degrees. Is the upper surface cooling of the hot rolled steel sheet, characterized in that the water height on the sheet is lowered by spraying a cooling medium in which a gas and a liquid are mixed within a range of 1/50 or more and 1/1 or less. Method.
JP2003128760A 2003-05-07 2003-05-07 Top surface cooling method for hot rolled steel sheet Expired - Fee Related JP3902568B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003128760A JP3902568B2 (en) 2003-05-07 2003-05-07 Top surface cooling method for hot rolled steel sheet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003128760A JP3902568B2 (en) 2003-05-07 2003-05-07 Top surface cooling method for hot rolled steel sheet

Publications (2)

Publication Number Publication Date
JP2004330238A JP2004330238A (en) 2004-11-25
JP3902568B2 true JP3902568B2 (en) 2007-04-11

Family

ID=33504787

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003128760A Expired - Fee Related JP3902568B2 (en) 2003-05-07 2003-05-07 Top surface cooling method for hot rolled steel sheet

Country Status (1)

Country Link
JP (1) JP3902568B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1908535B1 (en) * 2005-06-23 2012-10-31 Nippon Steel Corporation Cooling device for thick steel plate
JP5613997B2 (en) * 2009-06-30 2014-10-29 新日鐵住金株式会社 Hot-rolled steel sheet cooling device, hot-rolled steel sheet manufacturing apparatus and manufacturing method

Also Published As

Publication number Publication date
JP2004330238A (en) 2004-11-25

Similar Documents

Publication Publication Date Title
US9085810B2 (en) Cooling apparatus of thick-gauge steel plate
KR100917245B1 (en) Method and device for limiting the vibration of steel or aluminium strips in gas or air blown cooling areas
JP4853224B2 (en) Steel sheet cooling equipment and cooling method
JP3902568B2 (en) Top surface cooling method for hot rolled steel sheet
JP4507341B2 (en) Steel cooling method
JPS59144513A (en) Cooling device of steel sheet
JP4254044B2 (en) Method and apparatus for draining high temperature cooled plate
JP5565368B2 (en) Wiping apparatus and hot dipping apparatus using the same
JP4398898B2 (en) Thick steel plate cooling device and method
JP2009101411A (en) Descaling nozzle
JP2970509B2 (en) Method and apparatus for removing cooling water from steel strip
JP3739934B2 (en) Uniform cooling method for thin steel sheet
JP4091934B2 (en) Thick steel plate cooling method
JP4478083B2 (en) Steel plate top and bottom uniform cooling system
JP3905487B2 (en) Method and apparatus for cooling hot-dip galvanized steel strip
JP3978160B2 (en) Method and apparatus for cooling hot rolled steel sheet using flat spray nozzle
JPS638752Y2 (en)
JPH07178439A (en) Descaling equipment
JP5482375B2 (en) Descaling device
KR101532496B1 (en) Wiping device and hot-dip plating device using same
CN114026259B (en) Cooling device for blowing gas onto the surface of a travelling strip
JPH0516206Y2 (en)
JPS60121229A (en) Cooling method of steel plate heated at high temperature
JP2023068747A (en) Wiping device and hot dip plating device
JPH1058026A (en) Method and device for cooling high temperature steel plate

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050914

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060919

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061017

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061201

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061226

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061228

R151 Written notification of patent or utility model registration

Ref document number: 3902568

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110112

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120112

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130112

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130112

Year of fee payment: 6

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130112

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130112

Year of fee payment: 6

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130112

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140112

Year of fee payment: 7

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees