JP2780610B2 - High temperature steel plate online cooling system - Google Patents

High temperature steel plate online cooling system

Info

Publication number
JP2780610B2
JP2780610B2 JP23273693A JP23273693A JP2780610B2 JP 2780610 B2 JP2780610 B2 JP 2780610B2 JP 23273693 A JP23273693 A JP 23273693A JP 23273693 A JP23273693 A JP 23273693A JP 2780610 B2 JP2780610 B2 JP 2780610B2
Authority
JP
Japan
Prior art keywords
slit nozzle
plate
steel plate
nozzle
cooling water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP23273693A
Other languages
Japanese (ja)
Other versions
JPH0788533A (en
Inventor
宗浩 石岡
豊和 寺本
善道 日野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
JFE Engineering Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Engineering Corp filed Critical JFE Engineering Corp
Priority to JP23273693A priority Critical patent/JP2780610B2/en
Publication of JPH0788533A publication Critical patent/JPH0788533A/en
Application granted granted Critical
Publication of JP2780610B2 publication Critical patent/JP2780610B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Strip Materials And Filament Materials (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は例えば熱間圧延された高
温の鋼板をオンラインで冷却する際の冷却装置に関する
ものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a cooling device for online cooling of a hot-rolled hot steel sheet, for example.

【0002】[0002]

【従来の技術】厚板製造工程において、合金元素の低減
や機械的性質の向上を図ることを目的として、熱間圧延
された高温の鋼板をオンラインで所定温度まで冷却する
制御冷却方法およびその装置は実用化され、目的に応じ
た冷却が施されて所望の特性を有する製品が生産されて
いる。この様な冷却方法には、例えば鋼板全体を装置内
に挿入し上下面を全長に亘って同時一斉冷却する方法
と、例えば鋼板の上下面を通板させながら前端より後端
に向かって順次冷却する方法がある。それぞれの方法に
おいて鋼板上面は、スプレー、ラミナーフローなどのノ
ズルから供給された冷却水により冷却される。同時に施
される鋼板下面の冷却はスプレーノズルまたはミストノ
ズル等から供給された冷却水や、水面下のノズルに随伴
して噴出する冷却水流等により行われる場合がある。こ
の様に熱間圧延された高温の鋼板の制御冷却方法には多
くの技術がある。しかし冷却速度の相違に起因する鋼板
温度の不均一や形状不良が起こり、材質のバラツキや条
切り歪が発生することが知られている。この矯正対策に
多くの費用や工数を必要とする。特にスプレーノズル、
円管ノズルから供給された冷却水あるいは水面下のノズ
ルより噴出した冷却水により冷却される場合には、冷却
水が直接衝突する位置とそれ以外の位置における冷却速
度の相違は顕著である。これらの問題点を解決する方法
として、鋼板上面の冷却においては、特開昭56−16
3216号公報等にあるスリットノズルによる冷却方法
により、および特開昭58−32511号公報等に記載
されているような鋼板幅方向端部に遮蔽板を設けること
等により、鋼板幅方向の温度分布均一化が図られてい
る。
2. Description of the Related Art In a thick plate manufacturing process, a controlled cooling method and apparatus for cooling a hot-rolled high-temperature steel sheet to a predetermined temperature online for the purpose of reducing alloy elements and improving mechanical properties. Has been put into practical use and is cooled according to the purpose to produce a product having desired characteristics. Such cooling methods include, for example, a method in which the entire steel plate is inserted into the apparatus and the upper and lower surfaces are simultaneously cooled over the entire length, and a method in which, for example, the upper and lower surfaces of the steel plate are passed while cooling sequentially from the front end to the rear end. There is a way to do that. In each method, the upper surface of the steel plate is cooled by cooling water supplied from a nozzle such as spray or laminar flow. At the same time, the cooling of the lower surface of the steel plate may be performed by cooling water supplied from a spray nozzle, a mist nozzle, or the like, or by a cooling water flow ejected accompanying a nozzle below the water surface. There are many techniques for controlling and cooling a hot-rolled hot steel sheet. However, it is known that unevenness in the temperature of the steel sheet or defective shape occurs due to the difference in the cooling rate, thereby causing a variation in the material and a cutting strain. This corrective measure requires a lot of cost and man-hour. Especially spray nozzles,
In the case of cooling with cooling water supplied from a circular tube nozzle or cooling water jetted from a submerged nozzle, the difference in cooling speed between the position where the cooling water directly collides and the other position is remarkable. As a method for solving these problems, Japanese Patent Application Laid-Open No.
Temperature distribution in the width direction of the steel sheet is performed by a cooling method using a slit nozzle described in Japanese Patent No. 3216 and the like, and by providing a shielding plate at the end in the width direction of the steel sheet as described in Japanese Patent Application Laid-Open No. 58-32511. Uniformity is achieved.

【0003】[0003]

【発明が解決しようとする課題】従来の高温の鋼板のオ
ンライン冷却装置は上記のように構成されており、例え
ば鋼板幅方向の温度を均一化するために上面にスリット
ノズルを用いた特開昭56−163216号公報記載の
冷却方式、または特開昭58−32511号公報等に記
載されているような鋼板幅方向端部に遮蔽板を設ける冷
却方式を採用したとしても、上面での乗り水の影響など
により上下面での冷却能を同一にすることは困難であ
り、冷却能の差により冷却中に鋼板が変形する。一旦こ
の様な変形が発生すると、冷却能差は顕著になり、鋼材
変形を更に助長することになる。したがって鋼板全体を
温度むらなく均一に所定の温度まで冷却するためには、
冷却中の鋼板形状は非常に重要であり、冷却中の鋼板形
状の平面性を維持しながら鋼板全体を温度むらなく均一
に所定の温度まで冷却する技術に対しては未だ充分な対
応が成されているとは言い難いという問題点があった。
The conventional on-line cooling apparatus for a high-temperature steel sheet is constituted as described above. Even if a cooling method described in Japanese Patent Application Laid-Open No. 56-163216 or a cooling method described in Japanese Patent Application Laid-Open No. 58-32511, in which a shielding plate is provided at an end portion in the width direction of a steel sheet, is adopted, It is difficult to equalize the cooling capacity between the upper and lower surfaces due to the influence of the cooling effect, and the steel sheet is deformed during cooling due to the difference in cooling capacity. Once such deformation occurs, the difference in cooling capacity becomes significant, further promoting steel deformation. Therefore, in order to uniformly cool the entire steel plate to a predetermined temperature without uneven temperature,
The shape of the steel sheet during cooling is very important, and there is still sufficient support for technology that uniformly cools the entire steel sheet to a predetermined temperature while maintaining the flatness of the steel sheet shape during cooling. There was a problem that it was hard to say that it was.

【0004】本発明は、このような問題点を解決するた
めになされたものであり、鋼板の上下面での冷却能をバ
ランスさせて、冷却中の板変形を少なくする高温鋼板の
オンライン冷却装置を得ることを目的とする。
SUMMARY OF THE INVENTION The present invention has been made to solve such a problem, and an on-line cooling apparatus for a high-temperature steel sheet that balances the cooling capacity of the upper and lower surfaces of the steel sheet to reduce the deformation of the steel sheet during cooling. The purpose is to obtain.

【0005】[0005]

【課題を解決するための手段】本発明の第1の発明に係
る高温鋼板のオンライン冷却装置は、熱間圧延された高
温の鋼板の下面に板状の冷却水を最初に衝突させる下面
スリットノズルの位置が、前記鋼板の上面に板状の冷却
水を最初に流下させる上面スリットノズルの位置より、
パスラインの上流側に設置されているものである。本発
明の第2の発明に係る高温鋼板のオンライン冷却装置
は、熱間圧延された高温の鋼板の下面に板状の冷却水を
最初に衝突させる下面スリットノズルの位置が、前記鋼
板の上面に板状の冷却水を最初に流下させる上面スリッ
トノズルの位置より、下面スリットノズルの最初の設置
位置と上面スリットノズルの最初の設置位置の距離差/
上面スリットノズルの設置ピッチ=0.1〜0.5の範
囲で、パスラインの上流側に設置されているものであ
る。本発明の第3の発明に係る高温鋼板のオンライン冷
却装置は、熱間圧延された高温の鋼板の下面に板状の冷
却水を最初に衝突させる下面スリットノズルの位置が、
前記鋼板の上面に板状の冷却水を最初に流下させる上面
スリットノズルの位置より、下面スリットノズルの最初
の設置位置と上面スリットノズルの最初の設置位置の距
離差/上面スリットノズルの設置ピッチ=0.2〜0.
5の範囲でパスラインの上流側に設置され、且つ下面ス
リットノズルの設置ピッチ/上面スリットノズルの設置
ピッチ=0.15〜0.35の範囲にあるものである。
According to a first aspect of the present invention, there is provided an on-line cooling apparatus for a high-temperature steel sheet, wherein a lower-surface slit nozzle for colliding a lower surface of a hot-rolled high-temperature steel sheet with plate-shaped cooling water first. The position of the upper surface slit nozzle from which the plate-shaped cooling water first flows down to the upper surface of the steel plate,
It is installed upstream of the pass line. The on-line cooling device for a high-temperature steel sheet according to the second invention of the present invention is characterized in that the position of a lower surface slit nozzle for first impinging plate-like cooling water on the lower surface of a hot-rolled high-temperature steel plate is located on the upper surface of the steel plate. Distance difference between the first installation position of the lower slit nozzle and the first installation position of the upper slit nozzle from the position of the upper slit nozzle at which the plate-shaped cooling water first flows down /
It is installed on the upstream side of the pass line with the installation pitch of the upper surface slit nozzle being in the range of 0.1 to 0.5. The on-line cooling device for a high-temperature steel plate according to the third invention of the present invention is characterized in that the position of a lower surface slit nozzle for first colliding plate-shaped cooling water with the lower surface of a hot-rolled high-temperature steel plate is:
From the position of the upper slit nozzle at which the plate-shaped cooling water first flows down on the upper surface of the steel plate, the distance difference between the first installation position of the lower slit nozzle and the first installation position of the upper slit nozzle / the installation pitch of the upper slit nozzle = 0.2-0.
5 and the pitch of the lower slit nozzle / the pitch of the upper slit nozzle = 0.15 to 0.35.

【0006】[0006]

【作用】第1の発明においては、熱間圧延された高温の
鋼板の下面に板状の冷却水を最初に衝突させる下面スリ
ットノズルの位置が、前記鋼板の上面に板状の冷却水を
最初に流下させる上面スリットノズルの位置より、パス
ラインの上流側に設置されているので、鋼板の上面およ
び下面とも鋼板の幅方向の温度降下を均等にでき、且つ
冷却能をバランスさせることができ、冷却中の板変形を
抑制できる。第2の発明においては、熱間圧延された高
温の鋼板の下面に板状の冷却水を最初に衝突させる下面
スリットノズルの位置が、前記鋼板の上面に板状の冷却
水を最初に流下させる上面スリットノズルの位置より、
下面スリットノズルの最初の設置位置と上面スリットノ
ズルの最初の設置位置の距離差/上面スリットノズルの
設置ピッチ=0.1〜0.5の範囲で、パスラインの上
流側に設置されているので、冷却中の板変形を精度よく
抑制できる。上記限定範囲外の距離では、上下面での冷
却能のバランスが十分ではなく、板変形の抑制も不十分
である。第3の発明においては、熱間圧延された高温の
鋼板の下面に板状の冷却水を最初に衝突させる下面スリ
ットノズルの位置が、前記鋼板の上面に板状の冷却水を
最初に流下させる上面スリットノズルの位置より、下面
スリットノズルの最初の設置位置と上面スリットノズル
の最初の設置位置の距離差/上面スリットノズルの設置
ピッチ=0.2〜0.5の範囲でパスラインの上流側に
設置され、且つ下面スリットノズルの設置ピッチ/上面
スリットノズルの設置ピッチ=0.15〜0.35の範
囲にあるので、冷却中の板変形を精度よく抑制できる。
上記限定範囲外の距離では、上下面での冷却能のバラン
スが不完全で、板変形の抑制も不十分である。
In the first aspect of the present invention, the position of the lower surface slit nozzle for first impinging the plate-shaped cooling water on the lower surface of the hot-rolled high-temperature steel plate is such that the plate-shaped cooling water is first applied to the upper surface of the steel plate. Since it is installed upstream of the pass line from the position of the upper surface slit nozzle to flow down, the temperature drop in the width direction of the steel plate can be equalized on both the upper and lower surfaces of the steel plate, and the cooling ability can be balanced, Plate deformation during cooling can be suppressed. In the second invention, the position of the lower surface slit nozzle for first colliding the plate-shaped cooling water with the lower surface of the hot-rolled high-temperature steel plate causes the plate-shaped cooling water to flow first on the upper surface of the steel plate. From the position of the top slit nozzle,
Since it is installed on the upstream side of the pass line in the range of the distance difference between the initial installation position of the lower slit nozzle and the initial installation position of the upper slit nozzle / the installation pitch of the upper slit nozzle = 0.1 to 0.5. In addition, plate deformation during cooling can be accurately suppressed. At a distance outside the above-mentioned limited range, the balance of the cooling capacity on the upper and lower surfaces is not sufficient, and the suppression of plate deformation is also insufficient. In the third invention, the position of the lower surface slit nozzle for first colliding the plate-shaped cooling water with the lower surface of the hot-rolled high-temperature steel plate causes the plate-shaped cooling water to flow first on the upper surface of the steel plate. From the position of the top slit nozzle, the difference between the distance between the first installation position of the bottom slit nozzle and the first installation position of the top slit nozzle / the installation pitch of the top slit nozzle = upstream of the pass line in the range of 0.2 to 0.5 And the installation pitch of the lower slit nozzle / the installation pitch of the upper slit nozzle is in the range of 0.15 to 0.35, so that the plate deformation during cooling can be accurately suppressed.
At a distance outside the above-mentioned limited range, the balance of the cooling capacity on the upper and lower surfaces is incomplete, and the suppression of plate deformation is insufficient.

【0007】[0007]

【実施例】【Example】

実施例1.図1は本発明の一実施例に係る高温鋼板のオ
ンライン冷却装置の基本概念を示す説明図である。1は
高温の鋼板で熱間圧延が終了した高温状態のままでロー
ラテーブルにより搬送される。2は上面スリットノズル
で配列間隔をLp、前記鋼板1の上面からの距離をHと
し、冷却水を前記鋼板1の上面に向けて流下する。3は
下面スリットノズルで配列間隔をlp、前記鋼板1の下
面からの距離をhとし、冷却水を鋼板1の下面に向けて
吐出するものである。鋼板1の下面へ板状の冷却水を最
初に衝突させる前記下面スリットノズル3の位置は、前
記鋼板1の上面に板状の冷却水を最初に流下させる前記
上面スリットノズル2の位置より、距離:Ls分だけパ
スラインの上流側に設置されている。本実施例で使用し
た供試材の板厚、長さおよび上面スリットノズル2、下
面スリットノズル3の高さと設置ピッチは下記の通りで
ある。 供試材鋼板:厚さ25mm×長さ5m 上面スリットノズル:高さH=1500mm 設置ピッチLp=2000mm 水量密度=0.2〜0.4m3 /min/m3 下面スリットノズル:高さh=−100mm 設置ピッチlp=変化させて実施 Ls:鋼板1の下面へ板状の冷却水を最初に衝突させる
下面スリットノズル3の位置と、鋼板1の上面に板状の
冷却水を最初に流下させる上面スリットノズル2の位置
の距離差 下面スリットノズル3からの冷却水の吐出流量は、ノズ
ルピッチを変更しても下面での水量密度は一定となるよ
うに調整した。上記のように構成した高温鋼板のオンラ
イン冷却装置は、熱間圧延が終了して高温状態にある鋼
板1をローラテーブル(図示せず)で搬送し、通過させ
る間に、上面スリットノズル2から流下する冷却水およ
び下面スリットノズル3から吐出する冷却水により上面
と下面から冷やされる通過型方式である。
Embodiment 1 FIG. FIG. 1 is an explanatory view showing the basic concept of an online cooling device for a high-temperature steel sheet according to one embodiment of the present invention. Reference numeral 1 denotes a high-temperature steel sheet which is conveyed by a roller table in a high-temperature state in which hot rolling has been completed. Reference numeral 2 denotes an upper surface slit nozzle in which the arrangement interval is Lp, the distance from the upper surface of the steel plate 1 is H, and cooling water flows down toward the upper surface of the steel plate 1. Numeral 3 denotes a lower surface slit nozzle, in which the arrangement interval is lp, the distance from the lower surface of the steel plate 1 is h, and cooling water is discharged toward the lower surface of the steel plate 1. The position of the lower surface slit nozzle 3 where the plate-shaped cooling water first collides with the lower surface of the steel plate 1 is longer than the position of the upper surface slit nozzle 2 where the plate-shaped cooling water first flows down on the upper surface of the steel plate 1. : Ls is installed upstream of the pass line. The plate thickness and length of the test material used in this example, and the height and installation pitch of the upper slit nozzle 2 and the lower slit nozzle 3 are as follows. Sample steel plate: thickness 25mm x length 5m Upper slit nozzle: Height H = 1500mm Installation pitch Lp = 2000mm Water density = 0.2-0.4m 3 / min / m 3 Lower slit nozzle: Height h = −100 mm Installation pitch lp = changed Ls: position of lower surface slit nozzle 3 that first makes plate-shaped cooling water collide with the lower surface of steel plate 1, and plate-shaped cooling water flows first on the upper surface of steel plate 1 The difference in distance between the positions of the upper slit nozzle 2 The discharge flow rate of the cooling water from the lower slit nozzle 3 was adjusted so that the water density on the lower surface was constant even when the nozzle pitch was changed. The hot-rolled steel sheet online cooling device configured as described above conveys the hot-rolled steel sheet 1 in a high-temperature state by a roller table (not shown) while passing it down from the upper slit nozzle 2. In this case, the cooling water is discharged from the upper surface and the lower surface by the cooling water to be discharged and the cooling water discharged from the lower surface slit nozzle 3.

【0008】図2はスリットノズルの妥当性を検証した
もので、500℃における鋼板幅方向の温度分布をプロ
ットしたもので、スプレーノズルと対比して示したもの
である。スリットノズル(記号:●)では温度変動が小
さく、隣接位置間での温度勾配も小さく緩やかに変化
し、鋼板幅方向の温度分布の均一化が達成されている。
しかしスプレーノズル(記号:▲)では温度変動が大き
く、隣接位置間での温度差も大きくなっている。この結
果から、スリットノズルとすることによって温度変動を
抑制できることが明らかである。図3は鋼板の下面に板
状の冷却水を最初に衝突させる下面スリットノズルの位
置を、前記鋼板の上面に板状の冷却水を最初に流下させ
る上面スリットノズルの位置より、パスラインの上流側
にした距離(Ls:以下先行量という)と冷却中に発生
した鋼板の最大変形量との関係を示したものである。こ
のときの冷却水量は上面スリットノズルのスリット幅が
10mm、下面スリットノズルのスリット幅を5mmでその
水量密度が1.4m3 /min/m3 (記号:実線)および
1.8m3 /min/m3 (記号:点線)とした場合の2水準
について実施した。また下面スリットノズルの設置ピッ
チと、上面スリットノズルの設置ピッチの比(lp/L
p)は0.25および0.5の2水準である。先行量
(Ls/Lpにデータ変換)に対する冷却中の鋼板の最
大変形量(δ)は、Ls/Lpが大きくなるに従って、
冷却中の鋼板の最大変形量(δ)が少なくなるが、大き
くなり過ぎると増加する傾向がみられる。また冷却水量
の増加に比例して冷却中の鋼板の最大変形量(δ)が少
なくなるが、Ls/Lpが大きくなるに従って、冷却中
の鋼板の最大変形量(δ)が少なくなる傾向は同様で、
Ls/Lpの値が0.1〜0.5の範囲、更に好ましく
は0.2〜0.4の範囲で僅少になっている。図4は下
面スリットノズルの設置ピッチ/と上面スリットノズル
の設置ピッチの比(lp)/(Lp)と冷却中に発生し
た鋼板の最大変形量(δ)との関係を示したものであ
る。このときのLs/Lpは0.25(記号:▲)およ
び0.5(記号:●)の2水準である。何れの水準も冷
却中の最大変形量は、上下面のスリットノズルの設置ピ
ッチ比の寄与が大きく、(lp)/(Lp)の値が0.
15〜0.35の範囲になるようなノズル配置にするこ
とにより、冷却中の鋼板の変形を抑制できる。なお、上
面スリットノズルの配置間隔を1000mmとした場合に
も上記実施例と同様な傾向を示しており、本発明は上述
の実施例に限定されるものではなく、上記以外のノズル
間隔またはノズル高さとする等は、当業者が適宜なし得
る設計変更である。
FIG. 2 shows the validity of the slit nozzle, and plots the temperature distribution in the steel sheet width direction at 500 ° C., which is shown in comparison with the spray nozzle. In the slit nozzle (symbol: ●), the temperature fluctuation is small, the temperature gradient between adjacent positions is small and changes gradually, and the temperature distribution in the width direction of the steel sheet is made uniform.
However, the spray nozzle (symbol: ▲) has a large temperature fluctuation and a large temperature difference between adjacent positions. From this result, it is clear that the temperature fluctuation can be suppressed by using the slit nozzle. FIG. 3 shows the position of the lower surface slit nozzle that first makes the plate-shaped cooling water impinge on the lower surface of the steel plate, and the position of the upper surface slit nozzle that makes the plate-shaped cooling water flow first on the upper surface of the steel plate, upstream of the pass line. The relationship between the distance (Ls: hereinafter referred to as a leading amount) and the maximum deformation amount of the steel sheet generated during cooling is shown. At this time, the cooling water amount is such that the slit width of the upper slit nozzle is 10 mm, the slit width of the lower slit nozzle is 5 mm, and the water density is 1.4 m 3 / min / m 3 (symbol: solid line) and 1.8 m 3 / min /. The test was performed for two levels when m 3 (symbol: dotted line). Also, the ratio of the installation pitch of the lower slit nozzle to the installation pitch of the upper slit nozzle (lp / L)
p) is two levels of 0.25 and 0.5. The maximum deformation amount (δ) of the steel sheet during cooling with respect to the preceding amount (data conversion to Ls / Lp) increases as Ls / Lp increases.
The maximum deformation (δ) of the steel sheet during cooling decreases, but tends to increase when it is too large. The maximum deformation (δ) of the steel sheet during cooling decreases in proportion to the increase in the amount of cooling water, but the tendency that the maximum deformation (δ) of the steel sheet during cooling decreases as Ls / Lp increases becomes the same. so,
The value of Ls / Lp is small in the range of 0.1 to 0.5, more preferably in the range of 0.2 to 0.4. FIG. 4 shows the relationship between the ratio (lp) / (Lp) of the installation pitch of the lower slit nozzle / to the installation pitch of the upper slit nozzle and the maximum deformation (δ) of the steel sheet generated during cooling. Ls / Lp at this time has two levels of 0.25 (symbol: ▲) and 0.5 (symbol: ●). In any of the levels, the maximum deformation amount during cooling largely depends on the pitch ratio of the upper and lower slit nozzles, and the value of (lp) / (Lp) is 0.1.
By setting the nozzle arrangement so as to fall within the range of 15 to 0.35, deformation of the steel sheet during cooling can be suppressed. Note that the same tendency as in the above embodiment is shown even when the arrangement interval of the upper slit nozzle is set to 1000 mm, and the present invention is not limited to the above embodiment, and the nozzle interval or nozzle height other than the above is not limited. This is a design change that can be appropriately made by those skilled in the art.

【0009】[0009]

【発明の効果】以上のように本発明によれば、板幅方向
の温度を均一化し、冷却中の鋼板の平面性を維持するこ
とができるため、板矯正率が低減でき鋼板形状の良好な
制御冷却を実施でき、高品質の鋼板を効率良く工業的に
製造することができる。
As described above, according to the present invention, the temperature in the sheet width direction can be made uniform and the flatness of the steel sheet during cooling can be maintained, so that the sheet straightening rate can be reduced and the shape of the steel sheet can be improved. Controlled cooling can be performed, and a high-quality steel plate can be efficiently and industrially manufactured.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施例に係る高温鋼板のオンライン
冷却装置の基本概念を示す説明図である。
FIG. 1 is an explanatory diagram showing a basic concept of an online cooling device for a high-temperature steel sheet according to one embodiment of the present invention.

【図2】冷却中の鋼板幅方向の温度分布を示すグラフで
ある。
FIG. 2 is a graph showing a temperature distribution in a width direction of a steel sheet during cooling.

【図3】上面スリットノズルと下面スリットノズルの設
置ピッチ比と鋼板の最大変形量の関係を示すグラフであ
る。
FIG. 3 is a graph showing a relationship between an installation pitch ratio of an upper slit nozzle and a lower slit nozzle and a maximum deformation amount of a steel plate.

【図4】上面スリットノズルと下面スリットノズルの設
置ピッチ比と鋼板の上下面間温度差の関係を示すグラフ
である。
FIG. 4 is a graph showing a relationship between an installation pitch ratio of an upper slit nozzle and a lower slit nozzle and a temperature difference between upper and lower surfaces of a steel plate.

【符号の説明】[Explanation of symbols]

1 鋼板 2 上面スリットノズル 3 下面スリットノズル L 上面スリットノズル設置ピッチ l 下面スリットノズル設置ピッチ 1 Steel plate 2 Upper surface slit nozzle 3 Lower surface slit nozzle L Upper surface slit nozzle installation pitch l Lower surface slit nozzle installation pitch

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.6,DB名) B21B 45/02 C21D 9/52──────────────────────────────────────────────────続 き Continued on front page (58) Field surveyed (Int.Cl. 6 , DB name) B21B 45/02 C21D 9/52

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 熱間圧延された高温の鋼板の下面に板状
の冷却水を最初に衝突させる下面スリットノズルの位置
が、前記鋼板の上面に板状の冷却水を最初に流下させる
上面スリットノズルの位置より、パスラインの上流側に
設置されていることを特徴とする高温鋼板のオンライン
冷却装置。
1. The position of a lower surface slit nozzle that first impinges plate-shaped cooling water on the lower surface of a hot-rolled high-temperature steel plate, and the position of an upper surface slit that causes plate-shaped cooling water to flow first on the upper surface of the steel plate An on-line cooling device for a high-temperature steel sheet, which is installed upstream of a pass line from a position of a nozzle.
【請求項2】 熱間圧延された高温の鋼板の下面に板状
の冷却水を最初に衝突させる下面スリットノズルの位置
が、前記鋼板の上面に板状の冷却水を最初に流下させる
上面スリットノズルの位置より、下面スリットノズルの
最初の設置位置と上面スリットノズルの最初の設置位置
の距離差/上面スリットノズルの設置ピッチ=0.1〜
0.5の範囲で、パスラインの上流側に設置されている
ことを特徴とする請求項1記載の高温鋼板のオンライン
冷却装置。
2. The position of a lower surface slit nozzle which first impinges plate-shaped cooling water on a lower surface of a hot-rolled high-temperature steel plate, and an upper surface slit which first causes plate-shaped cooling water to flow on an upper surface of the steel plate. From the nozzle position, the distance difference between the first installation position of the lower slit nozzle and the first installation position of the upper slit nozzle / the installation pitch of the upper slit nozzle = 0.1 to
2. The on-line cooling device for hot steel plates according to claim 1, wherein the device is installed on the upstream side of the pass line within a range of 0.5.
【請求項3】 熱間圧延された高温の鋼板の下面に板状
の冷却水を最初に衝突させる下面スリットノズルの位置
が、前記鋼板の上面に板状の冷却水を最初に流下させる
上面スリットノズルの位置より、下面スリットノズルの
最初の設置位置と上面スリットノズルの最初の設置位置
の距離差/上面スリットノズルの設置ピッチ=0.2〜
0.5の範囲でパスラインの上流側に設置され、且つ下
面スリットノズルの設置ピッチ/上面スリットノズルの
設置ピッチ=0.15〜0.35の範囲にあることを特
徴とする請求項1記載の高温鋼板のオンライン冷却装
置。
3. The position of a lower slit nozzle for first colliding plate-shaped cooling water with a lower surface of a hot-rolled high-temperature steel plate, and an upper surface slit for causing plate-shaped cooling water to first flow down on the upper surface of the steel plate. From the nozzle position, the distance difference between the first installation position of the lower slit nozzle and the first installation position of the upper slit nozzle / the installation pitch of the upper slit nozzle = 0.2 to
2. The installation pitch of the lower slit nozzle / installation pitch of the upper slit nozzle = 0.15 to 0.35 in a range of 0.5 and upstream of the pass line. High temperature steel plate online cooling system.
JP23273693A 1993-09-20 1993-09-20 High temperature steel plate online cooling system Expired - Fee Related JP2780610B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23273693A JP2780610B2 (en) 1993-09-20 1993-09-20 High temperature steel plate online cooling system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23273693A JP2780610B2 (en) 1993-09-20 1993-09-20 High temperature steel plate online cooling system

Publications (2)

Publication Number Publication Date
JPH0788533A JPH0788533A (en) 1995-04-04
JP2780610B2 true JP2780610B2 (en) 1998-07-30

Family

ID=16943970

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23273693A Expired - Fee Related JP2780610B2 (en) 1993-09-20 1993-09-20 High temperature steel plate online cooling system

Country Status (1)

Country Link
JP (1) JP2780610B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3287245B2 (en) * 1996-12-10 2002-06-04 日本鋼管株式会社 Apparatus and method for cooling hot steel sheet

Also Published As

Publication number Publication date
JPH0788533A (en) 1995-04-04

Similar Documents

Publication Publication Date Title
US7523631B2 (en) Cooling device, manufacturing method, and manufacturing line for hot rolled steel band
US8634953B2 (en) Method and equipment for flatness control in cooling a stainless steel strip
TWI286089B (en) Controllable cooling method for thick steel plate, thick steel plate manufactured by the controllable cooling method, and cooling device for the thick steel plate
WO2001036122A1 (en) Metal plate flatness controlling method and device
KR100580357B1 (en) Method and device for cooling steel sheet
JP3397072B2 (en) Apparatus and method for cooling steel sheet
JP2001286925A (en) Device and method for water-cooling steel sheet
JP3287245B2 (en) Apparatus and method for cooling hot steel sheet
JP2011073054A (en) Method and apparatus for cooling hot-rolled steel sheet
JP2780610B2 (en) High temperature steel plate online cooling system
JP3460583B2 (en) Thick steel plate manufacturing apparatus and thick steel plate manufacturing method
JP2780609B2 (en) High temperature steel plate online cooling system
EP1889671B1 (en) Cooling apparatus for hot rolled steel strip, manufacturing method for hot rolled steel strip, and production line for hot rolled steel strip
JP4256885B2 (en) Spray cooling nozzle arrangement setting method and hot steel sheet cooling device
JPH0871628A (en) Method for preventing generation of ear waving of steel plate
JP3747546B2 (en) Method and apparatus for cooling high temperature steel sheet
JP5597916B2 (en) Steel cooling equipment
JP4453522B2 (en) Steel plate cooling device and cooling method
JPS5916617A (en) On-line cooling device of thick steel plate
JPS62166020A (en) Cooling device for hot rolled steel plate
JPS5864322A (en) Method and device for cooling of band-like steel plate
JPH0852509A (en) Method for rolling high temperature steel plate
JPH08257623A (en) Method for cooling thick steel plate
JP2003071513A (en) Method for cooling hot rolled steel plate
JPH08206724A (en) Scale stripping device

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees