JPS6112241B2 - - Google Patents

Info

Publication number
JPS6112241B2
JPS6112241B2 JP55029892A JP2989280A JPS6112241B2 JP S6112241 B2 JPS6112241 B2 JP S6112241B2 JP 55029892 A JP55029892 A JP 55029892A JP 2989280 A JP2989280 A JP 2989280A JP S6112241 B2 JPS6112241 B2 JP S6112241B2
Authority
JP
Japan
Prior art keywords
substrate
refractive index
optical waveguide
substance
ions
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP55029892A
Other languages
Japanese (ja)
Other versions
JPS56126810A (en
Inventor
Kyoichi Kinoshita
Morio Kobayashi
Atsushi Shibukawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP2989280A priority Critical patent/JPS56126810A/en
Publication of JPS56126810A publication Critical patent/JPS56126810A/en
Publication of JPS6112241B2 publication Critical patent/JPS6112241B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B6/13Integrated optical circuits characterised by the manufacturing method
    • G02B6/134Integrated optical circuits characterised by the manufacturing method by substitution by dopant atoms
    • G02B6/1342Integrated optical circuits characterised by the manufacturing method by substitution by dopant atoms using diffusion

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Optical Integrated Circuits (AREA)

Description

【発明の詳細な説明】 本発明は光集積回路等に用いられる膜状光導波
路の作製方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for manufacturing a film-like optical waveguide used in optical integrated circuits and the like.

従来、不純物を基板に拡散させて光導波路を作
製する場合、基板の表面に金属もしくは該金属の
化合物を付着せしめて、該金属イオンを拡散させ
る方法が採用されている。この場合、金属イオン
の濃度プロフアイルは基板表面ほど高く、基板内
部へいくにしたがい漸減しており、それに対応し
た屈折率分布を呈する。第1図に拡散法で作製さ
れる光導波路の典型的な屈折率分布を示す。第1
図において、nSが基板の屈折率である。
Conventionally, when manufacturing an optical waveguide by diffusing impurities into a substrate, a method has been adopted in which a metal or a compound of the metal is attached to the surface of the substrate and the metal ions are diffused. In this case, the concentration profile of metal ions is higher at the surface of the substrate and gradually decreases toward the inside of the substrate, exhibiting a refractive index distribution corresponding thereto. Figure 1 shows a typical refractive index distribution of an optical waveguide fabricated by the diffusion method. 1st
In the figure, n S is the refractive index of the substrate.

このような屈折率分布のもとでは、光波は拡散
層(基板の表面)の屈折率の高い表面の近傍に集
中して伝搬するので、伝搬損失は前記拡散層の表
面の面精度、すなわち表面の凹凸に、大きく左右
される。しかるに面積度を±500Å程度以下によ
くすることは、現在の技術では困難であり、2〜
3dB/cm程度の伝搬損失は避けられなかつた。
Under such a refractive index distribution, light waves propagate concentrated near the surface with a high refractive index of the diffusion layer (surface of the substrate), so the propagation loss depends on the surface precision of the surface of the diffusion layer, that is, the surface It is greatly influenced by the unevenness of the surface. However, it is difficult with current technology to improve the area density to less than about ±500 Å, and
A propagation loss of about 3 dB/cm was unavoidable.

本発明は光導波路を基板中に埋め込んだことを
特徴とし、その目的は伝搬損失の小さい光導波路
を容易に作製する方法を提供することにある。
The present invention is characterized in that an optical waveguide is embedded in a substrate, and its purpose is to provide a method for easily manufacturing an optical waveguide with low propagation loss.

第2図a,b,b′,cは本発明による光導波路
の製造工程を説明するための図で、まず第2図a
に示すように基板1の表面に基板1中に拡散して
基板1の屈折率を増加させる物質2を蒸着、スパ
ツタリング等により付着させ、ついで第2図bに
示すように、基板1中に拡散してその屈折率を低
下させる物質3を同様にして蒸着、スパツタリン
グ等により付着させ、ついで第2図bに示すよう
に、基板1中に拡散してその屈折率を低下させる
物質3を同様にして蒸着、スパツタリング等によ
つて付着させる。また必要に応じて、第2図b′に
示すように、基板1の屈折率を増加させる物質2
と基板1の屈折率を減少させる物質3との間に、
物質3の拡散を制御する目的で、半導体もしくは
絶縁体の膜(障壁膜)4を形成する。
Figures 2a, b, b', and c are diagrams for explaining the manufacturing process of the optical waveguide according to the present invention.
As shown in FIG. 2B, a substance 2 that diffuses into the substrate 1 and increases the refractive index of the substrate 1 is deposited on the surface of the substrate 1 by vapor deposition, sputtering, etc., and then, as shown in FIG. Then, as shown in FIG. 2b, a substance 3 that lowers the refractive index of the substrate 1 is similarly deposited by vapor deposition, sputtering, etc., and then, as shown in FIG. It is attached by vapor deposition, sputtering, etc. If necessary, a substance 2 that increases the refractive index of the substrate 1 may be used, as shown in FIG.
and a substance 3 that reduces the refractive index of the substrate 1,
In order to control the diffusion of the substance 3, a semiconductor or insulator film (barrier film) 4 is formed.

このように基板1上に2層もしくはそれ以上の
膜を形成した後、直流電界を印加して、第2図c
に示すように、膜2、膜3内の金属イオンを同時
に基板1に拡散させる。第2図cにおいて、5は
基板中の屈折率の増加した領域、6は基板中に物
質3が拡散して屈折率がやや減少した領域であ
る。基板1の屈折率を増加させるイオンの拡散係
数が、基板1の屈折率を低下させるイオンの拡散
係数により大きい場合は、第2図bの構成で拡散
させることにより、容易に第3図に示す屈折率分
布を形成することができ、光導波路5が基板中に
埋め込まれた構造となる。
After forming two or more layers of films on the substrate 1 in this way, a DC electric field is applied to form the film shown in FIG.
As shown in FIG. 2, metal ions in the films 2 and 3 are simultaneously diffused into the substrate 1. In FIG. 2c, 5 is a region in the substrate where the refractive index has increased, and 6 is a region where the refractive index has decreased slightly due to diffusion of the substance 3 into the substrate. If the diffusion coefficient of ions that increase the refractive index of the substrate 1 is larger than the diffusion coefficient of ions that decrease the refractive index of the substrate 1, the diffusion coefficient shown in FIG. 3 can be easily achieved by diffusing with the configuration shown in FIG. A refractive index distribution can be formed, and the optical waveguide 5 has a structure embedded in the substrate.

また基板1の屈折率を増加させるイオンの拡散
係数が、基板1の屈折率を低下させるイオンの拡
散係数より小さい場合は、第2図b′に示すよう
に、二つの膜の中間に基板1の屈折率を低下させ
るイオンの拡散を小さくするための障壁層4を形
成し、基板1の屈折率を増加させるイオンの拡散
係数より小さくして、第3図に示す屈折率分布を
形成することができる。
In addition, if the diffusion coefficient of ions that increase the refractive index of the substrate 1 is smaller than the diffusion coefficient of ions that decrease the refractive index of the substrate 1, as shown in FIG. A barrier layer 4 is formed to reduce the diffusion of ions that reduce the refractive index of the substrate 1, and is made smaller than the diffusion coefficient of ions that increase the refractive index of the substrate 1, thereby forming the refractive index distribution shown in FIG. I can do it.

以上説明した作製方法において、基板にNaイ
オンを含むガラスを用いた場合、屈折率を増加さ
せる物質にはAg,K,T,Liおよびこれら金
属を含む化合物、屈折率を低下させる物質には
Na,Bおよびこれら金属を含む化合物が適用で
きる。
In the manufacturing method described above, when glass containing Na ions is used as the substrate, the substances that increase the refractive index include Ag, K, T, Li, and compounds containing these metals, and the substances that decrease the refractive index include A g , K, T, Li, and compounds containing these metals.
Na, B, and compounds containing these metals are applicable.

障壁層用物質としては、Si,ZnO等の半導体も
しくはSiO2等の絶縁体が適用できる。
As the material for the barrier layer, semiconductors such as Si and ZnO, or insulators such as SiO 2 can be used.

また基板にLiNbO3を用いた場合には、屈折率
を増加させる物質にはTi,Cu,Niなどが適用で
き、屈折率を減少させる物質にはLiのほかMg
どが適用できる。障壁層用物質としてはSi,SiO2
などが適用できる。
Furthermore, when LiNbO 3 is used for the substrate, Ti, Cu, Ni, etc. can be used as the substance that increases the refractive index, and Mg , etc. in addition to Li can be used as the substance that decreases the refractive index. Si, SiO 2 as barrier layer material
etc. can be applied.

以上説明したように本発明の方法によれば、屈
折率最大の部分を基板の内部に形成させるので、
伝搬光が基板表面で散乱されることなく、基板中
に埋め込まれた光導波路内を伝搬する。このため
伝搬損失の著しく少ない光導波路を作製すること
ができる。
As explained above, according to the method of the present invention, since the portion with the highest refractive index is formed inside the substrate,
Propagating light propagates within an optical waveguide embedded in the substrate without being scattered on the substrate surface. Therefore, an optical waveguide with extremely low propagation loss can be manufactured.

また基板の屈折率を増加させる物質と、基板の
屈折率を減少させる物質を、一度に拡散させるの
で、作業工程が少なく、生産性が高い利点があ
る。
Furthermore, since a substance that increases the refractive index of the substrate and a substance that decreases the refractive index of the substrate are diffused at the same time, there are advantages of fewer work steps and high productivity.

さらに障壁層の物質、厚み等によつて基板の屈
折率を増加させるイオンと基板の屈折率を減少さ
せるイオンの拡散係数の差を任意に制御できるの
で、光導波路の屈折率プロフアイルの制御が行い
易く、薄膜から厚膜まで広範囲の膜状導波路を作
製できる利点がある。
Furthermore, the difference in diffusion coefficient between ions that increase the refractive index of the substrate and ions that decrease the refractive index of the substrate can be arbitrarily controlled by changing the material and thickness of the barrier layer, making it possible to control the refractive index profile of the optical waveguide. It has the advantage that it is easy to perform and can produce a wide range of film waveguides from thin films to thick films.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の拡散法によつて作製された光導
波路の典型的な屈折率分布図、第2図a,b,
b′,cは本発明の光導波路の製作方法を説明する
ための図、第3図は本発明の方法により作製され
た光導波路の屈折率分布図である。 1……基板、2……基板中に拡散して屈折率を
増加させる物質の薄膜、3……基板中に拡散して
屈折率を減少させる物質の薄膜、4……屈折率を
減少させる物質3の拡散を制御するための障壁
層、5……基板中の屈折率の増加した領域(光導
波路)、6……基板中に物質3が拡散して屈折率
がやや減少した領域。
Figure 1 is a typical refractive index distribution diagram of an optical waveguide fabricated by the conventional diffusion method, Figure 2 a, b,
b' and c are diagrams for explaining the method of manufacturing an optical waveguide of the present invention, and FIG. 3 is a refractive index distribution diagram of the optical waveguide manufactured by the method of the present invention. 1...Substrate, 2...Thin film of a substance that diffuses into the substrate and increases the refractive index, 3...Thin film of substance that diffuses into the substrate and decreases the refractive index, 4...Substance that reduces the refractive index. A barrier layer for controlling the diffusion of substance 3, 5...A region in the substrate where the refractive index has increased (optical waveguide), and 6...A region where the substance 3 has been diffused into the substrate and the refractive index has decreased slightly.

Claims (1)

【特許請求の範囲】[Claims] 1 ガラスまたは結晶基板中に金属イオンを拡散
させることにより、光導波路を作製する方法にお
いて、基板の表面に拡散すべき金属もしくは該金
属の化合物を付着せしめ、さらにその上に該基板
中に拡散した際、屈折率を低下させる金属イオン
を含む単体もしくは化合物を付着させた後、これ
ら金属イオンの拡散速度を制御しながら、2種類
以上の金属イオンを一度に拡散させ、最大屈折率
部を基板内部に形成することを特徴とする光導波
路の作製方法。
1. In a method of manufacturing an optical waveguide by diffusing metal ions into a glass or crystal substrate, a metal to be diffused or a compound of the metal is adhered to the surface of the substrate, and further diffused into the substrate. After attaching a single substance or a compound containing metal ions that lower the refractive index, two or more types of metal ions are diffused at once while controlling the diffusion rate of these metal ions, and the highest refractive index area is placed inside the substrate. 1. A method of manufacturing an optical waveguide, the method comprising: forming an optical waveguide.
JP2989280A 1980-03-10 1980-03-10 Preparation for light waveguide line Granted JPS56126810A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2989280A JPS56126810A (en) 1980-03-10 1980-03-10 Preparation for light waveguide line

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2989280A JPS56126810A (en) 1980-03-10 1980-03-10 Preparation for light waveguide line

Publications (2)

Publication Number Publication Date
JPS56126810A JPS56126810A (en) 1981-10-05
JPS6112241B2 true JPS6112241B2 (en) 1986-04-07

Family

ID=12288614

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2989280A Granted JPS56126810A (en) 1980-03-10 1980-03-10 Preparation for light waveguide line

Country Status (1)

Country Link
JP (1) JPS56126810A (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5881229U (en) * 1981-11-30 1983-06-01 凸版印刷株式会社 Grooved board
JPS5897006A (en) * 1981-12-04 1983-06-09 Nec Corp Production of optical waveguide
JPH0723927B2 (en) * 1983-08-09 1995-03-15 富士通株式会社 Method of manufacturing optical waveguide
JPH0697287B2 (en) * 1984-12-06 1994-11-30 日本電気株式会社 Light control circuit manufacturing method
JPS62258419A (en) * 1986-05-02 1987-11-10 Nec Corp Optical control device
JPH07109444B2 (en) * 1986-06-18 1995-11-22 日本電気株式会社 Method of manufacturing waveguide type planar optical circuit
JPS6370827A (en) * 1986-09-12 1988-03-31 Nec Corp Production of optical control device
JPH01134402A (en) * 1987-11-20 1989-05-26 Nippon Telegr & Teleph Corp <Ntt> Light guide
JPH01178917A (en) * 1987-12-29 1989-07-17 Nec Corp Light control circuit and production thereof

Also Published As

Publication number Publication date
JPS56126810A (en) 1981-10-05

Similar Documents

Publication Publication Date Title
US3785717A (en) Stepped integrated waveguide structure with directional coupling and a method of manufacturing such structures
US3880630A (en) Method for forming optical waveguides
JPH01196005A (en) Manufacture of light microguide
US11555953B2 (en) Optical device with wires and organic moieties
JPS6112241B2 (en)
JPS60114811A (en) Optical waveguide and its production
US4521443A (en) Integrated optical waveguide fabrication by ion implantation
EP0376982A1 (en) Liquid crystal light valve and associated bonding structure
EP0368584A3 (en) Method of manufacturing a semiconductor wafer
JPH0527132A (en) Production of waveguide type optical parts
US5037168A (en) Optical waveguides
EP0230118B1 (en) Lithium niobate waveguide structures
EP0178815B1 (en) Improvements relating to optical waveguides
JPS62143846A (en) Antireflection treatment of transparent substrate
JPS6343101A (en) Transmission type diffraction grating
JPH0659147A (en) Optical waveguide and its production
JP3943149B2 (en) Optical waveguide and method for manufacturing the same
JPH0310206A (en) Optical waveguide of linbo3 and production thereof
JPH0359603A (en) Ti-diffusion linbo3 optical waveguide and its manufacture
JPS5919906A (en) Formation of optical waveguide
JPH0723927B2 (en) Method of manufacturing optical waveguide
JPS60177304A (en) Optical attenuator
JP3207876B2 (en) Manufacturing method of optical waveguide device
JPS57202505A (en) Production of optical circuit
JPH02113209A (en) Manufacture of y-branch waveguide