JPH01134402A - Light guide - Google Patents

Light guide

Info

Publication number
JPH01134402A
JPH01134402A JP29195887A JP29195887A JPH01134402A JP H01134402 A JPH01134402 A JP H01134402A JP 29195887 A JP29195887 A JP 29195887A JP 29195887 A JP29195887 A JP 29195887A JP H01134402 A JPH01134402 A JP H01134402A
Authority
JP
Japan
Prior art keywords
optical waveguide
diffusing
light guide
mgo
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP29195887A
Other languages
Japanese (ja)
Inventor
Kenji Kono
健治 河野
Tsutomu Kito
勤 鬼頭
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP29195887A priority Critical patent/JPH01134402A/en
Publication of JPH01134402A publication Critical patent/JPH01134402A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To decrease driving voltage, coupling loss and demultiplexing/ multiplexing losses or to decrease the radiation loss of a ridge light guide by diffusing two kinds of diffusing materials into a substrate or diffusing the 2nd diffusing material from the working surface of the ridge light guide. CONSTITUTION:The pattern of Ti is formed as a 1st diffusing material by an ordinary lift-off method on the LiNbO3 substrate 1 and the temp. is raised to about 1,000 deg.C for several hours to diffuse the Ti into the LiNbO3 substrate 1. After a resist is uniformly applied again on the LiNbO3 substrate 1 formed with the light guide 4, the resist in the part except the upper part of the light guide 4 is removed. Further, MgO as the 2nd diffusing material is deposited by evaporation over the entire surface and thereafter, the resist is removed by a remover to form the thin film pattern 8 of the MgO. This LiNbO3 substrate 1 is heated to about 100 deg.C, by which the MgO is diffused to the sideway of the light guide 4 without changing the distribution of the previously diffused Ti to provide a refractive index matching part 8'. The driving voltage is thereby lowered and the radiation loss in the demultiplexing/multiplexing part and the radiation loss on the surface of the light guide are decreased.

Description

【発明の詳細な説明】 [産業上の利用分野1 本発明は、光導波路に関し、特に光変調素子用光導波路
において、その損失および駆動電圧の低減化を図るとと
もに、動作速度の高速化並びに小型化を図ったものであ
る。
Detailed Description of the Invention [Industrial Application Field 1] The present invention relates to an optical waveguide, and in particular, to an optical waveguide for an optical modulation element, which aims to reduce loss and drive voltage, increase operating speed, and reduce size. The aim is to

[従来の技術] 光変調用デバイスにおいては、その損失および駆動電圧
の低減化がデバイス性能を向上する上で極めて重要であ
る。また、動作の高速化のためには、マイクロ波回路を
低電力化すべく、駆動電圧を低減化することは特に必要
不可欠の条件となる。
[Prior Art] In optical modulation devices, reducing loss and driving voltage is extremely important for improving device performance. Furthermore, in order to increase the speed of operation, it is particularly essential to reduce the driving voltage in order to reduce the power consumption of the microwave circuit.

第8図(A)および(B)は、それぞれ、X−カットの
ニオブ酸リチウム(LiNbOs)単結晶を基板とし、
進行波電極を用いた導波路形光位相変調器の斜視図およ
び断面図である0図中、1はLiNbO3基板、2およ
び3は変調信号を光導波路4に供給するための進行波形
変調電極(コプレーナ・ストリップ)であり、それぞれ
、中心導体および接地導体をなす。
Figures 8 (A) and (B) each use an X-cut lithium niobate (LiNbOs) single crystal as a substrate;
In Figure 0, which is a perspective view and a cross-sectional view of a waveguide type optical phase modulator using traveling wave electrodes, 1 is a LiNbO3 substrate, 2 and 3 are traveling wave modulating electrodes ( coplanar strips) and form the center conductor and ground conductor, respectively.

[発明が解決しようとする問題点] かかる変調器をまず駆動電圧の観点から考察する。[Problem that the invention attempts to solve] Such a modulator will first be considered from the perspective of drive voltage.

第9図(A)および(B)は、本例のTiパターンを熱
拡散して形成した光導波路4を伝播する光の強度分布を
示す。第9図(A)では、横軸に変数として基板表面方
向の位置Xを取り、同図(B)では横軸に変数として基
板深さ方向の位置y火成っている。なお、y=Qは基板
表面上を、x=0.は熱拡散前のTiパターンの中心を
表わしている。これら図から明らかなように、X方向の
光強度分布はX方向での分布と比べてかなり広が・って
いる。光位相変調器の駆動電圧のフィギャ・オブ・メリ
ットとしては、電気光学効果により光の位相をπだけず
らすに必要な電圧Vgc  と電極長りとの積VπLが
考えられる。このVz  Lは導波路内の光の強度分布
と変調信号の電界分布の重なり積分に比例する。すなわ
ち、Applied 0ptics (vol、19.
 No、4゜pp、591−597.1980) に説
明されているように、−般にX方向の拡散定数はX方向
のものと比較して大きいので、光導波路内の光のX方向
のモードフィールド径(光強度分布が1/e2となる全
幅)が大となり、第8図示の構成ではvへLを低減でき
ないという問題点がある。
FIGS. 9A and 9B show the intensity distribution of light propagating through the optical waveguide 4 formed by thermally diffusing the Ti pattern of this example. In FIG. 9(A), the position X in the substrate surface direction is plotted as a variable on the horizontal axis, and in FIG. 9(B), the position y in the substrate depth direction is plotted as a variable on the horizontal axis. Note that y=Q is on the substrate surface, x=0. represents the center of the Ti pattern before thermal diffusion. As is clear from these figures, the light intensity distribution in the X direction is considerably wider than the distribution in the X direction. The figure of merit of the drive voltage of the optical phase modulator can be considered as the product VπL of the voltage Vgc required to shift the phase of light by π due to the electro-optic effect and the electrode length. This Vz L is proportional to the integral of the overlap between the light intensity distribution in the waveguide and the electric field distribution of the modulated signal. That is, Applied Optics (vol. 19.
No., 4゜pp, 591-597.1980), since the diffusion constant in the X direction is generally larger than that in the X direction, the mode of light in the X direction in the optical waveguide The field diameter (total width at which the light intensity distribution is 1/e2) becomes large, and the configuration shown in FIG. 8 has the problem that L cannot be reduced to v.

さらに、第8図示の光位相変調器を挿入損失の観点から
考察する。光変調器への光の入出力は一般に単一モード
光ファイバ(Single−mode Fiber :
以下SMFと略す)で行われるが、その場合の結合効率
ηは次式で近似的に求められる。なお、SMFと光導波
路の電界分布をガウスビームで近似する。
Furthermore, the optical phase modulator shown in FIG. 8 will be considered from the viewpoint of insertion loss. Light input and output to an optical modulator is generally performed using a single-mode optical fiber (Single-mode fiber).
(hereinafter abbreviated as SMF), and the coupling efficiency η in that case can be approximately determined by the following equation. Note that the electric field distribution of the SMF and the optical waveguide is approximated by a Gaussian beam.

η8η×ηy               (t)こ
こで、η8.η、はそれぞれX方向、X方向での結合効
率であり、 ηx=z/[(mwx/wr)+(wr/mwx)] 
  (2)ηy=2/[(mwy/wr)+(wr/m
wy)]   (3)ここでwxおよびW、は、それぞ
れ、光導波路を伝播する光強度分布のX方向およびX方
向のスポットサイズ(ガウスビームではモードフィール
ド径の局)であり、WfはSMFのスポットサイズであ
る。また、mは導波路のスポットサイズがSMFのスポ
ットサイズに近くなるように、レンズによりビーム変換
する場合の像倍率である。このときの最大結合効率η□
8は、 aη7am=o            (4)を満足
する条件から求まり、 m = w 、/ F77iy           
(5)η、、1X・4/(FW)1+FWフを弓)2(
6)となる。
η8η×ηy (t) where η8. η is the coupling efficiency in the X direction and in the X direction, respectively, ηx=z/[(mwx/wr)+(wr/mwx)]
(2) ηy=2/[(mwy/wr)+(wr/m
wy)] (3) Here, wx and W are the spot size in the X direction and the X direction of the light intensity distribution propagating in the optical waveguide (for a Gaussian beam, the station of the mode field diameter), and Wf is the spot size of the SMF. Spot size. Further, m is an image magnification when beam conversion is performed by a lens so that the spot size of the waveguide becomes close to the spot size of the SMF. Maximum coupling efficiency η□ at this time
8 is found from the condition that satisfies aη7am=o (4), m = w, / F77iy
(5) η,, 1X・4/(FW)1+FW bow) 2(
6).

つまり、X方向、X方向における光導波路のスポットサ
イズwx、w、の比が大きいと、光導波路とSMFとの
結合効率が小さくなる。なお、m=1の場合は光導波路
とSMFとの直接結合の場合であり、(2) 、 (3
)式は光導波路とSMFの直接結合の場合をも包含して
いる。
In other words, when the ratio of the spot sizes wx and w of the optical waveguide in the X direction is large, the coupling efficiency between the optical waveguide and the SMF becomes small. Note that when m = 1, it is a case of direct coupling between the optical waveguide and the SMF, and (2), (3
) also includes the case of direct coupling between the optical waveguide and the SMF.

次に、進行波1極形マツハツエンダ光強度変調器につい
て考える。
Next, consider the traveling wave monopole type Matsuhatsu Enda optical intensity modulator.

第10図は従来のこの種強度変調器の斜視図である。こ
のようなマツ八ツエンダ形光強度変調器では、1木の光
導波路を2木に分岐した後、各導波路に進行波電極(コ
プレーナ・ウェーブ・ガイド)の中心導体6と接地導体
7との間の変調信号電界を印加し、電気光学効果により
2つの光導波路を伝播する光に位相差を生じさせた後に
合波し、それらの干渉を利用して光の0N10FFを行
う。
FIG. 10 is a perspective view of a conventional intensity modulator of this type. In such a Matsuyatsuenda type optical intensity modulator, one optical waveguide is branched into two, and each waveguide is connected to a center conductor 6 and a ground conductor 7 of a traveling wave electrode (coplanar wave guide). A modulated signal electric field is applied between the two optical waveguides to generate a phase difference in the light propagating through the two optical waveguides due to the electro-optic effect, and then the light is combined, and the interference is used to perform ON10FF of the light.

この分岐および合波の部分における透過率η、は導波路
を伝播する光をガウスビームで近似すると、次式 %式%(7) で粗く推定できる。ここで、Wは導波路のスポットサイ
ズ、θは分岐角の局の値、λは波長である。(7)式よ
り明らかなように、スポットサイズWが大きいと分岐お
よび合波部分における透過率η、は小さくなる。さらに
スポットサイズが大きくなるとVN Lが大きくなるこ
とは第8図に示した光位相変調器の場合と同様である。
The transmittance η at this branching and combining portion can be roughly estimated using the following equation (7) by approximating the light propagating through the waveguide with a Gaussian beam. Here, W is the spot size of the waveguide, θ is the local value of the branching angle, and λ is the wavelength. As is clear from equation (7), when the spot size W is large, the transmittance η at the branching and combining portions becomes small. Furthermore, as the spot size increases, VN L increases, as in the case of the optical phase modulator shown in FIG.

さらに、従来のりッジ光導波路においては、リッジ加工
時の表面の兇れに起因して、リッジ加工面からの放射損
失が大きくなるという問題点があった。
Further, in the conventional ridge optical waveguide, there is a problem in that the radiation loss from the ridge-processed surface increases due to the sagging of the surface during ridge processing.

本発明は拡散光導波路において、基板表面に平行な方向
の拡散定数が大きいために基板表面方向のスポットサイ
ズが大きくなることに起因した上記問題点、すなわち駆
動電圧、結合損失9分岐および合波損失の増加、あるい
はリッジ光導波路においてリッジ加工面の荒れに起因す
る放射損失の増加等の点を解決した光変調器用光導波路
を提供することを目的とする。
The present invention solves the above-mentioned problems caused by the large spot size in the direction of the substrate surface due to the large diffusion constant in the direction parallel to the substrate surface in a diffused optical waveguide, namely driving voltage, coupling loss, 9-branching, and multiplexing loss. It is an object of the present invention to provide an optical waveguide for an optical modulator that solves problems such as an increase in radiation loss due to an increase in the number of ridges, or an increase in radiation loss due to roughness of a ridge processed surface in a ridge optical waveguide.

[問題点を解決するための手段] そのために、本発明は、基板上に第1の拡散物質を拡散
して形成された光導波路と、光導波路の中心部付近以外
の部分に、光導波路の屈折率分布を整形する第2の拡散
物質を拡散して成る屈折率整形部とを具えたことを特徴
とする。
[Means for Solving the Problems] To this end, the present invention provides an optical waveguide formed by diffusing a first diffusing substance on a substrate, and a portion of the optical waveguide other than near the center of the optical waveguide. It is characterized by comprising a refractive index shaping section formed by diffusing a second diffusing substance that shapes the refractive index distribution.

[作 用] 本発明では、少なくとも2種類の拡散物質を拡散し、あ
るいはりッジ光導波路の加工表面から第2の拡散物質を
拡散することにより、光導波路とその周辺部との屈折率
差が大となるようにして、基板表面方向(X方向)にお
ける光のとじ込めを強くしている。その結果、拡散光導
波路においては、X方向のスポットサイズを小〜さくで
き、駆動電圧の低減化が可能となるばかりでなく、X方
向と基板の深さ方向(X方向)のスポットサイズの比を
1に近づけることができるので、例えばレンズ結合によ
り光導波路とSMFとを結合する場合、その結合効率を
大きくできる。さらには、マツハツエンダ光強度変調器
において分岐・合波部における放射損失の抑制が可能と
なる。一方、リッジ光導波路においては、リッジ加工面
付近における屈折率が低くなるため、電磁界がりッジ加
工表面まで達しなくなり、加工表面の荒れに起因する放
射損失を小さくできる。
[Function] In the present invention, by diffusing at least two types of diffusing substances or by diffusing a second diffusing substance from the processed surface of the ridge optical waveguide, the difference in refractive index between the optical waveguide and its surrounding area is reduced. is increased to strengthen light confinement in the substrate surface direction (X direction). As a result, in the diffused optical waveguide, the spot size in the X direction can be reduced to a small size, which not only makes it possible to reduce the driving voltage, but also improves the ratio of the spot size in the X direction and the depth direction of the substrate (X direction). can be brought close to 1, so when coupling an optical waveguide and an SMF by lens coupling, for example, the coupling efficiency can be increased. Furthermore, it is possible to suppress radiation loss in the branching/combining section in the Matsuhatsu Enda optical intensity modulator. On the other hand, in the ridge optical waveguide, since the refractive index near the ridge-processed surface is lower, the electromagnetic field does not reach the ridge-processed surface, and radiation loss due to roughness of the processed surface can be reduced.

なお、こうした2種類の拡散物質を拡散する技術として
は、既に電子通信学会光・電波部門全国大会、No、2
70 (昭和61年度)あるいはElectronic
sLetters、 vol、23. pp、797−
798.1987が報告されている。しかしながら、前
者はMgを基板表面全面に形成した後に拡散を行うもの
であり、またX方向のスポットサイズを大きくすること
によりSMFとの結合効率を改善しているものである。
Note that the technology for diffusing these two types of diffusing substances has already been awarded at No.
70 (1986) or Electronic
sLetters, vol, 23. pp, 797-
798.1987 has been reported. However, in the former method, Mg is formed over the entire surface of the substrate and then diffused, and the coupling efficiency with SMF is improved by increasing the spot size in the X direction.

本発明では、光導波路の中心部付近以外の部分に追拡散
を行っており、さらにあくまでX方向のスポットサイズ
を小さくすることが目的であるので、木質的に異なった
技術である。また、後者の文献では光導波路の曲がり部
分の外側にMgOを拡散しているが、これは曲がり部分
において光導波路とその外側周辺との屈折率差を小さく
し、放射損失を抑制しようとするものである。一方、本
発明では分岐・合波部の低損失化を図るとともに、光導
波路の両側へ拡散させることによりX方向のスポットサ
イズを小さくするものであって、この文献の手法とは異
なっている。
In the present invention, additional diffusion is performed in areas other than the vicinity of the center of the optical waveguide, and the purpose is to reduce the spot size in the X direction, so this is a different technique in terms of structure. Furthermore, in the latter document, MgO is diffused outside the curved portion of the optical waveguide, but this is intended to reduce the difference in refractive index between the optical waveguide and its outer periphery at the curved portion and suppress radiation loss. It is. On the other hand, the present invention aims to reduce the loss in the branching/combining section and also reduces the spot size in the X direction by diffusing to both sides of the optical waveguide, which is different from the method of this document.

[実施例] 以下、図面を参照して本発明の実施例を詳細に説明する
[Example] Hereinafter, an example of the present invention will be described in detail with reference to the drawings.

第1図(A)および(B)は本発明の第一の実施例を説
明する図であり、光位相変調器に使用する直線導波路に
ついて示している。この製造方法を以下説明する。
FIGS. 1A and 1B are diagrams for explaining a first embodiment of the present invention, and show a linear waveguide used in an optical phase modulator. This manufacturing method will be explained below.

まず、LiNb0.基板1上に通常のリフトオフ法によ
り第1の拡散物質としてTiのパターンを形成する。す
なわち、゛例えばLiNb0.基板1上にフォトレジス
トを一様にスピナーで塗布し、フォトマスクを用いて上
記レジストを露光した後、現像することにより導波路パ
ターンと同形の幅数μmの溝を形成する。さらに全面に
Tiを数100人蒸潰した後、レジストをリムーバで除
去すればTiの導波路パターンが形成される。その後、
数時間にわたり温度を約1000℃程度に上げ、Tiを
LiNbO3基板1中に拡散させる。
First, LiNb0. A pattern of Ti as a first diffusion material is formed on the substrate 1 by a normal lift-off method. That is, ``For example, LiNb0. A photoresist is uniformly applied onto the substrate 1 using a spinner, the resist is exposed to light using a photomask, and then developed to form a groove having a width of several micrometers in the same shape as the waveguide pattern. Furthermore, after steaming several hundred layers of Ti over the entire surface, the resist is removed with a remover to form a Ti waveguide pattern. after that,
The temperature is raised to approximately 1000° C. over several hours to diffuse Ti into the LiNbO3 substrate 1.

次に、このようにして光導波路4を形成したLiNb0
.基板1上に再度レジストを一様に塗布した後、導波路
4の上部以外の部分のレジストを同様の手法で除去する
。さらに、例えば第2の拡散物質としてのMgOを全面
に蒸着した後、レジストをリムーバで除去し、MgOの
薄膜パターン8を形成する。第1図(A)はこの時点で
の斜視図を表わしている。
Next, the LiNb0 which formed the optical waveguide 4 in this way
.. After uniformly applying the resist again onto the substrate 1, the resist on the portion other than the upper portion of the waveguide 4 is removed using the same method. Furthermore, for example, after MgO as a second diffusion substance is vapor-deposited over the entire surface, the resist is removed with a remover to form a thin film pattern 8 of MgO. FIG. 1(A) shows a perspective view at this point.

この後、このLiNb0.基板lを数100℃(例えば
900℃程度)に上げることにより、第1図(B)に示
すように、前もって拡散したTiの分布を変えることな
く MgOを光導波路4の側方に拡散して屈折率整形部
8′を設けることができる。
After this, this LiNb0. By raising the temperature of the substrate 1 to several hundred degrees Celsius (for example, about 900 degrees Celsius), MgO can be diffused to the sides of the optical waveguide 4 without changing the distribution of previously diffused Ti, as shown in FIG. 1(B). A refractive index shaping section 8' can be provided.

第2図(A)〜(C)はその結果生じる屈折率差Δnの
分布を示す。同図(A)はTiのみを熱拡散した場合の
屈折率差Δnの分布である。また、同図′(B)はMg
Oのみを熱拡散した場合の屈折率差Δnの分布であり、
MgOが拡散された部分の屈折率差Δnは負となってい
ることがわかる。同図(C)はTiとMgOの双方を拡
散した場合の屈折率差Δnであり、同図(A)と(B)
とを重畳したものとなっており、Ti部分において現れ
る屈折率差Δnのピーク値とそのわきのMgO部分にお
いて現れる最小値との差は、Tiのみを熱拡散した同図
(A)の場合と比較して大きくなっている。
FIGS. 2A to 2C show the distribution of the resulting refractive index difference Δn. FIG. 5A shows the distribution of the refractive index difference Δn when only Ti is thermally diffused. In addition, the same figure'(B) shows Mg
This is the distribution of the refractive index difference Δn when only O is thermally diffused,
It can be seen that the refractive index difference Δn in the portion where MgO is diffused is negative. The figure (C) shows the refractive index difference Δn when both Ti and MgO are diffused, and the figure (A) and (B)
The difference between the peak value of the refractive index difference Δn that appears in the Ti part and the minimum value that appears in the MgO part beside it is the same as in the case of the same figure (A) where only Ti is thermally diffused. It is larger in comparison.

第3図は横軸に第2図(B)に示したMgO薄膜パター
ンのギャップをとり、縦軸に光導波路4のX方向におけ
るスポットサイズをとった場合の定性的な図である。同
図から明らかなように、MgO薄膜パターンのギャップ
が零のとき、すなわち光導波路の上部全面にMgOを形
成・拡散すると、Tiのみを熱拡散した場合(破線)よ
りも、X方向のスポットサイズはかなり大となる。この
ギャップを徐々に広げていくと、このスポットサイズは
徐々に小さくなり、ある点で最小となる。さらにギャッ
プを広げると、Tiのみを熱拡散した場合に漸近してい
く。スポットサイズの最小値とその場合のMgOのギャ
ップとは、MgO薄膜の厚さと熱拡散温度と時間とに依
存している。
FIG. 3 is a qualitative diagram in which the horizontal axis represents the gap of the MgO thin film pattern shown in FIG. 2(B), and the vertical axis represents the spot size of the optical waveguide 4 in the X direction. As is clear from the figure, when the gap of the MgO thin film pattern is zero, that is, when MgO is formed and diffused over the entire upper surface of the optical waveguide, the spot size in the X direction is smaller than when only Ti is thermally diffused (dashed line). becomes quite large. As this gap is gradually widened, this spot size gradually decreases until it reaches a minimum at a certain point. When the gap is further widened, the temperature becomes asymptotic when only Ti is thermally diffused. The minimum spot size and the corresponding MgO gap depend on the MgO thin film thickness, heat diffusion temperature and time.

第4図は光導波路4のX方向のスポットサイズを2μm
とし、X方向のスポットサイズを変化させたときのVL
を表わしている。なお、光導波路4内の電界分布は、X
方向を1次のエルミート・ガウス関数に、X方向をガウ
ス関数に近似させている0図より明らかなように、X方
向のスポットサイズが小さくなるにつれてVλLが減少
している。
Figure 4 shows the spot size of the optical waveguide 4 in the X direction of 2 μm.
VL when changing the spot size in the X direction
It represents. Note that the electric field distribution inside the optical waveguide 4 is
As is clear from the diagram in which the direction is approximated to a first-order Hermitian Gaussian function and the X direction is approximated to a Gaussian function, VλL decreases as the spot size in the X direction becomes smaller.

また、前述のようにX方向における光の分布の広がりは
X方向のものより大きいが、X方向におけるとじ込もり
が強くなっているので、この非対称性も緩和される。そ
のため、光入出力用SMFとの結合に、例えば^ppl
ied 0ptics(vol、25.No、15゜p
p、2600〜2605.1986)に示されたような
レンズ系を用いれば、(6)式から明らかなように光結
合損失を大幅に改善できる。
Further, as described above, the spread of the light distribution in the X direction is larger than that in the X direction, but since the confinement in the X direction is stronger, this asymmetry is also alleviated. Therefore, for coupling with optical input/output SMF, for example, ^ppl
ied 0ptics (vol, 25.No, 15゜p
If a lens system such as the one shown in P.P., 2600-2605.1986) is used, the optical coupling loss can be significantly improved as is clear from equation (6).

第5図は、マツハツエンダ形光強度変調器において光の
、5tH・合波部に本発明を適用した場合の斜視図を示
している0図中の8がMgOの薄膜パターンである。
FIG. 5 is a perspective view of the case where the present invention is applied to a 5tH light multiplexing section in a Matsuhatsu Enda type optical intensity modulator. 8 in FIG. 0 is a thin film pattern of MgO.

このようなマツハツエンダ形光強度変調器に対しては、
第1図の例と同様に、光の入出力部分および信号電界の
印加部分のみでなく、図示のようにマツハツエンダ形光
導波路5の分岐・合波部分に本発明を適用すれば、上述
と同様に光のとじ込もりが強くなり、導波光のスポット
サイズが小となるので、(7)式から分岐・合波による
放射損失を小さくできることがわかる。
For such a Matsuhatsu Enda type optical intensity modulator,
Similar to the example in FIG. 1, if the present invention is applied not only to the light input/output portion and the signal electric field application portion, but also to the branching/combining portion of the Matsuhatsu Enda-shaped optical waveguide 5 as shown in the figure, the same as described above can be achieved. Since the light confinement becomes stronger and the spot size of the guided light becomes smaller, it can be seen from equation (7) that the radiation loss due to branching and multiplexing can be reduced.

なお、本発明を光導波路の一部分、例えば変調用電極と
相互作用する部分や、分岐・結合部分あるいは光入出力
端部に適用する場合には、MgO薄膜端部で屈折率が不
連続となる。それを避けるには、例えば第6図に示すよ
うに、MgO薄膜パターン8の端部を例えばテーパ形状
とし、徐々に光導波路4より離隔させて行くことが有効
である。
Note that when the present invention is applied to a part of an optical waveguide, for example, a part that interacts with a modulation electrode, a branching/coupling part, or an optical input/output end, the refractive index becomes discontinuous at the end of the MgO thin film. . In order to avoid this, it is effective to make the end of the MgO thin film pattern 8 into a tapered shape and gradually separate it from the optical waveguide 4, as shown in FIG. 6, for example.

第7図はりフジ形光導波路に本発明を適用した実施例で
ある。本例によると、リッジ表面の屈折率が拡散された
MgOのためにLiNbO3のものより低くなるため、
リッジ形成時における表面の荒れに起因する光導波路の
放射損失を小さく抑えることができる。
FIG. 7 is an embodiment in which the present invention is applied to a beam-shaped optical waveguide. According to this example, the refractive index of the ridge surface is lower than that of LiNbO3 due to the diffused MgO;
Radiation loss of the optical waveguide due to surface roughness during ridge formation can be suppressed to a small level.

なお、上述した各実施例では、Tiの薄膜パターンを熱
拡散した後にMgOの薄膜パターンを追形成し、これを
追熱拡散するようにしたが、屈折率を低減できるもので
あれば、MgO以外の他の種類の薄膜パターンを用いて
もよい、また、Ti薄膜パターンとMgO薄膜パターン
もしくはTi薄膜パターンに加えて他の種類の薄膜パタ
ーンをLiNbO3基板上に形成し、同時に熱拡散する
ようにしてもよい。
In each of the above-mentioned examples, after the Ti thin film pattern is thermally diffused, the MgO thin film pattern is additionally formed and then thermally diffused. Alternatively, a Ti thin film pattern and an MgO thin film pattern, or other types of thin film patterns in addition to the Ti thin film pattern may be formed on the LiNbO3 substrate and thermally diffused at the same time. Good too.

さらに、基板としては、例えばy−カットあるいは2−
カットLiNbO3でもよいし、ざらにLiNbO5以
外のLiTaO5等の誘電体あるいはGaAs等の半導
体基板でもよい。加えて、導波路に用いる物質について
も、Ti以外の熱拡散物質でもよく、例えばリチウム外
拡散導波路やプロトン交換導波路等地の種類の導波路と
することができる。また、導波路周辺部の形成法として
も、屈折率を低減できるも”のであれば他の手法を用い
ても本発明の効、果を得ることができるのは勿論である
Furthermore, as a substrate, for example, y-cut or 2-cut
It may be a cut LiNbO3, a dielectric material other than LiNbO5 such as LiTaO5, or a semiconductor substrate such as GaAs. In addition, the material used for the waveguide may be a thermal diffusion material other than Ti, and for example, a waveguide of other types such as a lithium-external diffusion waveguide or a proton exchange waveguide can be used. Furthermore, as a method for forming the peripheral portion of the waveguide, it is of course possible to obtain the effects of the present invention by using other methods as long as the refractive index can be reduced.

さらに加えて、外部の光入出力回路はSMFのみならず
、半導体レーザその他の光導波路でもよい。
Additionally, the external optical input/output circuit may be not only an SMF but also a semiconductor laser or other optical waveguide.

[発明の効果] 以上説明したように、本発明によれば、光導波路を伝播
する光のとじ込めが大きくなり、駆動電圧の低減化が可
能となるとともに、例えばマツハツエンダ形光導波路等
の場合の分岐・合波部における放射損失やりッジ光導波
路の表面の荒れに起因する放射損失が小さくなる。さら
に導波光のX方向とX方向の非対称性も緩和できるので
、例えばレンズ等によるビーム変換を行えば、外部の光
入出力回路との結合効率を改善できるという利点もある
[Effects of the Invention] As explained above, according to the present invention, the light propagating through the optical waveguide can be confined to a large extent, and the driving voltage can be reduced. Radiation loss at the branching/combining section and radiation loss due to surface roughness of the ridge optical waveguide are reduced. Furthermore, since the asymmetry of the guided light in the X direction and the X direction can be alleviated, for example, by performing beam conversion using a lens or the like, there is an advantage that the coupling efficiency with an external optical input/output circuit can be improved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(^)および(B)は本発明の一実施例を示し、
それぞれ、光位相変調器に使用可能な直線導波路の構成
過程の状態を示す斜視図および構成された直線導波路の
断面図、 第2図(A)〜(C)、第3図および第4図は第1図示
の実施例における屈折率分布等の整形の原理を説明する
ための説明図、 第5図は本発明の他の実施例として、本発明をマツハツ
エンダ形光強度変調器に適用した例を示す斜視図、 第6図は本発明に係る第2の拡散物質の形成態様の一実
施例を示す平面図、 第7図は本発明のさらに他の実施例として、本発明をリ
ッジ形光導波路に適用した例を示す断面図、 第8図(^)および(B)は、それぞれ、従来の光導波
路を用いた光位相変調器を示す斜視図および断面図、 第9図(^)および(B)は第8図(^)および(B)
に示した光導波路内の直交する2方向の光の強度分布を
示す説明図、 第1θ図は従来の光導波路を用いたマツハツエンダ形光
強度変調器を示す斜視図である。 1−−−LiNbOs基板、 2.3・・・進行波電極(コプレーナ・ストリップ)、 4・・・直線光導波路、 5・・・マツハツエンダ形光導波路、 6.7・・・進行波電極(コプレーナ・ウェーブ・ガイ
ド)、 8・−MgO薄膜。
FIGS. 1(^) and (B) show an embodiment of the present invention,
A perspective view and a cross-sectional view of the constructed linear waveguide, respectively, showing the state of the construction process of a linear waveguide that can be used in an optical phase modulator. The figure is an explanatory diagram for explaining the principle of shaping the refractive index distribution etc. in the embodiment shown in the first figure. Figure 5 shows another embodiment of the present invention in which the present invention is applied to a Matsuhatsu Enda type light intensity modulator. A perspective view showing an example; FIG. 6 is a plan view showing an embodiment of the formation mode of the second diffusing substance according to the present invention; FIG. 8(^) and (B) are respectively a perspective view and a sectional view showing an optical phase modulator using a conventional optical waveguide, and FIG. 9(^) is a sectional view showing an example of application to an optical waveguide. and (B) are Figure 8 (^) and (B)
1 is an explanatory diagram showing the intensity distribution of light in two orthogonal directions in the optical waveguide shown in FIG. 1---LiNbOs substrate, 2.3... Traveling wave electrode (coplanar strip), 4... Straight optical waveguide, 5... Matsuhatsu Enda type optical waveguide, 6.7... Traveling wave electrode (coplanar strip)・Wave guide), 8.-MgO thin film.

Claims (1)

【特許請求の範囲】 1)基板上に第1の拡散物質を拡散して形成された光導
波路と、該光導波路の中心部付近以外の部分に、前記光
導波路の屈折率分布を整形する第2の拡散物質を拡散し
て成る屈折率整形部とを具えたことを特徴とする光導波
路。 2)特許請求の範囲第1項記載の光導波路において、前
記光導波路および前記屈折率整形部を、単一の拡散処理
により同時に形成したことを特徴とする光導波路。 3)特許請求の範囲第1項記載の光導波路において、前
記光導波路はリッジ形状を有し、前記屈折率整形部は、
前記リッジ形状の光導波路に前記第2の拡散物質を付着
させ、これを拡散することにより形成されていることを
特徴とする光導波路。
[Scope of Claims] 1) An optical waveguide formed by diffusing a first diffusing substance on a substrate, and a second waveguide for shaping the refractive index distribution of the optical waveguide in a portion other than the center of the optical waveguide. 2. An optical waveguide comprising: a refractive index shaping section formed by diffusing a diffusing substance according to No. 2. 2) The optical waveguide according to claim 1, wherein the optical waveguide and the refractive index shaping section are formed simultaneously by a single diffusion process. 3) In the optical waveguide according to claim 1, the optical waveguide has a ridge shape, and the refractive index shaping part is
An optical waveguide characterized in that it is formed by attaching the second diffusing substance to the ridge-shaped optical waveguide and diffusing it.
JP29195887A 1987-11-20 1987-11-20 Light guide Pending JPH01134402A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29195887A JPH01134402A (en) 1987-11-20 1987-11-20 Light guide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29195887A JPH01134402A (en) 1987-11-20 1987-11-20 Light guide

Publications (1)

Publication Number Publication Date
JPH01134402A true JPH01134402A (en) 1989-05-26

Family

ID=17775663

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29195887A Pending JPH01134402A (en) 1987-11-20 1987-11-20 Light guide

Country Status (1)

Country Link
JP (1) JPH01134402A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2839559A1 (en) * 2002-05-13 2003-11-14 Teem Photonics Integrated optical wavelength multiplexer/demultiplexer has an optical cladding surrounding at least one portion of each core so as to define interaction zones comprising diffraction gratings
US7310453B2 (en) 2002-08-30 2007-12-18 Sumitomo Osaka Cement Co., Ltd. Optical modulator
EP3009879B1 (en) * 2014-10-15 2020-03-11 Ixblue Electro-optical -phase modulator and modulation method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5144943A (en) * 1974-10-16 1976-04-16 Nippon Telegraph & Telephone
JPS56126810A (en) * 1980-03-10 1981-10-05 Nippon Telegr & Teleph Corp <Ntt> Preparation for light waveguide line
JPS5788411A (en) * 1980-11-21 1982-06-02 Fujitsu Ltd Forming method of optical waveguide
JPS62183405A (en) * 1986-02-08 1987-08-11 Agency Of Ind Science & Technol Optical waveguide circuit with taper and its production

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5144943A (en) * 1974-10-16 1976-04-16 Nippon Telegraph & Telephone
JPS56126810A (en) * 1980-03-10 1981-10-05 Nippon Telegr & Teleph Corp <Ntt> Preparation for light waveguide line
JPS5788411A (en) * 1980-11-21 1982-06-02 Fujitsu Ltd Forming method of optical waveguide
JPS62183405A (en) * 1986-02-08 1987-08-11 Agency Of Ind Science & Technol Optical waveguide circuit with taper and its production

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2839559A1 (en) * 2002-05-13 2003-11-14 Teem Photonics Integrated optical wavelength multiplexer/demultiplexer has an optical cladding surrounding at least one portion of each core so as to define interaction zones comprising diffraction gratings
US7310453B2 (en) 2002-08-30 2007-12-18 Sumitomo Osaka Cement Co., Ltd. Optical modulator
EP3009879B1 (en) * 2014-10-15 2020-03-11 Ixblue Electro-optical -phase modulator and modulation method

Similar Documents

Publication Publication Date Title
US7088875B2 (en) Optical modulator
Ohmachi et al. Electro‐optic light modulator with branched ridge waveguide
WO2010082673A1 (en) Branched optical waveguide, optical waveguide substrate and optical modulator
KR100431084B1 (en) Optical waveguide and method for manufacturing the same
CN110149153B (en) Optical modulator, modulation method and optical modulation system
US7509003B2 (en) Optical waveguide, optical device, and manufacturing method of the optical waveguide
JP2013037243A (en) Optical modulator
JPH01134402A (en) Light guide
JPH0523413B2 (en)
JP4587509B2 (en) Waveguide type optical modulator
US20040061918A1 (en) Electro-optic devices, including modulators and switches
JPH05173099A (en) Optical control element
JPH01201609A (en) Optical device
JPH05241115A (en) Waveguide type optical device
JPS6396626A (en) Waveguide type light control element
GB2339028A (en) Optical intensity modulator
JPH05249419A (en) Optical waveguide type optical device
RU2781367C1 (en) Hybrid integrated optical device
JP2765112B2 (en) Optical waveguide device, optical wavelength conversion element, and short wavelength laser light source
JP2758540B2 (en) Light modulation element and light modulation device using the same
JPH05264938A (en) Optical waveguide device
JP4197316B2 (en) Light modulator
JPH06222403A (en) Directional coupling type optical waveguide
JPH02114243A (en) Optical control device and its manufacture
JP3701041B2 (en) Waveguide type optical modulator