JPH0723927B2 - Method of manufacturing optical waveguide - Google Patents

Method of manufacturing optical waveguide

Info

Publication number
JPH0723927B2
JPH0723927B2 JP58145531A JP14553183A JPH0723927B2 JP H0723927 B2 JPH0723927 B2 JP H0723927B2 JP 58145531 A JP58145531 A JP 58145531A JP 14553183 A JP14553183 A JP 14553183A JP H0723927 B2 JPH0723927 B2 JP H0723927B2
Authority
JP
Japan
Prior art keywords
thin film
optical waveguide
refractive index
thickness
optical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58145531A
Other languages
Japanese (ja)
Other versions
JPS6037504A (en
Inventor
實 清野
啓幾 中島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP58145531A priority Critical patent/JPH0723927B2/en
Publication of JPS6037504A publication Critical patent/JPS6037504A/en
Publication of JPH0723927B2 publication Critical patent/JPH0723927B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • C03B37/014Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD]
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B6/13Integrated optical circuits characterised by the manufacturing method
    • G02B6/132Integrated optical circuits characterised by the manufacturing method by deposition of thin films

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Optics & Photonics (AREA)
  • General Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • General Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Optical Integrated Circuits (AREA)

Description

【発明の詳細な説明】 (a) 発明の技術分野 本発明は光導波路の製造方法、特に寸法及び屈折率が正
確に制御され、かつ屈折率が均一に或いは意図する如く
なめらかに分布する光導波路の製造方法に関する。
Description: (a) Technical Field of the Invention The present invention relates to a method for manufacturing an optical waveguide, and more particularly, an optical waveguide in which the size and refractive index are accurately controlled and the refractive index is evenly or smoothly distributed as intended. Manufacturing method.

(b) 技術の背景 光を情報伝送の媒体とするシステムにおいては多種の光
回路素子が用いられるが、システムの高度化或いはより
広範囲な普及のために、これらの光回路素子の特性の向
上、小型化、集積化或いは生産性の向上が一段と要望さ
れている。
(B) Background of the Technology A variety of optical circuit elements are used in a system in which light is used as an information transmission medium. However, due to the sophistication of the system or the wider spread of the system, the characteristics of these optical circuit elements are improved, There is a further demand for miniaturization, integration, or improvement in productivity.

これらの光回路素子の多くは信号光の伝搬に光導波路が
用いられ、光回路素子に共通する基本的技術として光導
波路技術は光通信システム等の進歩のために極めて重要
である。
Optical waveguides are used for the propagation of signal light in many of these optical circuit elements, and optical waveguide technology is extremely important for the advancement of optical communication systems and the like as a basic technology common to optical circuit elements.

(c) 従来技術と問題点 光導波路は周知の如く高屈折率を有する導波部と、これ
を包囲する低屈折率部とから成り立っている。光導波路
を形成する従来方法としては、例えば拡散法、スパッタ
リング法、エピタキシヤル成長法などがある。
(C) Conventional Technology and Problems As is well known, the optical waveguide comprises a waveguide portion having a high refractive index and a low refractive index portion surrounding the waveguide portion. Conventional methods for forming an optical waveguide include, for example, a diffusion method, a sputtering method, and an epitaxial growth method.

拡散法はバルク結晶内に不純物を拡散させたり、結晶内
の一部の構成原子を放出させたりすることによって、結
晶内部に高屈折率層を形成する。前者の例としては、ニ
オブ酸リチウム(LiNbO3)にチタン(Ti)等の金属を拡
散させる金属拡散導波路があり、後者の例としてはLiNb
O3を加熱して酸化リチウム(LiO2)を放出して異常光線
屈折率を増加させる例がある。
In the diffusion method, a high refractive index layer is formed inside the crystal by diffusing impurities in the bulk crystal or releasing some of the constituent atoms in the crystal. An example of the former is a metal diffusion waveguide for diffusing a metal such as titanium (Ti) into lithium niobate (LiNbO 3 ), and an example of the latter is LiNb.
There is an example of heating O 3 to release lithium oxide (LiO 2 ) to increase the extraordinary ray refractive index.

スパッタリング法としてはガラス基板上に屈折率がこれ
より大きいガラス薄膜を高周波スパッタリングで形成す
ることがしばしば行なわれている。またエピタキシヤル
成長法は例えば、タンタル酸リチウム(LiTaO3)基板上
にLiNbO3を、或いは砒化ガリウム(GaAs)基板上に砒化
アルミニウム・ガリウム(AlGaAs)をエピタキシヤル成
長することによって光導波路を形成する。
As a sputtering method, a glass thin film having a refractive index higher than that is often formed on a glass substrate by high frequency sputtering. In the epitaxial growth method, for example, an optical waveguide is formed by epitaxially growing LiNbO 3 on a lithium tantalate (LiTaO 3 ) substrate or aluminum gallium arsenide (AlGaAs) on a gallium arsenide (GaAs) substrate. .

光回路素子に用いる光導波路については、例えば伝送損
失を低減するために、或いは単一モード伝送のためにな
ど、光導波路の形状及び寸法、ガイド屈折率及び屈折率
分布などが厳密に最適化されることがますます必要とな
りつつある。
Regarding the optical waveguide used for the optical circuit element, the shape and size of the optical waveguide, the guide refractive index and the refractive index distribution are strictly optimized, for example, to reduce transmission loss or for single mode transmission. Are becoming more and more necessary.

しかしながら例えば前記拡散法による場合には屈折率の
変化は連続的であって前記要求の達成は不可能であり、
また従来のスパッタリング法、或いは蒸着法等による場
合には、例えば2種の光学材料を選択された比率で混合
被着することによって屈折率を制御することが原理的に
は考えられるが、これを正確に実現することは極めて困
難である。エピタキシヤル成長法もまた同様な実施上の
困難性があり、かつ、基板及び成長層形成材料が限定さ
れる。
However, for example, in the case of the diffusion method, the change in the refractive index is continuous, and the above requirement cannot be achieved.
In the case of the conventional sputtering method or vapor deposition method, it is theoretically possible to control the refractive index by mixing and depositing, for example, two kinds of optical materials at a selected ratio, but Accurate realization is extremely difficult. The epitaxial growth method also has similar practical difficulties, and the substrate and growth layer forming material are limited.

以上説明した如く、従来方法によっては前記の如き要求
に対処することは不可能であって、広い選択範囲につい
て、良好な制御性を有する光導波路の製造方法が要求さ
れている。
As described above, it is impossible to meet the above demands by the conventional method, and a method for manufacturing an optical waveguide having a good controllability over a wide selection range is required.

(d) 発明の目的 本発明は、導波路屈折率を広範囲かつ精密に選択するこ
とができ、更に最適の屈折率分布を容易に実現すること
が可能な光導波路の製造方法を提供することを目的とす
る。
(D) Object of the Invention It is an object of the present invention to provide a method for manufacturing an optical waveguide capable of selecting a waveguide refractive index in a wide range and precisely and easily realizing an optimum refractive index distribution. To aim.

(e) 発明の構成 本発明の前記目的は、基板上に、屈折率が異なる複数の
光学的複合材料もしくは金属材料薄膜を積層する工程
と、該薄膜を構成する成分を積層された薄膜の間で相互
に拡散せしめることによって該積層された薄膜を一体化
し、該一体化した薄膜の内部に上記成分の所定の分布を
形成する工程と、該一体化した薄膜の内部に上記成分の
分布に対応した所定の屈折率の分布を有する光導波路を
形成する工程とを含む光導波路の製造方法によって達成
される。
(E) Structure of the Invention The object of the present invention is to provide a step of laminating a plurality of optical composite material or metal material thin films having different refractive indexes on a substrate, and a thin film in which components constituting the thin film are laminated. Corresponding to the step of integrating the laminated thin films by diffusing each other with each other and forming a predetermined distribution of the above components inside the integrated thin film, and the distribution of the above components inside the integrated thin film. And a step of forming an optical waveguide having a predetermined refractive index distribution described above.

本発明の実施態様の第1は、屈折率が相互に異なる光学
材料の組合せ並びに各薄膜の厚さが意図する屈折率及び
その分布に即して選択された薄膜を多くは反復して積層
する前記製造方法である。
The first embodiment of the present invention is to repeatedly stack a plurality of thin films selected according to a combination of optical materials having different refractive indexes and the intended refractive index and distribution of the thickness of each thin film. It is the manufacturing method.

また第2の実施態様は、光学薄膜と金属薄膜とを多くは
反復して積層し、金属薄膜として導入された金属原子を
拡散する前記製造方法である。この製造方法において
も、意図する屈折率及びその分布に即して光学薄膜材料
及び金属薄膜材料の組合せ及び各薄膜、特に光学薄膜の
厚さが選択される。
A second embodiment is the above-mentioned manufacturing method in which an optical thin film and a metal thin film are repeatedly laminated in most cases and the metal atoms introduced as the metal thin film are diffused. Also in this manufacturing method, the combination of the optical thin film material and the metal thin film material and the thickness of each thin film, particularly the optical thin film, are selected according to the intended refractive index and its distribution.

(f) 発明の実施例 以下本発明を実施例により図面を参照して具体的に説明
する。
(F) Embodiments of the Invention Hereinafter, the present invention will be specifically described with reference to the drawings by embodiments.

第1図(a)乃至(c)は本発明の第1の実施例である
ステップ構造光導波路にかかり、(a)は薄膜積層構造
の模式断面図、(b)は相互拡散処理後の同一部分、す
なわち形成された光導波路の模式断面図、(c)は該光
導波路及びその近傍の屈折率分布を示す図である。
1 (a) to 1 (c) relate to a step structure optical waveguide according to a first embodiment of the present invention, (a) is a schematic sectional view of a thin film laminated structure, and (b) is the same after interdiffusion treatment. A part, that is, a schematic sectional view of the formed optical waveguide, (c) is a view showing a refractive index distribution of the optical waveguide and the vicinity thereof.

本実施例においては薄膜1は二酸化シリコン(SiO2)、
薄膜2は酸化(TiO2)を材料として、石英基板3上に交
互に積層して形成されている。各薄膜の厚さは100
〔Å〕程度以下とし、薄膜1と薄膜2との厚さの比は光
導波路の屈折率の目的値によって決定される。また積層
された薄膜の合計厚さは光導波路の厚さで、シングルモ
ードの場合2乃至10〔μm〕程度とする。本実施例にお
いてはこれらの薄膜はマグネトロンスパッタリング法に
よって形成しており、二種類の薄膜の厚さの比率はター
ゲット電圧などによって制御することができる。
In this embodiment, the thin film 1 is made of silicon dioxide (SiO 2 ),
The thin film 2 is made of oxide (TiO 2 ) as a material and is alternately laminated on the quartz substrate 3. The thickness of each thin film is 100
[Å] or less, the thickness ratio of the thin film 1 and the thin film 2 is determined by the target value of the refractive index of the optical waveguide. The total thickness of the laminated thin films is the thickness of the optical waveguide, and is about 2 to 10 [μm] in the single mode. In the present embodiment, these thin films are formed by the magnetron sputtering method, and the thickness ratio of the two types of thin films can be controlled by the target voltage or the like.

この様にして形成した薄膜積層構造に温度400乃至1500
〔℃〕程度において、数時間乃至十数時間程度の加熱処
理を行ないSiO2薄膜1とTiO2薄膜2との間に相互拡散を
行なわせて均一な組成の光導波路4を得る。先に述べた
如く各薄膜の厚さを100〔Å〕程度以下とすることによ
って、組成の均一化は容易に実現される。
The thin-film laminated structure formed in this way has a temperature of 400 to 1500.
At about [° C.], heat treatment is performed for about several hours to about ten and several hours to cause mutual diffusion between the SiO 2 thin film 1 and the TiO 2 thin film 2 to obtain an optical waveguide 4 having a uniform composition. As described above, by making the thickness of each thin film about 100 [Å] or less, the homogenization of the composition can be easily realized.

前記実施例においては、SiO2薄膜1の厚さを約20
〔Å〕、TiO2薄膜2の等価的な膜厚を約0.6〔Å〕とし
て合計厚さ約4〔μm〕に積層して、波長λ=0.633
〔μm〕の光に対する屈折率は、SiO2薄膜のn1=1.477,
TiO2薄膜のn2=2.3,に対して光導波路はnf=1.496を得
ている。
In the above embodiment, the thickness of the SiO 2 thin film 1 is about 20.
[Å], the equivalent thickness of the TiO 2 thin film 2 is set to about 0.6 [Å], and the TiO 2 thin film 2 is laminated to a total thickness of about 4 [μm], and the wavelength λ = 0.633
Refractive index for light of [μm] is, the SiO 2 thin film n 1 = 1.477,
The optical waveguide obtained nf = 1.496, while n 2 = 2.3 for TiO 2 thin film.

ここで「等価的な膜厚」とは、通常使われる膜厚の概念
ではなくスパッタにより生膜される物質の分子が積重な
る前の状態を示すものとする。つまり、スパッタ時間が
非常に短い場合、分子は基板面内に散在し面内はスパッ
タ分子で覆われていない、この場合、まだ膜を構成して
いないため、このようなものに対して膜厚という表現は
適当でないが、ここではスパッタされ面内に付いている
分子の量の便利的な表現方法として「等価的な膜厚」と
いう表現を用いる。具体的には、例えば厚さ60〔Å〕の
SiO2膜を構成している分子の数(単位面積×厚さの中の
分子の数)1i/100の分子が面内散在している場合、等価
的な膜厚は0.6Åとなる。以下、この表現を同様の意味
で使用する。
Here, the term “equivalent film thickness” does not mean a commonly used concept of film thickness, but refers to a state before the molecules of the substance formed by sputtering are piled up. In other words, if the sputter time is very short, the molecules are scattered in the plane of the substrate and the plane is not covered with sputtered molecules. The expression "equivalent film thickness" is used here as a convenient expression method of the amount of molecules attached to the surface by sputtering. Specifically, for example, with a thickness of 60 [Å]
When the number of molecules forming the SiO 2 film (unit area × number of molecules in thickness) of 1i / 100 is scattered in the plane, the equivalent film thickness is 0.6Å. Hereinafter, this expression will be used with the same meaning.

次に第2図(a)及び(b)は屈折率分布型光導波路に
かかる第2の実施例の薄膜積層構造の模式断面図及び光
導波路の屈折率分布を示す図である。本実施例において
は中心部でSiO2薄膜1の等価的な膜厚約2〔Å〕に対し
てTiO2薄膜2の厚さ約20〔Å〕,基板3及び雰囲気側で
SiO2薄膜1の厚さ約20〔Å〕に対してTiO2薄膜2の等価
的な膜厚を約0.6〔Å〕としてこの間を連続的に徐々に
変化させる。この様にして得られた光導波路は図に示す
如くnf=1.477乃至2.20の屈折率分布を有する。
Next, FIGS. 2 (a) and 2 (b) are a schematic cross-sectional view of a thin film laminated structure of a second embodiment of the gradient index optical waveguide and a diagram showing the refractive index distribution of the optical waveguide. In the present embodiment, the equivalent thickness of the SiO 2 thin film 1 is about 2 [Å] at the central portion, and the thickness of the TiO 2 thin film 2 is about 20 [Å] at the substrate 3 and the atmosphere side.
The equivalent film thickness of the TiO 2 thin film 2 is set to about 0.6 [Å] with respect to the thickness of the SiO 2 thin film 1 of about 20 [Å], and the interval is continuously and gradually changed. The optical waveguide thus obtained has a refractive index distribution of nf = 1.477 to 2.20 as shown in the figure.

また第3図はステップ構造光導波路にかかる第3の実施
例の薄膜積層構造の模式断面図である。
Further, FIG. 3 is a schematic sectional view of a thin film laminated structure of the third embodiment relating to the step structure optical waveguide.

本実施例においては、膜厚11はSiO2薄膜であって前記実
施例と同様であるが、薄膜12はチタン(Ti)薄膜であ
る。この様に金属薄膜を用いる場合にはその等価的な厚
さを例えばSiO2薄膜の厚さの3/100程度以下、すなわち
3〔Å〕程度以下とする。
In this embodiment, the film thickness 11 is a SiO 2 thin film, which is the same as in the previous embodiment, but the thin film 12 is a titanium (Ti) thin film. When a metal thin film is used as described above, its equivalent thickness is, for example, about 3/100 or less of the thickness of the SiO 2 thin film, that is, about 3 [Å] or less.

これに前記実施例と同様な加熱処理を行なうことによっ
てTixSiyOzよりなる光導波路が形成される。この光導波
路が光学的に見て均一でありかつ光吸収率の増大などに
到らない、 SiO2,酸化アルミニウム(Al2O3)LiNbO3等の酸化物光学
材料に対するTi,タンタル(Ta),アルミニウム(Al)
などの金属の拡散可能量から金属薄膜厚さの前記上限が
設定される。
An optical waveguide made of TixSiyOz is formed by subjecting this to the same heat treatment as in the above embodiment. Ti and tantalum (Ta) for oxide optical materials such as SiO 2 , aluminum oxide (Al 2 O 3 ) LiNbO 3 etc., where this optical waveguide is optically uniform and does not increase the light absorption rate. , Aluminum (Al)
The upper limit of the thickness of the metal thin film is set based on the diffusible amount of the metal.

本実施例においては、SiO2膜厚11の厚さを約20〔Å〕Ti
薄膜12の等価的な膜厚を約0.3〔Å〕として光導波路の
屈折率nf=1.49を得ている。
In this embodiment, the SiO 2 film thickness 11 is about 20 [Å] Ti.
The refractive index nf = 1.49 of the optical waveguide is obtained by setting the equivalent film thickness of the thin film 12 to about 0.3 [Å].

なお前記第2の実施例と同様にTi薄膜12の厚さを順次変
化させて積層厚さの中央部において最大とすることによ
り、或いはSiO2膜厚11の厚さを中央部において最小とす
ること、又は両者を併用することによって屈折率分布型
光導波路を形成することができる。
As in the second embodiment, the thickness of the Ti thin film 12 is sequentially changed to the maximum in the central portion of the laminated thickness, or the thickness of the SiO 2 film thickness 11 is minimized in the central portion. The refractive index distribution type optical waveguide can be formed by the above or by using both of them together.

以上説明した各実施例においては何れも2種の材料を用
いて薄膜を交互に形成しているが、例えば屈折率分布型
光導波路を形成する場合等において、第4図(a)に示
す模式断面図を示す第4の実施例の如く、3種以上の薄
膜を用いて屈折率の選択的分布を容易にし、或いは選択
範囲を拡大してもよい。すなわち、本実施例において
は、21はSiO2薄膜,22はTiO2薄膜,23はシリコン(Si)薄
膜であって、図に示す如く屈折率を大きくする光導波路
の中央近傍においてのみ薄膜23を挿入することによっ
て、第4図(b)に示す屈折率分布を得ている。
In each of the embodiments described above, the thin films are alternately formed by using two kinds of materials, but in the case of forming a gradient index optical waveguide, for example, the schematic shown in FIG. As in the fourth embodiment showing the sectional view, three or more kinds of thin films may be used to facilitate the selective distribution of the refractive index or to expand the selection range. That is, in this embodiment, 21 is a SiO 2 thin film, 22 is a TiO 2 thin film, and 23 is a silicon (Si) thin film, and the thin film 23 is formed only near the center of the optical waveguide whose refractive index is increased as shown in the figure. By inserting, the refractive index distribution shown in FIG. 4 (b) is obtained.

以上説明した各実施例は石英基板を用い、薄膜をSiO2,T
iO2及びTiなどによって形成しているが、基板と薄膜の
材料の広範囲な組合せに対して本発明を実施することが
可能であって、多種の光回路素子の光導波路の形成に適
用することができる。
In each of the embodiments described above, a quartz substrate is used and a thin film is formed of SiO 2 , T.
Although formed of iO 2 and Ti, the present invention can be applied to a wide range of combinations of materials for the substrate and the thin film, and can be applied to the formation of optical waveguides of various optical circuit elements. You can

(g) 発明の効果 以上説明した如く本発明によれば、多種の光回路素子等
について、寸法及び屈折率が精確に制御され、かつ、屈
折率が均一に或いは意図する如くなめらかに分布する光
導波路を再現性良く製造することができ、光を情報伝送
の媒体とするシステムの進展に大きく寄与する。
(G) Effects of the Invention According to the present invention as described above, according to the present invention, it is possible to accurately control the dimensions and the refractive index of various optical circuit elements and the like, and the refractive index can be uniformly or smoothly distributed as intended. It is possible to manufacture the waveguide with good reproducibility, which greatly contributes to the development of a system using light as a medium for information transmission.

【図面の簡単な説明】[Brief description of drawings]

第1図(a)乃至(c)は本発明の第1の実施例にかか
り、(a)は薄膜積層構造の模式断面図、(b)は形成
された光導波路の模式断面図、(c)は屈折率の分布を
示す、第2図(a)及び(b)は第2の実施例にかか
り、(a)は薄膜積層構造の模式断面図、(b)は光導
波路の屈折率分布を示す。第3図は第3の実施例の薄膜
積層構造の模式断面図、第4図(a)及び(b)は第4
の実施例にかかり、(a)は薄膜積層構造の模式断面
図、(b)は光導波路の屈折率分布を示す。 図において、1,11及び21はSiO2薄膜、2及び22はTiO2
膜、12はTi薄膜、23はSi薄膜、3は石英基板、4は光導
波路を示す。
1 (a) to 1 (c) relate to a first embodiment of the present invention, (a) is a schematic cross-sectional view of a thin film laminated structure, (b) is a schematic cross-sectional view of an optical waveguide formed, (c) 2A and 2B relate to the second embodiment, FIG. 2A is a schematic cross-sectional view of a thin film laminated structure, and FIG. 2B is a refractive index distribution of an optical waveguide. Indicates. FIG. 3 is a schematic sectional view of a thin film laminated structure of the third embodiment, and FIGS.
2A shows a schematic cross-sectional view of a thin film laminated structure, and FIG. 3B shows a refractive index distribution of an optical waveguide. In the figure, 1, 11 and 21 are SiO 2 thin films, 2 and 22 are TiO 2 thin films, 12 is a Ti thin film, 23 is a Si thin film, 3 is a quartz substrate, and 4 is an optical waveguide.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】基板上に、屈折率が異なる複数の光学的複
合材料もしくは金属材料薄膜を積層する工程と、該薄膜
を構成する成分を積層された薄膜の間で相互に拡散せし
めることによって該積層された薄膜を一体化し、該一体
化した薄膜の内部に上記成分の所定の分布を形成する工
程と、該一体化した薄膜の内部に上記成分の分布に対応
した所定の屈折率の分布を有する光導波路を形成する工
程とを含むことを特徴とする光導波路の製造方法。
1. A step of laminating a plurality of optical composite material or metal material thin films having different refractive indexes on a substrate, and the components constituting the thin films are mutually diffused between the laminated thin films. A step of integrating the laminated thin films and forming a predetermined distribution of the above components inside the integrated thin film; and a predetermined refractive index distribution corresponding to the distribution of the above components inside the integrated thin film. And a step of forming an optical waveguide having the optical waveguide.
JP58145531A 1983-08-09 1983-08-09 Method of manufacturing optical waveguide Expired - Lifetime JPH0723927B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58145531A JPH0723927B2 (en) 1983-08-09 1983-08-09 Method of manufacturing optical waveguide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58145531A JPH0723927B2 (en) 1983-08-09 1983-08-09 Method of manufacturing optical waveguide

Publications (2)

Publication Number Publication Date
JPS6037504A JPS6037504A (en) 1985-02-26
JPH0723927B2 true JPH0723927B2 (en) 1995-03-15

Family

ID=15387358

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58145531A Expired - Lifetime JPH0723927B2 (en) 1983-08-09 1983-08-09 Method of manufacturing optical waveguide

Country Status (1)

Country Link
JP (1) JPH0723927B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10133019C1 (en) * 2001-07-06 2003-01-30 Hermann Heye I Ins Fa Method and device for determining the mass of a free-falling, molten glass drop

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63113507A (en) * 1986-10-31 1988-05-18 Hitachi Ltd Light guide and its production
JPH01230005A (en) * 1988-03-10 1989-09-13 Furukawa Electric Co Ltd:The Multilayered light guide

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5339563U (en) * 1976-09-10 1978-04-06
JPS5515001A (en) * 1978-07-18 1980-02-01 Ricoh Co Ltd Screwing-in quantity set mechanism
JPS5855647B2 (en) * 1978-08-29 1983-12-10 東芝機械株式会社 temperature compensated solenoid
JPS56126810A (en) * 1980-03-10 1981-10-05 Nippon Telegr & Teleph Corp <Ntt> Preparation for light waveguide line
JPS5810721A (en) * 1981-07-14 1983-01-21 Dainippon Printing Co Ltd Liquid crystal display element
JPS5863902A (en) * 1981-10-12 1983-04-16 Fujitsu Ltd Controlling method of optical waveguide
JPS5897005A (en) * 1981-12-04 1983-06-09 Nec Corp Production of optical waveguide

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10133019C1 (en) * 2001-07-06 2003-01-30 Hermann Heye I Ins Fa Method and device for determining the mass of a free-falling, molten glass drop

Also Published As

Publication number Publication date
JPS6037504A (en) 1985-02-26

Similar Documents

Publication Publication Date Title
EP0349309B1 (en) Birefringence diffraction grating type polarizer
JPS60114811A (en) Optical waveguide and its production
JPS60162207A (en) Optical waveguide and its manufacture
JPH06289341A (en) Optical waveguide element and its production
JPH0723927B2 (en) Method of manufacturing optical waveguide
JPS6286307A (en) Grating coupler
CN210776087U (en) Optical waveguide element
JPS6112241B2 (en)
JPH075316A (en) Diffraction grating type polarizer and its production
JPS5944004A (en) Substrate for thin-film optical circuit
JPH06289347A (en) Optical waveguide element and its manufacture
JPS5917510A (en) Optical waveguide
JP2556206B2 (en) Method for manufacturing dielectric thin film
JPS6038689B2 (en) Method for manufacturing waveguide electro-optic light modulator
JP2606525B2 (en) Optical waveguide device and manufacturing method thereof
US20020186948A1 (en) Electro-optic waveguide structure
JPH02236506A (en) Optical waveguide device
JPH0310206A (en) Optical waveguide of linbo3 and production thereof
JPH02232606A (en) Production of thin film waveguide type optical isolator
JPH06308343A (en) Optical waveguide and its production
JPS63210903A (en) Production of optical waveguide element
JPS59178415A (en) Thin film optical isolator and its production
JPS58173703A (en) Production of optical isolator
JP3203003B2 (en) Optical wavelength conversion element
JP2809112B2 (en) Light control device and manufacturing method thereof