JPS61121425A - Method of adding hydrogen to silicon - Google Patents

Method of adding hydrogen to silicon

Info

Publication number
JPS61121425A
JPS61121425A JP24534884A JP24534884A JPS61121425A JP S61121425 A JPS61121425 A JP S61121425A JP 24534884 A JP24534884 A JP 24534884A JP 24534884 A JP24534884 A JP 24534884A JP S61121425 A JPS61121425 A JP S61121425A
Authority
JP
Japan
Prior art keywords
thin film
hydrogen
silicon
heat treatment
polycrystalline
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP24534884A
Other languages
Japanese (ja)
Inventor
Shunji Seki
関 俊司
Takashi Umigami
海上 隆
Osamu Kogure
小暮 攻
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP24534884A priority Critical patent/JPS61121425A/en
Publication of JPS61121425A publication Critical patent/JPS61121425A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/26Bombardment with radiation
    • H01L21/263Bombardment with radiation with high-energy radiation
    • H01L21/265Bombardment with radiation with high-energy radiation producing ion implantation
    • H01L21/26506Bombardment with radiation with high-energy radiation producing ion implantation in group IV semiconductors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/3003Hydrogenation or deuterisation, e.g. using atomic hydrogen from a plasma
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/0242Crystalline insulating materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02524Group 14 semiconducting materials
    • H01L21/02532Silicon, silicon germanium, germanium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02656Special treatments
    • H01L21/02664Aftertreatments

Abstract

PURPOSE:To satisfactorily and effectively add hydrogen into a silicon by adding and combining hydrogen with a heat treatment through coating silicon with Ta2O5 of a low hydrogen transmission characteristics. CONSTITUTION:After a polycrystalline silicon thin film 7 to which hydrogen should be added on a quarts substrate 6, and thermal oxidation SiO2 thin films 8 are laminated on a polycrystalline CVD thin film 7 at a temperature 900 deg.C, a CVD SiO2 thin film 9 is formed on this thermal oxidation SiO2 thin film 8 or the polycrystalline element thin film 7. After an Al electrode 11 is formed, it is coated with an SiN thin film 10 containing hydrogen, which is coated all over with a Ta2O5 thin film 12, -and the hydrogen from the SiN film 11 is added to and combined with the polycrystalline silicon thin film 7 through heat treatment. The heat treatment is performed at the temperature 450 deg.C for 30 minutes. As the polycrystalline silicon 7 and the SiN thin film 12 are covered with the Ta2O5 thin film 12 of a low hydrogen transmission characteristics, the hydrogen addition and combination the SiN thin film 12 to the polycrystalline silicon thin film 7 are effectively completed.

Description

【発明の詳細な説明】 〔発明の分野〕 本発明はシリコンへの水素添加方法、さらに詳しくは多
結晶シリコンないし非晶質シリコンなどのシリコン中に
効率的に、かつ添加した水素の脱離を生じしめることな
く水素を添加する方法に関するものである。
[Detailed Description of the Invention] [Field of the Invention] The present invention relates to a method for adding hydrogen to silicon, and more specifically, a method for efficiently desorbing hydrogen added to silicon such as polycrystalline silicon or amorphous silicon. This invention relates to a method of adding hydrogen without hydrogen formation.

〔発明の背景〕[Background of the invention]

近年、非晶質シリコンを用いた半導体素子は太陽電池や
イメージセンサなど数多くの半導体装置のなかで重要な
役割を果たしている。従来より、非晶質シリコンを用い
た半導体素子ではシリコンの非晶質性に起因して、未結
合電子対が多数存在し、これらが電荷の捕獲準位として
働くことが知られている。これは非晶質シリコンの伝導
率抑制を困難にするなどの問題点を誘起し、非晶質シリ
コンを用いた半導体素子の実現に大きな障害になってい
る。
In recent years, semiconductor elements using amorphous silicon have played an important role in many semiconductor devices such as solar cells and image sensors. It has been known that in semiconductor devices using amorphous silicon, there are many unbonded electron pairs due to the amorphous nature of silicon, and these act as charge trapping levels. This causes problems such as making it difficult to suppress the conductivity of amorphous silicon, and is a major obstacle to the realization of semiconductor devices using amorphous silicon.

また、多結晶シリコンは任意の絶縁基板上への形成が容
易なことから平面ディスプレイ用アクティブマトリック
スなど他方面への応用が検討されているが、結晶粒界に
多数存在する電荷捕獲準位の素子特性への悪影響を取り
除くことが素子実現への大きな課題となっている。
In addition, since polycrystalline silicon can be easily formed on any insulating substrate, its application to other surfaces such as active matrices for flat-panel displays is being considered; Eliminating the negative effects on the characteristics is a major challenge for device realization.

これらの問題を解決し、素子実現を図るため、シリコン
中に水素を添加することにより5i−H結合を形成し、
非晶質シリコン中や多結晶シリコン中に多数存在する電
荷捕獲準位を低減化することが試みられてきた。シリコ
ン中への水素を添加する方法としては、水素を多量に含
む雰囲気中でシリコン薄膜を形成し、薄膜形成過程で薄
膜中に水素を取り込ませる方法、シリコン薄膜上に水素
を多量に含有した薄膜を別途形成し、熱処理によってシ
リコン薄膜中に水素を添加する方法などが発明され、い
ずれも非晶質シリコン、多結晶シリコン中の電荷捕獲準
位の低減化に効果があることが示されている。
In order to solve these problems and realize devices, we added hydrogen to silicon to form 5i-H bonds.
Attempts have been made to reduce the charge trapping levels that exist in large numbers in amorphous silicon and polycrystalline silicon. Methods of adding hydrogen into silicon include forming a silicon thin film in an atmosphere containing a large amount of hydrogen and incorporating hydrogen into the thin film during the thin film formation process, and forming a thin film containing a large amount of hydrogen on a silicon thin film. Methods have been invented in which hydrogen is added to the silicon thin film by separately forming it and heat-treating it, and both methods have been shown to be effective in reducing charge trapping levels in amorphous silicon and polycrystalline silicon. .

しかしながら、シリコン中に添加されたこれらの水素は
5i−1(結合力が弱いために容易に解離、i離しやす
< 、250℃以上の熱処理で乳離が進行することが知
られている。このため水素添加によってシリコン中の電
荷捕獲準位の低減を図った場合、水素添加後の素子製造
工程の最高温度が制限され、素子設計の自由度が大幅に
制約されている。
However, it is known that these hydrogens added to silicon are easily dissociated due to their weak bonding strength, and that weaning progresses with heat treatment at 250°C or higher. Therefore, when attempting to reduce the charge trapping level in silicon by hydrogenation, the maximum temperature in the device manufacturing process after hydrogenation is limited, and the degree of freedom in device design is greatly restricted.

前述のような水素添加方法のうち、前者の方法はシリコ
ン薄膜形成時に水素添加を行うため、素子製造工程全体
の温度が制限されるという欠点があり、これに対し後者
の方法においてはシリコン中への水素添加を素子製造工
程後半で行うことが可能になるため、製造工程の温度制
限を緩和することができるが、水素含有薄膜からシリコ
ン以外への水素離散が生じるためシリコン中への水素添
加が効果的に行われにくいという欠点がある。
Among the hydrogenation methods mentioned above, the former method performs hydrogenation during the formation of a silicon thin film, which has the disadvantage of limiting the temperature of the entire device manufacturing process, whereas the latter method adds hydrogen into the silicon. Since hydrogen can be added in the latter half of the device manufacturing process, temperature restrictions in the manufacturing process can be relaxed. The drawback is that it is difficult to carry out effectively.

〔発明の概要〕[Summary of the invention]

本発明は上述の点に鑑みなされたものであり、水素透過
性の低い膜によって水素を添加すべきシリコンを覆うこ
とによりシリコン中への水素添加ならびにシリコン中で
の未結合シリコンと水素との反応を促進し、良好な性能
の半導体素子製造しえるシリコンを提供することを目的
とする。
The present invention has been made in view of the above points, and by covering the silicon to which hydrogen is to be added with a film with low hydrogen permeability, it is possible to add hydrogen into the silicon and to cause the reaction between unbonded silicon and hydrogen in the silicon. The purpose is to provide silicon that can facilitate the production of semiconductor devices with good performance.

したがって本発明によるシリコンへの水素添加方法によ
れば、水素を添加すべきシリコンに直接あるいは他の薄
膜を介して水素含有薄膜を形成し、この水素含有薄膜を
装着した前記シリコンをTazO5膜で覆い、熱処理す
ることを特徴とするものである。
Therefore, according to the method of hydrogenating silicon according to the present invention, a hydrogen-containing thin film is formed on the silicon to which hydrogen is to be added either directly or through another thin film, and the silicon to which the hydrogen-containing thin film is attached is covered with a TazO5 film. , which is characterized by heat treatment.

また、本発明による第二のシリコンへの水素添加方法に
よれば、あらかじめ水素を吸蔵せしめたシリコンをTa
2O5膜で覆い、熱処理することを特徴とするものであ
る。
Furthermore, according to the second method of hydrogenating silicon according to the present invention, silicon that has previously absorbed hydrogen is converted into Ta.
It is characterized by being covered with a 2O5 film and subjected to heat treatment.

本発明によるシリコンへの水素添加方法によれば、水素
を添加すべきシリコンあるいはすでに水素を吸蔵したシ
リコンを水素透過特性の低いTa2O5膜で覆い、熱処
理したので、シリコン薄膜中への水素添加およびシリコ
ン中での未結合シリコンと水素との反応を促進すること
が可能になるという利点がある。
According to the method of hydrogenating silicon according to the present invention, the silicon to which hydrogen is to be added or the silicon that has already occluded hydrogen is covered with a Ta2O5 film with low hydrogen permeability and heat-treated. This has the advantage that it becomes possible to promote the reaction between unbonded silicon and hydrogen in the wafer.

〔発明の詳細な説明〕[Detailed description of the invention]

本発明によるシリコンへの水素添加方法は、まず水素を
添加すべきシリコンに直接あるいは他の薄膜を介して水
素含有薄膜を装着させる。
In the method for adding hydrogen to silicon according to the present invention, first, a hydrogen-containing thin film is attached to the silicon to which hydrogen is to be added, either directly or via another thin film.

前述のような水素を添加すべきシリコンとしては、上述
のように多結晶シリコンあるいは非晶質シリコンが効果
的であるが、必要ならば単結晶シリコンであってもよい
。すなわち、本発明においてシリコンは基本的に限定さ
れるものではない。
As the silicon to which hydrogen should be added, polycrystalline silicon or amorphous silicon is effective as described above, but single crystal silicon may be used if necessary. That is, in the present invention, silicon is not fundamentally limited.

このような水素を添加すべきシリコンに直接あるいは他
の薄膜を介して装着される水素含有薄膜としては、従来
この種の水素添加法に用いられている水素含有薄膜を有
効に用いることができる。
As the hydrogen-containing thin film attached directly to the silicon to which hydrogen is to be added or via another thin film, the hydrogen-containing thin film conventionally used in this type of hydrogenation method can be effectively used.

たとえば、イオン注入などにより水素を含有せしめた水
素含有SiN薄膜、水素含有Si02薄膜、水素含有シ
リコン膜などを使用できる。
For example, a hydrogen-containing SiN thin film, a hydrogen-containing Si02 thin film, a hydrogen-containing silicon film, etc. that contain hydrogen by ion implantation or the like can be used.

前述のような水素含有薄膜を装着したシリコンをTa2
O5で被覆する。水素含有膜より水素をシリコン中に効
果的に添加するためには、水素透過性の低い薄膜により
前記シリコンおよび水素含有薄膜を被覆することが有効
である。このような水素透過性の低い薄膜として本発明
によればTa2O5膜を選択したものである。
Silicon equipped with a hydrogen-containing thin film as described above is Ta2
Coat with O5. In order to effectively add hydrogen into silicon using a hydrogen-containing film, it is effective to cover the silicon and hydrogen-containing thin film with a thin film having low hydrogen permeability. According to the present invention, a Ta2O5 film is selected as such a thin film with low hydrogen permeability.

第1図は水素透過特性の評価用素子の断面図であって、
評価対象の薄膜を絶縁膜とする金属−絶縁膜一半導体(
MrS )キャパシタである。図中、1はシリコン基板
、2は絶縁膜、3はAI電極である。
FIG. 1 is a cross-sectional view of an element for evaluating hydrogen permeation characteristics,
Metal-insulating film-semiconductor where the thin film to be evaluated is an insulating film (
MrS) is a capacitor. In the figure, 1 is a silicon substrate, 2 is an insulating film, and 3 is an AI electrode.

絶縁膜2中の水素透過特性はAI電極3形成実施例に絶
縁膜/シリコン界面に発生したシリコンの未結合電子対
に対する水素熱処理効果により評価する。水素熱処理効
果は未結合電子対が種々の応答速度を持った電荷捕獲準
位として働くことに着目し、IMH2の信号周波数で測
定した場合のMISキャパシタの容量−電圧特性から求
められるフラットバンド電圧VFB’ と10MHzの
信号周波数で測定した場合のMISキャパシタの容量−
電圧特性から求められるフラットバンド電圧VF8”と
の差、ΔVFB (=VFB’   VFB”)により
表すことができる。Δ■Fカが大きい程未結合電子対が
多数存在し、水素熱処理効果が低いことを意味する。す
なわち、ΔVF8が大きいほど絶縁膜2中の水素透過特
性が低い膜と評価できる。
Hydrogen permeation characteristics in the insulating film 2 are evaluated based on the effect of hydrogen heat treatment on unbonded silicon electron pairs generated at the insulating film/silicon interface in an example of forming the AI electrode 3. The hydrogen heat treatment effect focuses on the fact that unbonded electron pairs act as charge trapping levels with various response speeds, and the flat band voltage VFB determined from the capacitance-voltage characteristics of the MIS capacitor when measured at the IMH2 signal frequency. ' and the capacitance of the MIS capacitor when measured at a signal frequency of 10MHz -
The difference from the flat band voltage VF8'' determined from the voltage characteristics can be expressed by ΔVFB (=VFB'VFB''). The larger the Δ■F force is, the more unbonded electron pairs are present, which means that the hydrogen heat treatment effect is lower. In other words, the larger ΔVF8 is, the lower the hydrogen permeation characteristics in the insulating film 2 can be evaluated.

第2図(alは、第1図における絶縁膜がSiOStの
場合およびSiO2とTa2O5の二層からなっている
場合の旧Sキャパシタの断面図である。4が第1絶縁層
でSiO2もしくはTa*Os膜、5が第2絶縁層でS
i02である。
FIG. 2 (al is a cross-sectional view of the old S capacitor when the insulating film in FIG. 1 is SiOSt and when it consists of two layers of SiO2 and Ta2O5. 4 is the first insulating layer made of SiO2 or Ta* Os film, 5 is the second insulating layer and S
It is i02.

このような第2図(a)に示したキャパシタを用いTa
2Os膜の水素透過特性を試験した。
Using the capacitor shown in FIG. 2(a), Ta
The hydrogen permeation properties of the 2Os membrane were tested.

Si02はシリコン基板を酸素雰囲気中で熱酸化するこ
とにより形成し、Ta5tesはTa2O5焼結体をタ
ーゲットとしてマグネトロンスバ・ツタ法により形成し
た。ここで用いるスバ・ツタ法とは低真空中で放電を起
こし、ガスをイオン化し、そのイオンを電界で加速して
ターゲットに衝突させ、ターゲットより構成原子を弾き
飛ばし、基板上に堆積する技術である。特にマグネトロ
ンスパッタ倖は磁場を同時に印加することにより、一般
のスパッタ法に比べて低い圧力下で放電が生じるように
したもので、緻密な薄膜を得ることができる。゛第2図
中)は450℃水素雰囲気中で熱処理した後のΔVFE
+と第1絶縁膜厚との関係を示したものである。第1絶
縁層をTa1Osで構成した場合、Ta2O5の厚さが
1000Å以上の領域でΔVFIIは増加する傾向を示
している(図中、Oで示す)。これに対し、第1絶縁膜
をSi02とした場合には全ての膜厚領域においてΔV
FBは0.02V以下である(図中Δで示す)。この結
果はTa2’s薄膜中の水素透過特性が低いことを示す
ものである。
Si02 was formed by thermally oxidizing a silicon substrate in an oxygen atmosphere, and Ta5tes was formed by the magnetron spacing method using a Ta2O5 sintered body as a target. The Suba-Tsuta method used here is a technology in which a discharge is generated in a low vacuum to ionize gas, and the ions are accelerated by an electric field and collide with a target, causing constituent atoms to be ejected from the target and deposited on a substrate. be. In particular, magnetron sputtering is a method in which a magnetic field is applied at the same time so that discharge occurs under a lower pressure than in general sputtering, and a dense thin film can be obtained. (in Figure 2) is the ΔVFE after heat treatment in a hydrogen atmosphere at 450°C.
It shows the relationship between + and the first insulating film thickness. When the first insulating layer is made of Ta1Os, ΔVFII tends to increase in a region where the thickness of Ta2O5 is 1000 Å or more (indicated by O in the figure). On the other hand, when the first insulating film is Si02, ΔV
FB is 0.02V or less (indicated by Δ in the figure). This result indicates that the hydrogen permeation property in the Ta2's thin film is low.

したがって、本発明による水素添加方法においては前記
Tag Os膜の厚さは好ましくは1000Å以上であ
るのがよいことは明らかである。
Therefore, it is clear that in the hydrogenation method according to the present invention, the thickness of the Tag Os film is preferably 1000 Å or more.

このような水素含有薄膜を装着したシリコンをTa2O
5で被覆したのち熱処理する。
Silicon equipped with such a hydrogen-containing thin film is made of Ta2O
After coating with No. 5, heat treatment is performed.

熱処理の温度および時間は、好ましくは250〜600
°Cの温度で、5分以上行うのがよい。熱処理温度が2
50℃未満であると、水素含有薄膜よりシリコンに水素
が移動しにくくなるとともに、水素と未結合シリコンと
の反応が促進されに<<、一方600℃を超えると、水
素の脱離が激しくなりすぎてTa2O5膜を形成しても
、充分に水素の脱離を防止できない虞を生じるからであ
る。
The temperature and time of heat treatment are preferably 250 to 600
It is best to do this for 5 minutes or more at a temperature of °C. Heat treatment temperature is 2
If the temperature is less than 50°C, it will be difficult for hydrogen to move from the hydrogen-containing thin film to silicon, and the reaction between hydrogen and unbonded silicon will be promoted. This is because even if the Ta2O5 film is formed in such a manner, there is a risk that desorption of hydrogen may not be sufficiently prevented.

次ぎに本発明による第二の水素添加方法を説明する。Next, a second hydrogenation method according to the present invention will be explained.

本発明による第二の水素添加方法においては、水素台を
シリコンを用意し、この水素含有シリコンを直接あるい
は他の薄膜を介してTag’s膜で覆い、熱処理し、吸
蔵水素と未結合シリコンとの結合を促進するものである
In the second hydrogenation method according to the present invention, silicon is prepared as a hydrogen stand, this hydrogen-containing silicon is covered with a Tag's film directly or via another thin film, and heat treated to separate absorbed hydrogen and unbonded silicon. It promotes the bonding of

このような本発明における方法において、シリコン中に
水素を含有せしめる方法は限定されるものではなく、た
とえばイオン注入などによって水素を添加してもよいし
、水素を多量に含む雰囲気中でシリコン薄膜を形成する
などの薄膜形成時に水素を取り込ませるなどの方法で水
素を添加した水素含有シリコンを用いることができる。
In such a method of the present invention, the method of incorporating hydrogen into silicon is not limited; for example, hydrogen may be added by ion implantation, or a silicon thin film may be added in an atmosphere containing a large amount of hydrogen. It is possible to use hydrogen-containing silicon to which hydrogen is added by a method such as incorporating hydrogen during thin film formation.

この本発明による第二の水素添加方法においても、Ta
g’s膜の厚さ、熱処理条件などは上記の  ゛本発明
による第一の発明と同様であるので、記載を省略する。
Also in this second hydrogenation method according to the present invention, Ta
The thickness of the g's film, heat treatment conditions, etc. are the same as those in the first aspect of the present invention, so their description will be omitted.

シリコンにイオン注入などの方法により水素を打ち込ん
だ場合、水素は未結合シリコンと結合した状態ではなく
、単に吸蔵状態にあるだけである。
When hydrogen is implanted into silicon by a method such as ion implantation, the hydrogen is not in a bonded state with unbonded silicon, but merely in an occluded state.

このため熱処理によって未結合シリコンとの反応を促進
させなければならないが、この熱処理に際しTa110
5薄膜で被覆することにより熱処理による水素の脱離を
防止することができる。
Therefore, it is necessary to promote the reaction with unbonded silicon by heat treatment, but during this heat treatment, Ta110
By covering with the 5 thin film, desorption of hydrogen due to heat treatment can be prevented.

前述のようA”Tag Os薄膜はマグネトロンスパン
9法のほかに、CVD法、電子サイクトロン共鳴堆積法
、熱酸化法などの方法により形成させてもよいことは明
らかである。
As mentioned above, it is clear that the A"Tag Os thin film may be formed by a method such as a CVD method, an electron cyclotron resonance deposition method, or a thermal oxidation method in addition to the magnetron spun method.

実施例1 第3図は本発明による水素添加方法を通用した多結晶C
VO薄膜トランジスタの製造工程を示す模式図である。
Example 1 Figure 3 shows polycrystalline C obtained through the hydrogenation method according to the present invention.
FIG. 3 is a schematic diagram showing the manufacturing process of a VO thin film transistor.

多結晶シリコンをトランジスタのような能動素子のチャ
ンネル領域に適用する場合結晶粒界に存在する電子捕獲
準位を不活性化するため水素を添加する必要がある。
When polycrystalline silicon is applied to the channel region of an active device such as a transistor, it is necessary to add hydrogen to inactivate electron trapping levels existing at crystal grain boundaries.

このような多結晶CvD薄膜トランジスタを製造するに
際して、まず、石英基板6上に水素を添加すべき多結晶
シリコン薄膜7を形成しく第3図■)、さらに前記多結
晶CVD薄膜7に900℃の温度で熱酸化SiO2薄膜
8を積層するとともに(第3図m)、この熱酸化Si0
2薄膜8上および前記多結晶素薄膜7上にCVD Si
Oを薄膜9を形成する(第3図m>、さらに、このCV
D SiO2薄膜9上にA1電極11を形成したのち(
第3図■)、水素含有SiN薄膜10で覆うとともに(
第3図■)、さらにこの水素含有SiN薄膜IO上をT
ag05薄膜I2で全体を覆って、熱処理を行い多結晶
シリコン薄膜7にSiN薄膜11よりの水素を添加結合
せしめた(第3図m)。熱処理は、450℃の温度で、
30分間であフた・ このような半導体素子の製造方法によれば、多結晶Si
02薄膜7を形成したのち、900℃以上の温度で熱酸
化SiO11薄膜8を形成する必要があるため、あらか
じめ多結晶SiO2薄膜7中に水素を添加する方法は効
果がない。したがって薄膜形成時にドーピングやイオン
注入などの方法により水素を含有させたSiN薄膜11
をCVD Si02薄膜9の形成後に形成し、多結晶シ
リコン7中に熱処理によって拡散させることが必要にな
ってくる。この熱処理工程においてTa2 ’0 ’5
薄膜12を形成しておかないと、SiN薄膜11中の含
有水素が多結晶シリコン薄膜中以外へも離散するため多
結晶シリコン薄膜中への水素添加効果が現れない。した
がって本発明の方法により水素透過特性の低いTa2O
5薄膜12で多結晶シリコン7およびSiN薄膜12を
覆うことにより、SiN薄膜12より多結晶シリコン薄
膜7への水素添加および結合が効果的に行われ、結果と
して素子の特性の向上した。
In manufacturing such a polycrystalline CVD thin film transistor, first, a polycrystalline silicon thin film 7 to which hydrogen should be added is formed on a quartz substrate 6 (Fig. 3), and then the polycrystalline CVD thin film 7 is heated to a temperature of 900°C. At the same time as laminating a thermally oxidized SiO2 thin film 8 (Fig. 3m), this thermally oxidized SiO2
2 thin film 8 and the polycrystalline thin film 7.
A thin film 9 of O is formed (Fig. 3m), and this CV
D After forming the A1 electrode 11 on the SiO2 thin film 9 (
(Fig. 3 ■) and covered with a hydrogen-containing SiN thin film 10 (
(Fig. 3 ■), and furthermore, T
The entire structure was covered with an ag05 thin film I2, and heat treatment was performed to add hydrogen from the SiN thin film 11 to the polycrystalline silicon thin film 7 (FIG. 3m). The heat treatment was performed at a temperature of 450°C.
According to this method of manufacturing semiconductor devices, polycrystalline Si
After forming the 02 thin film 7, it is necessary to form the thermally oxidized SiO11 thin film 8 at a temperature of 900° C. or higher, so the method of adding hydrogen to the polycrystalline SiO2 thin film 7 in advance is ineffective. Therefore, the SiN thin film 11 containing hydrogen by a method such as doping or ion implantation during thin film formation.
It becomes necessary to form it after the formation of the CVD Si02 thin film 9 and diffuse it into the polycrystalline silicon 7 by heat treatment. In this heat treatment process, Ta2'0'5
If the thin film 12 is not formed, the hydrogen contained in the SiN thin film 11 will be dispersed to areas other than the polycrystalline silicon thin film, so that the effect of hydrogen addition into the polycrystalline silicon thin film will not appear. Therefore, by the method of the present invention, Ta2O with low hydrogen permeation properties can be used.
By covering the polycrystalline silicon 7 and the SiN thin film 12 with the 5 thin film 12, hydrogen addition and bonding from the SiN thin film 12 to the polycrystalline silicon thin film 7 were effectively performed, and as a result, the characteristics of the device were improved.

実施例2 本発明の水素添加方法を利用した多結晶シリコン薄膜ト
ランジスタの製造工程を第4図に示す。
Example 2 FIG. 4 shows the manufacturing process of a polycrystalline silicon thin film transistor using the hydrogenation method of the present invention.

まず石英基板6に、多結晶シリコン薄膜7を積層しく第
4図I)、この多結晶シリコン薄膜7上に熱酸化Si0
2層8を形成させるとともに(第4図m)、前記多結晶
シリコン薄膜7にイオン注入により水素を打ち込んだ(
第4図m)。次ぎにCvD Si02薄膜9を形成させ
たのち(第4図■)、AI電極10を形成しく第4図■
)、この素子をTa2O5薄膜12によって覆い、45
0℃、30分間熱処理を施し、゛多結晶SiO5+薄膜
7中の未結合シリコンと水素を結合せしめた(第4図m
)。
First, a polycrystalline silicon thin film 7 is laminated on a quartz substrate 6 (FIG. 4I), and thermally oxidized Si0
At the same time as forming two layers 8 (FIG. 4m), hydrogen was implanted into the polycrystalline silicon thin film 7 by ion implantation (
Figure 4 m). Next, after forming the CvD Si02 thin film 9 (Fig. 4 ■), the AI electrode 10 is formed.
), this element was covered with a Ta2O5 thin film 12, and 45
Heat treatment was performed at 0°C for 30 minutes to bond the unbonded silicon and hydrogen in the polycrystalline SiO5+ thin film 7 (Figure 4).
).

多結晶シリコン薄膜7中にイオン注入法などにより水素
を打ち込んだ場合、水素は未結合状態にあり、単なる吸
蔵状態であるといえる。このため熱処理によ、って未結
合シリコンと水素との反応を促進させる必要がある。こ
の熱処理工程において素子をTa2Os薄膜12で被覆
することにより、吸蔵水素の多結晶シリコン薄膜7中よ
りの離散を防止でき、多結晶シリコン中での未結合シリ
コンと水素との反応を促進することができる。このため
素子特性が向上した。
When hydrogen is implanted into the polycrystalline silicon thin film 7 by ion implantation or the like, the hydrogen is in an unbonded state and can be said to be in a mere occlusion state. Therefore, it is necessary to promote the reaction between unbonded silicon and hydrogen by heat treatment. By covering the element with the Ta2Os thin film 12 in this heat treatment step, it is possible to prevent absorbed hydrogen from being dispersed in the polycrystalline silicon thin film 7, and to promote the reaction between unbonded silicon and hydrogen in the polycrystalline silicon. can. This improved device characteristics.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、水素透過特性の低いTa2O5で
シリコンを覆い、熱処理によって水素の添加および結合
を行うので、前記水素が熱処理によって離脱することが
なくなり、シリコン中に良好にかつ効果的に水素を添加
できるという利点がある。したがって、本発明による水
素添加方法を利用して半導体素子を製造すれば、前記半
導体素子の特性が向上するという利点がある。
As explained above, since silicon is covered with Ta2O5, which has low hydrogen permeability, and hydrogen is added and bonded by heat treatment, the hydrogen is not released by heat treatment, and hydrogen is well and effectively incorporated into silicon. It has the advantage that it can be added. Therefore, if a semiconductor device is manufactured using the hydrogenation method according to the present invention, there is an advantage that the characteristics of the semiconductor device are improved.

【図面の簡単な説明】 第1図は水素透過特性を評価するための旧Sキャパシタ
の基本的構成を示す断面図、第2図は実際に水素透過特
性を評価試験に用いた旧Sキャパシタの構成を示す断面
図および評価結果を示すためのグラフ、第3図は本発明
による方法を通用した多結晶シリコン薄膜トランジスタ
の製造工程を示す説明図、第4図は本発明による第二の
方法を適用した多結晶シリコン薄膜トランジスタの製造
工程を示す説明図である。 6 ・・・石英基板、 7 ・・・多結晶シリコン、8
 ・・・熱酸化StOe薄膜、9・・・CvDSiO2
薄膜、 10・・・水素含有SiN薄膜、1l−−=A
I電極、12・・・Ta2O5薄膜。 出願人代理人     雨 宮 正 季第1図 第2図 (a) 第3図 第4図
[Brief explanation of the drawings] Figure 1 is a cross-sectional view showing the basic configuration of the old S capacitor for evaluating hydrogen permeation characteristics, and Figure 2 is a cross-sectional view of the old S capacitor used in the actual evaluation test for hydrogen permeation characteristics. A cross-sectional view showing the structure and a graph showing the evaluation results, FIG. 3 is an explanatory diagram showing the manufacturing process of a polycrystalline silicon thin film transistor using the method according to the present invention, and FIG. 4 is an application of the second method according to the present invention. FIG. 3 is an explanatory diagram showing the manufacturing process of a polycrystalline silicon thin film transistor. 6...Quartz substrate, 7...Polycrystalline silicon, 8
...Thermal oxidation StOe thin film, 9...CvDSiO2
Thin film, 10...Hydrogen-containing SiN thin film, 1l--=A
I electrode, 12...Ta2O5 thin film. Applicant's agent Masashi Amemiya Figure 1 Figure 2 (a) Figure 3 Figure 4

Claims (2)

【特許請求の範囲】[Claims] (1)水素を添加すべきシリコンに直接あるいは他の薄
膜を介して水素含有薄膜を形成し、この水素含有薄膜を
装着した前記シリコンをTa_2O_5膜で覆い、熱処
理することを特徴とするシリコンへの水素添加方法。
(1) A hydrogen-containing thin film is formed on the silicon to which hydrogen is to be added either directly or through another thin film, and the silicon with the hydrogen-containing thin film is covered with a Ta_2O_5 film and heat treated. Hydrogenation method.
(2)あらかじめ水素を吸蔵せしめたシリコンをTa_
2O_5膜で覆い、熱処理することを特徴とするシリコ
ンへの水素添加方法。
(2) Silicon that has absorbed hydrogen in advance is Ta_
A method of hydrogenating silicon, which is characterized by covering with a 2O_5 film and subjecting it to heat treatment.
JP24534884A 1984-11-19 1984-11-19 Method of adding hydrogen to silicon Pending JPS61121425A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24534884A JPS61121425A (en) 1984-11-19 1984-11-19 Method of adding hydrogen to silicon

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24534884A JPS61121425A (en) 1984-11-19 1984-11-19 Method of adding hydrogen to silicon

Publications (1)

Publication Number Publication Date
JPS61121425A true JPS61121425A (en) 1986-06-09

Family

ID=17132333

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24534884A Pending JPS61121425A (en) 1984-11-19 1984-11-19 Method of adding hydrogen to silicon

Country Status (1)

Country Link
JP (1) JPS61121425A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011527112A (en) * 2008-07-01 2011-10-20 サンパワー コーポレイション Front contact solar cell having conductive layers formed on the front and rear surfaces

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011527112A (en) * 2008-07-01 2011-10-20 サンパワー コーポレイション Front contact solar cell having conductive layers formed on the front and rear surfaces

Similar Documents

Publication Publication Date Title
US4464701A (en) Process for making high dielectric constant nitride based materials and devices using the same
JP2002231910A (en) Soi wafer and its manufacturing method
JP2000004018A (en) Method of forming ultra-thin crystalline silicon nitride for gate dielectric on silicon (111)
JPH0311635A (en) Manufacture of compound semiconductor device
JPS62204575A (en) Thin film semiconductor device and manufacture thereof
JP3431454B2 (en) Method for manufacturing semiconductor device
US5202280A (en) Method for fabricating a semiconductor device
JPS61121425A (en) Method of adding hydrogen to silicon
JP2002305303A (en) Semiconductor device and method of forming gate dielectric substance-combined layer
JPH03179778A (en) Insulating board for forming thin film semiconductor
JPH05190796A (en) Dielectric film for dynamic-random-access-memory-cell and forming method thereof
JPS5978553A (en) Capacitor and manufacture thereof
JPH0922884A (en) Manufacture of semiconductor element
JPH0689968A (en) Capacitor and its manufacture
JPS61121444A (en) Semiconductor element
JPS61150276A (en) Semiconductor device
JPS5928369A (en) Manufacture of capacitor for semiconductor device
JPS6028259A (en) Manufacture of capacitor for semiconductor device
JPS5984570A (en) Manufacture of capacitor for semiconductor device
JP2669611B2 (en) Method for manufacturing semiconductor device
JPH06291253A (en) Formation of dielectric film of electric charge storage section of semiconductor element
JPH0433129B2 (en)
JPS58112360A (en) Capacitor for semiconductor device and manufacture thereof
JPS5999726A (en) Manufacture of semiconductor device
JPH0325967A (en) Manufacture of semiconductor device