JPH0325967A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPH0325967A
JPH0325967A JP16141889A JP16141889A JPH0325967A JP H0325967 A JPH0325967 A JP H0325967A JP 16141889 A JP16141889 A JP 16141889A JP 16141889 A JP16141889 A JP 16141889A JP H0325967 A JPH0325967 A JP H0325967A
Authority
JP
Japan
Prior art keywords
layer
film
amorphous
semiconductor substrate
formed over
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP16141889A
Other languages
Japanese (ja)
Inventor
Tatsuyuki Yutsugi
湯次 達之
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP16141889A priority Critical patent/JPH0325967A/en
Publication of JPH0325967A publication Critical patent/JPH0325967A/en
Pending legal-status Critical Current

Links

Landscapes

  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)
  • Semiconductor Integrated Circuits (AREA)
  • Formation Of Insulating Films (AREA)

Abstract

PURPOSE:To prevent the decline in insulating breakdown voltage of a capacitor insulating film by a method wherein an amorphous silicon layer is formed over the whole surface of a semiconductor substrate through a thermal oxidation film and an impurity is injected into this layer, after which an insulating layer is formed over the whole surface of said amorphous silicon layer by use of a chemical gas-phase vapor deposition. CONSTITUTION:After forming a thermal oxidation film 2 on a semiconductor substrate 1, an amorphous Si layer 8a is formed by a well-kown method. Subsequently, the amorphous Si layer 8a is doped with phosphorus so as to form a low-resistance amorphous Si layer 8. Next, an HTO film 9 as an SiO2 capacitor insulating film is formed over the entire surface by reduced-pressure CVD method. Furthermore, a polysilicon layer 10 is formed over the whole surface of the HTO film 9. A capacitor is thus completed.

Description

【発明の詳細な説明】 (イ)産業上の利用分野 この発明は半導体装置の製造方法に関し、更に詳しくは
MOSLS Iなどの半導体装置におけるキャパシタ絶
縁膜の形成方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (A) Field of Industrial Application The present invention relates to a method for manufacturing a semiconductor device, and more particularly to a method for forming a capacitor insulating film in a semiconductor device such as a MOS LSI.

(ロ)従来の技術 従来この種形成方法として、キャパシタ絶縁膜を半導体
基仮上に配設された多結晶ンリコン層の表面を熱酸化し
て形成するようにしたものが提案されている。
(B) Prior Art Conventionally, as a forming method of this type, a method has been proposed in which a capacitor insulating film is formed by thermally oxidizing the surface of a polycrystalline silicon layer disposed on a temporary semiconductor substrate.

すなわち、第5図において、まず、半導体基仮l上に酸
化膜2を形成し、続いて、全面に多拮晶シリコン(以下
ポリS+と言う)層3を形成し[第5図(a)参照]、
次に、ポリSt層3に不純物をドープして低抵抗化をお
こなった後、熱酸化によりポリSi層の表面にStOe
のキャパシタ絶禄膜4を形成する[第5図(b)参照]
That is, in FIG. 5, first, an oxide film 2 is formed on the semiconductor substrate 1, and then a polyantagonistic silicon (hereinafter referred to as polyS+) layer 3 is formed on the entire surface [FIG. 5(a)] reference],
Next, after doping the polySt layer 3 with impurities to lower its resistance, the surface of the polySi layer is coated with StOe by thermal oxidation.
Form a capacitor insulation film 4 [see FIG. 5(b)]
.

(ハ)発明が解決しようとする課題 しかし、キャパシタ絶縁WA4の下地としてのポリSi
層3は、その結晶粒界により絶縁膜形成領域である表面
にも凹凸を有するから、その表面を酸化してなるSin
.のキャパシタ絶縁膜4は、膜質が悪く、かつポリSi
層3と810,膜4との界面に形成される凹凸部で、電
圧を印加した際に電界集中が生じてキャパシタ絶縁膜4
の絶縁耐性の低下を招くおそれがある。
(c) Problems to be solved by the invention However, poly-Si as a base for capacitor insulation WA4
Layer 3 also has irregularities on its surface, which is an insulating film formation region, due to its crystal grain boundaries.
.. The capacitor insulating film 4 has poor film quality and is made of poly-Si.
When a voltage is applied, electric field concentration occurs in the uneven portion formed at the interface between layer 3 and 810 and film 4, causing capacitor insulating film 4
This may lead to a decrease in insulation resistance.

一方、上記問題を解決するため、下地層として非結晶シ
リコン(以下アモルファスSiと言う)を使用し、これ
が多結晶化しない温度、すなわち、580℃以下のlz
度でアモルファスSt上に熱酸化によりSiOz膜を形
成するようにしたらのち提案されていろ[特開昭63−
 4670号公報コ。
On the other hand, in order to solve the above problem, amorphous silicon (hereinafter referred to as amorphous Si) is used as the underlayer, and it is heated at a temperature at which it does not become polycrystalline, that is, 580°C or less.
It was later proposed that a SiOz film be formed on amorphous St by thermal oxidation at
Publication No. 4670.

しかし、この方法を用いても、やはり膜質を良好にする
のは難しく絶縁破壊耐圧が低下し、しかも下地がアモル
ファスSiであるから膜厚の制御が難しい。
However, even if this method is used, it is still difficult to improve the film quality and the dielectric breakdown voltage decreases, and furthermore, since the base is amorphous Si, it is difficult to control the film thickness.

この発明はキャパシタ絶縁膜の絶縁耐圧の低下を防止で
きる半導体装置の製造方法を提供することを目的とする
ものである。
SUMMARY OF THE INVENTION An object of the present invention is to provide a method for manufacturing a semiconductor device that can prevent a decrease in dielectric strength of a capacitor insulating film.

(二)課題を解決するための手段 この発明は、半導体基板上に、その全面に、熱酸化膜を
介して非結晶シリコン層を形威し、これに不純物を注入
した後、非結晶シリコン層の全面に、化学的気相蒸着法
(CVD法)またはスパツタ法を用いて絶縁層を形成す
ることを特徴とする半導体装置の製造方法である。
(2) Means for Solving the Problems This invention forms an amorphous silicon layer on the entire surface of a semiconductor substrate through a thermal oxide film, implants impurities into this, and then forms an amorphous silicon layer. This method of manufacturing a semiconductor device is characterized in that an insulating layer is formed on the entire surface of the semiconductor device using a chemical vapor deposition method (CVD method) or a sputtering method.

すなわち、この発明は、アモルファスSi層の表面が平
坦であることを利用して半導体基板上にアモルファスS
i層を形成し、絶a膜をアモルファスSt層全面に熱酸
化を除く成膜方法、すなわち、CVD法やスパッタ法に
より形成するようにしたものである。
That is, the present invention utilizes the flat surface of the amorphous Si layer to deposit amorphous Si on a semiconductor substrate.
An i-layer is formed, and an insulating film is formed on the entire surface of the amorphous St layer by a film-forming method that excludes thermal oxidation, that is, a CVD method or a sputtering method.

この発明において、アモルファスSi層全面に絶縁膜を
形或するには、減圧CVD法( ChemicalVa
por Depostion :化学的気相蒸着法)や
常圧CVD法、あるいはプラズマCVD法などのCVD
技術を用いておこなったり、あるいはスパッタ法を用い
ておこなうのが好ましい。これら戊膜方法はすべて周知
の技術である。
In this invention, in order to form an insulating film on the entire surface of the amorphous Si layer, a low pressure CVD method (Chemical Vapor Deposition) is used.
por Deposition: CVD such as chemical vapor deposition (chemical vapor deposition), normal pressure CVD, or plasma CVD
It is preferable to carry out using a technique or a sputtering method. All of these membrane methods are well known techniques.

そして、これら成膜方法のうち、減圧CVD法を用いる
のがより好ましく、それによって膜厚の均一性が良好な
絶縁膜を得ることができるとともに、大量処理(いわゆ
る、スループブトが良好)が可能である等の利点を有す
る。
Among these film-forming methods, it is more preferable to use the low-pressure CVD method, which makes it possible to obtain an insulating film with good film thickness uniformity, and also enables mass processing (so-called good throughput). It has certain advantages.

この減圧CVD法を用いて、半導体基板上に配設された
アモルファスSi層上に、例えば、絶縁膜としてSiO
zのHTO膜を形成するには、SiH4とLOとを反応
ガスとして、0. 3 〜l. lTorrの圧力下、
1110〜860℃の温度で成長させることにより行う
ものである。
Using this low pressure CVD method, for example, SiO2 is deposited as an insulating film on an amorphous Si layer disposed on a semiconductor substrate.
To form a HTO film of 0.z, SiH4 and LO are used as reaction gases. 3 ~l. Under pressure of lTorr,
This is done by growing at a temperature of 1110 to 860°C.

この際、HTO膜は、下地のアモルファスSI層に結晶
化か生じない状態で形成される。
At this time, the HTO film is formed without crystallizing the underlying amorphous SI layer.

この発明において、絶縁膜は、S iOtHやSi,N
4膜あるいはAItos膜などの単膜構造でも、下地の
アモルファスSt層上に!II;to!膜、Si,N4
膜を順次積層してなる二膜構造でも良く、あるいはSi
Oz膜、3iJ4膜およびSin.膜を順次積層してな
る三膜構造のような多膜積層構造でも良く、必要に応じ
て上記構造を選択すれば良い。そして、絶縁膜の層厚も
l00〜sooAが好ましいが、これも必要に応じて選
択される。
In this invention, the insulating film is made of SiOtH, Si, N
Even with a single-film structure such as 4-film or AItos film, it can be placed on the underlying amorphous St layer! II;to! Film, Si, N4
A two-layer structure consisting of sequentially laminated films may be used, or a Si
Oz film, 3iJ4 film and Sin. A multi-layered structure such as a three-layered structure in which films are sequentially stacked may be used, and the above structure may be selected as necessary. The thickness of the insulating film is also preferably 100 to sooA, but this is also selected as necessary.

この発明において、アモルファスStは、公知の方法に
より半導体基板上に形成される。例えば、S i 8 
4とPH.とを反応ガスとして用いた減圧CVD法によ
り580℃以下の温度で低抵抗のための不純物としての
リンをドープしたアモルファスSi層が形成される。
In this invention, amorphous St is formed on a semiconductor substrate by a known method. For example, S i 8
4 and PH. An amorphous Si layer doped with phosphorus as an impurity for low resistance is formed at a temperature of 580° C. or lower by a low pressure CVD method using as a reaction gas.

(ホ)作用 半導体基板上にアモルファスSi層をIMLた後これに
不純物をドーブし、続いて、アモルファスSIl上に公
知のCVD法またはスパッタ法を用いて絶縁膜を形成す
るようにしたので、欠陥密度の少ない膜質の良好な絶律
層を形戒でき、電圧が印加された際の絶縁破壊耐圧の低
下を防止できる。また、CVD法やスパッタ法を用いて
いることから、膜厚の制御を容易にできる。
(e) After IMLing an amorphous Si layer on a working semiconductor substrate, it is doped with impurities, and then an insulating film is formed on the amorphous SIl using a known CVD method or sputtering method. It is possible to form an insulating layer with low density and good film quality, and it is possible to prevent a decrease in dielectric breakdown voltage when a voltage is applied. Furthermore, since the CVD method or sputtering method is used, the film thickness can be easily controlled.

(へ)実施例 以下図に示す実施例にもとづいてこの発明を詳述する。(f) Example The present invention will be described in detail below based on embodiments shown in the figures.

なお、これによってこの発明は限定を受けるものではな
い。
Note that this invention is not limited by this.

第1図(d)において、高集積のダイナミックRAMの
スタックトキャパシタ型セルのキャパンタは、半導体基
仮l上に、その熱酸化膜2を介してリンがドープされた
アモルファスSt層8、キャパシタ絶縁膜としてのSi
OzのHTO膜9およびポリSi層10を順次積層して
なる。
In FIG. 1(d), a capantor of a stacked capacitor type cell of a highly integrated dynamic RAM is formed by forming an amorphous St layer 8 doped with phosphorus on a semiconductor substrate 1 through a thermal oxide film 2, and a capacitor insulating layer 8. Si as a film
It is formed by sequentially stacking an Oz HTO film 9 and a poly-Si layer 10.

以下、製造方法について説明する。The manufacturing method will be explained below.

まず、半導体基坂1上にその熱酸化膜2を形成した後、
公知の方法を用いて3000大の膜厚を有するアモルフ
ァスSi層8aを形成する[第1図(a)参照]。
First, after forming the thermal oxide film 2 on the semiconductor substrate 1,
An amorphous Si layer 8a having a thickness of 3000 mm is formed using a known method [see FIG. 1(a)].

続いて、アモルファスSi層8aにリンを1.8X 1
0”aII1−’ドーブして低抵抗化されたアモルファ
スSi層8を形威する[第l図(b)参照]。
Subsequently, phosphorus was applied to the amorphous Si layer 8a at a rate of 1.8×1.
The amorphous Si layer 8 is doped with 0"aII1-' to have a low resistance [see FIG. 1(b)].

次に、全面に減圧CVD法を用いて膜厚150人のSi
ftキャパシタ絶縁膜としてのHTO膜9を形成する[
第l図(c)参照]。
Next, the entire surface was coated with a Si film with a thickness of 150 nm using the low pressure CVD method.
Form an HTO film 9 as a ft capacitor insulating film [
See Figure l(c)].

さらに、HTO膜9の全面に膜厚4500人のポリS 
i il l Oを形成する[第1図(d)参照]。こ
のようにしてキャパシタが完戊する。
Furthermore, the entire surface of the HTO film 9 is coated with polyS with a film thickness of 4,500 people.
i il l O is formed [see FIG. 1(d)]. In this way, the capacitor is completely discharged.

次に、このようにして得られたHTO膜の膜厚(入)一
平均耐圧(メガボルト/crn)特性および膜厚一欠陥
密度(am−’)特性をそれぞれ第2図における曲線(
本実施例はA、比較例はBで示す)および(本実施例は
C,比較例はDで示す)で示す。
Next, the film thickness (input)/average breakdown voltage (megavolt/crn) and film thickness/defect density (am-') characteristics of the HTO film obtained in this manner are determined by the curves shown in FIG.
The present example is indicated by A, the comparative example is indicated by B) and (the present example is indicated by C, and the comparative example is indicated by D).

第2図において、CVD法やスパッタ法によってそれぞ
れアモルファスSi層とポリStl上に形成されたHT
O膜の平均耐圧特性を示す曲線AとBとを比較してもア
モルファスSt層8上に形成されたHTO模りの方(曲
線A)が平均耐性にすぐれ、かつ欠陥密度特性を示す曲
線CとDとを比較しても本実施例の方が欠陥密度ら少な
いことがわかる。
In Fig. 2, HT is formed on the amorphous Si layer and polyStl by CVD method and sputtering method, respectively.
Even when comparing curves A and B showing the average breakdown voltage characteristics of the O film, the HTO pattern formed on the amorphous St layer 8 (curve A) has better average resistance, and curve C showing the defect density characteristics Comparing D and D, it can be seen that this example has a lower defect density.

さらに、HTO膜を、膜厚を150人に設定してアモル
ファスSi層8上およびポリSt層上にそれぞれ形成し
た時の耐圧ヒストグラムを第3図(a)および(b)に
示す。
Further, FIGS. 3(a) and 3(b) show breakdown voltage histograms when the HTO film was formed on the amorphous Si layer 8 and the polySt layer, respectively, with the film thickness set to 150.

第3図(a)は本願を、第3図(b)は比較例を示し、
第3図(a)の(I)と第3図(b)の(IF)を比較
すると本願の(I)の方がFREQUENCYが高く、
良好な膜質を有するHTO膜が形或しされていることが
わかる。また、(II[) (IV)はそれぞれ2回目
の測定で永久破壊した部分を示す、ここで本願の(II
I)と比較例の(IM)を比較すると、(I[I)の方
がFREQUENCYが低くなっており、これは0〜I
(MY/c+++)のものは2四目の測定では、すべて
永久破壊していろらののFREQUENCYとしては低
いことから本願の(III)の方がOV)より良質のH
TO膜質を有するものであるということがわかる。
FIG. 3(a) shows the present application, FIG. 3(b) shows a comparative example,
Comparing (I) in Figure 3(a) and (IF) in Figure 3(b), (I) in the present application has a higher FREQUENCY.
It can be seen that an HTO film with good film quality was formed. In addition, (II[) and (IV) respectively indicate the parts that were permanently destroyed in the second measurement.
Comparing I) and the comparative example (IM), (I[I) has a lower FREQUENCY, which is between 0 and I
(MY/c+++) were all permanently destroyed in the 24th measurement, and the FREQUENCY of Irono was low, so (III) of the present application is of better quality than OV).
It can be seen that it has TO film quality.

なお、これら測定は、第4図に示すように電極而積Sの
パターンを4xx”のものでおこない、判定電流を1μ
Aに設定し、この際、1 (MY/cm)以下で判定電
流に達するチップを永久破壊したものである。
These measurements were carried out using a pattern of electrode volume S of 4xx'' as shown in Figure 4, and a judgment current of 1μ.
A, and in this case, the chip that reached the judgment current at 1 (MY/cm) or less was permanently destroyed.

また、上記FREQUENCYは、ウエハ面内の86i
it所の測定点において、所定のBREAKDOWN 
Field(絶縁破壊電圧)がどれほどであったかとい
う割合(%)を示す。
In addition, the above FREQUENCY is 86i within the wafer plane.
At the measurement point at it, the predetermined BREAKDOWN
It shows the percentage (%) of the Field (dielectric breakdown voltage).

このように本実施例によれば、従来の熱酸化によるキャ
パシタ絶縁膜形成はもとより、さらに、CVD法による
HTO膜の作成においても、下地にアモルファスSi層
8を用いた方が下地のポリSiF!のものより電界集中
による耐圧の低下を回避できる優れた膜質を有するキャ
パシタ絶縁膜を得ることができる。
As described above, according to this embodiment, it is better to use the amorphous Si layer 8 as the base when forming a capacitor insulating film by conventional thermal oxidation, and even when creating an HTO film by the CVD method. It is possible to obtain a capacitor insulating film having superior film quality that can avoid a decrease in breakdown voltage due to electric field concentration.

(ト)発明の効果 以上のようにこの発明によれば、半導体基反上にアモル
ファスSi層を堆積した後これに不純物をドープし、続
いて、アモルファスSi上に公知のCVD法またはスパ
ッタ法を用いて絶縁膜を形成するようにしたので、欠陥
密度の少ない膜質の良好な絶縁層を形成でき、電圧が印
加された際の絶縁破壊耐圧の低下を防止できる効果があ
る。また、CVD法やスパッタ法を用いることから、膜
厚の制御を容易にできるM点を有する。
(g) Effects of the Invention As described above, according to the present invention, an amorphous Si layer is deposited on a semiconductor substrate and then doped with impurities, and then a known CVD method or sputtering method is applied to the amorphous Si layer. Since the insulating film is formed by using the insulating film, it is possible to form an insulating layer with a low defect density and good film quality, which has the effect of preventing a decrease in dielectric breakdown voltage when a voltage is applied. Furthermore, since the CVD method or the sputtering method is used, there is an M point that allows easy control of the film thickness.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明の一実施例を説明するための製造工程
説明図、第2図はHTO膜の膜厚対平均耐圧、および膜
厚対欠陥密度のそれぞれの特性を上記実施例と比較例と
を比枝して示す特性図、第3図(a)は上記実施例にお
けるHTOHの絶縁耐圧破壊の程度を示す特性図、第3
図(b)は上記実施例との比較を示す比較例の第3図(
a)相当図、第4図は測定に用いた電極パターンを示す
構成説明図、第5図は従来例を示す製造工程説明図であ
る。 ■・・・・・・半導体基仮、2・・・・・・Siの熱酸
化膜、8・・・・・リンドーブされたアモルファスSt
層、9・・・・・・StowのHT○膜。 枠理人  社団十  川 ポ l−!士白;25冫5上ミ7どヌ1 (C) (d) FREQLIEI’lJcY ( % )第 2 図 FRF−QUENCY ( 九)
Fig. 1 is a manufacturing process explanatory diagram for explaining one embodiment of the present invention, and Fig. 2 shows the characteristics of the HTO film thickness vs. average withstand voltage and film thickness vs. defect density in a comparative example with the above example. FIG. 3(a) is a characteristic diagram showing the degree of dielectric strength breakdown of HTOH in the above example.
Figure (b) is Figure 3 of a comparative example (
a) Corresponding diagram, FIG. 4 is a configuration explanatory diagram showing the electrode pattern used for measurement, and FIG. 5 is a manufacturing process explanatory diagram showing a conventional example. ■... Semiconductor base temporary, 2... Si thermal oxide film, 8... Phosphorus doped amorphous St
Layer 9...Stow's HT○ film. Frame Rijin Togawa Pol-! Shihaku; 25 冫 5 上Mi 7 どnu 1 (C) (d) FREQLIEI'lJcY (%) Fig. 2 FRF-QUENCY (9)

Claims (1)

【特許請求の範囲】[Claims] 1、半導体基板上に、その全面に、熱酸化膜を介して非
結晶シリコン層を形成し、これに不純物を注入した後、
非結晶シリコン層の全面に、化学的気相蒸着法(CVD
法)またはスパッタ法を用いて絶縁層を形成することを
特徴とする半導体装置の製造方法。
1. After forming an amorphous silicon layer on the entire surface of the semiconductor substrate via a thermal oxide film and implanting impurities into it,
Chemical vapor deposition (CVD) is applied to the entire surface of the amorphous silicon layer.
1. A method for manufacturing a semiconductor device, comprising forming an insulating layer using a sputtering method or a sputtering method.
JP16141889A 1989-06-23 1989-06-23 Manufacture of semiconductor device Pending JPH0325967A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16141889A JPH0325967A (en) 1989-06-23 1989-06-23 Manufacture of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16141889A JPH0325967A (en) 1989-06-23 1989-06-23 Manufacture of semiconductor device

Publications (1)

Publication Number Publication Date
JPH0325967A true JPH0325967A (en) 1991-02-04

Family

ID=15734723

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16141889A Pending JPH0325967A (en) 1989-06-23 1989-06-23 Manufacture of semiconductor device

Country Status (1)

Country Link
JP (1) JPH0325967A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5225378A (en) * 1990-11-16 1993-07-06 Tokyo Electron Limited Method of forming a phosphorus doped silicon film
JP2007163256A (en) * 2005-12-13 2007-06-28 Sus Corp Instrument positioning device, and rotation mechanism for instrument positioning device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5225378A (en) * 1990-11-16 1993-07-06 Tokyo Electron Limited Method of forming a phosphorus doped silicon film
JP2007163256A (en) * 2005-12-13 2007-06-28 Sus Corp Instrument positioning device, and rotation mechanism for instrument positioning device

Similar Documents

Publication Publication Date Title
US5279985A (en) Semiconductor device and method of fabrication thereof
JPH05206473A (en) Improved dielectric formed on deposited semiconductor
JPH05110024A (en) Semiconductor device and manufacture thereof
JPH11177051A (en) Thin-film capacitor and its manufacture
JPH01225149A (en) Capacitor and manufacture thereof
JP3739809B2 (en) Thin film transistor manufacturing method
TW200425344A (en) Method for forming a metal oxide film
JP2000004018A (en) Method of forming ultra-thin crystalline silicon nitride for gate dielectric on silicon (111)
TWI279891B (en) Method of manufacturing a flash memory cell
US5001527A (en) Semiconductor device with thin insulation film
WO1999032691A1 (en) Insulating material, substrate covered with an insulating film, method of producing the same, and thin-film device
JPH05167008A (en) Manufacturing method of semiconductor element
JPH0325967A (en) Manufacture of semiconductor device
JPH0645521A (en) Manufacture of semiconductor element
JP2000196035A (en) Manufacture of capacitor of memory device
KR950012555B1 (en) Memory cell capacitor
EP0418468B1 (en) Method for producing an ultra-thin dielectric for microelectronics applications
JPH0922884A (en) Manufacture of semiconductor element
JPH04294532A (en) Method for forming tungsten silicide film
JPH021124A (en) Manufacture of dielectric film
JPS5951549A (en) Manufacture of integrated circuit device
JP3064363B2 (en) Method of forming Si thin film
JPH08335703A (en) Thin-film transistor and its manufacture
JPS61120469A (en) Manufacture of electrode wiring
JPH01292860A (en) Semiconductor device and manufacture thereof