JPS6112045A - Formation of bump electrode - Google Patents

Formation of bump electrode

Info

Publication number
JPS6112045A
JPS6112045A JP59131874A JP13187484A JPS6112045A JP S6112045 A JPS6112045 A JP S6112045A JP 59131874 A JP59131874 A JP 59131874A JP 13187484 A JP13187484 A JP 13187484A JP S6112045 A JPS6112045 A JP S6112045A
Authority
JP
Japan
Prior art keywords
photoresist
bump electrode
metal
plasma
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59131874A
Other languages
Japanese (ja)
Inventor
Muneo Hiramitsu
平光 宗生
Kazuo Matsumura
和夫 松村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Oki Electric Industry Co Ltd
Original Assignee
Oki Electric Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oki Electric Industry Co Ltd filed Critical Oki Electric Industry Co Ltd
Priority to JP59131874A priority Critical patent/JPS6112045A/en
Publication of JPS6112045A publication Critical patent/JPS6112045A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/10Bump connectors ; Manufacturing methods related thereto
    • H01L24/11Manufacturing methods
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/11Manufacturing methods
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/11Manufacturing methods
    • H01L2224/1147Manufacturing methods using a lift-off mask
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L2224/13Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
    • H01L2224/13001Core members of the bump connector
    • H01L2224/13099Material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01078Platinum [Pt]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01079Gold [Au]

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Drying Of Semiconductors (AREA)

Abstract

PURPOSE:To improve the adhesive property of a semiconductor substrate and a photoresist by a method wherein plasma is made to irradiate for the prescribed period of time using a plasma ashing device before the resist to be turned to a protective film when a bump electrode is formed is coated on a semiconductor substrate. CONSTITUTION:After a substrate 2 is lifted off, plasma is made to irradiate as shown by the arrow A using a plasma ashing device. The output of the plasma oscillator E in this case is 400-500w, the degree of vacuum inside a reaction tube 31 is 0.8-1.0Torr, O2 gas is used, and the period of time of processing is set at 0.5-1.0min. Then, photoresist patterns 30a and 30b are formed by coating a photoresist 29, and a gold-plating 31 is performed. Through these procedures, the surface of the metal to be used for diffusion prevention of a bump electrode forming region is cleaned, hydrophobic property is changed to hydrophilic property, the photoresist intrudes into the interface of the base metal, adhesive property is increased, and a plating solution does not infiltrate into the gold plating, thereby enabling to form a bump electrode of normal shape.

Description

【発明の詳細な説明】 (産業上の利用分野) この発明は、ホトリソグラフィを行ないバンプ電極を形
成するバンプ電極の形成方法に関する0(従来の技術) 半導体装置の実装技術は金線あるいはアルミ線の細線を
ワイヤポンディング装置で半導体装置のポンディングパ
ッド部にボンディングする方法と、混成集積回路(ハイ
ブリッドIC)や多数ピン構造のパッケージおよびマル
チチップの実装技術上従来と異なシ、ボンティングパッ
ド部にバンプ電極を形成して、前者のように細線を使用
しないボンディング法の二つがある。
Detailed Description of the Invention (Industrial Field of Application) This invention relates to a method for forming bump electrodes by performing photolithography (prior art). A method of bonding thin wires to the bonding pad portion of a semiconductor device using a wire bonding device, and a bonding pad portion that is different from conventional methods due to the mounting technology of hybrid integrated circuits (hybrid ICs), multi-pin packages, and multichips. There are two bonding methods that form bump electrodes and do not use thin wires like the former.

後者の電極形成の従来の製造方法において説明すると、
一般の半導体装置の製造工程であるホトリングラフィは
シリコン基板にホトレジストをコーティング、シ、マス
ク合せ装置を使用して、マスク基板を合せて露光し現像
する。
To explain the latter conventional manufacturing method for electrode formation,
Photolithography, which is a common manufacturing process for semiconductor devices, involves coating a silicon substrate with photoresist, then using a mask alignment device to align the mask substrate with light and developing.

現像で得られたホトレジストを塗布を利用して、ノリー
ンのi川面の処理(たとえば、 5iCh膜ならフッ酸
においてエツチングをする)工程を行なう。
Using the photoresist obtained by development, the process of processing the i-surface of Noreen (for example, etching with hydrofluoric acid for a 5iCh film) is performed.

第5図し)ニこのようにホトリソグラフィのホトレジス
トを塗布を利用して形成するバンプ電極の製造工程(途
中)を表わす断面図である。この第5図(4)において
、1は半導体装置の基板(ウェハ)であシ、この基板1
上にシリコン酸化膜2を形成し、その上にポンディング
パッド部のメタル3を形成する。メタル3はバンプ電極
形成領域である(一般にアルミニウムである)0こ のメタル3の形成後、全面に表面保護膜4を形成し、メ
タル3の部分が露出するようにパターニングする。この
表面保護膜4け5iOz膜またはPSG膜である。
FIG. 5) is a cross-sectional view showing a manufacturing process (in the middle) of a bump electrode formed by coating a photoresist using photolithography. In this FIG. 5 (4), 1 is a substrate (wafer) of a semiconductor device, and this substrate 1
A silicon oxide film 2 is formed thereon, and a metal 3 of a bonding pad portion is formed thereon. The metal 3 is a bump electrode formation area (generally made of aluminum). After the metal 3 is formed, a surface protective film 4 is formed on the entire surface and patterned so that the metal 3 portion is exposed. This surface protective film is a 4 x 5 iOz film or a PSG film.

次いで、全面に接合用メタル5を形成するー この接合
用メタル5にアルミニウムであル膜厚は0.8μ〜1.
0μである。
Next, a bonding metal 5 is formed on the entire surface. The bonding metal 5 is coated with aluminum and has a film thickness of 0.8 μm to 1.5 μm.
It is 0μ.

また、6はバンプ電極メタルの拡散防止用メタルで、2
層構造をしている。メタル材は一般KCrまたはTiと
Cu 、 Ni ’p Ptなどが用いられる。
In addition, 6 is a metal for preventing diffusion of the bump electrode metal, and 2
It has a layered structure. As the metal material, general KCr, Ti and Cu, Ni'p Pt, etc. are used.

このバンプ電極メタル6の形成後、ホトレジスト7を塗
布する。このホトレジストアはホトリソグラフィ工程の
ホトレジストで、ポジ型レジストである。ボッ型レジス
トは、有機溶剤(アセトン)で容易に除去できるととも
にメタル材の損傷や変色を起すことがない。
After forming the bump electrode metal 6, a photoresist 7 is applied. This photoresist is a photoresist used in a photolithography process and is a positive type resist. Bot type resist can be easily removed with an organic solvent (acetone) and does not damage or discolor the metal material.

ネガ型レジストは、除去剤として、硫酸と過酸化水素の
混合液が使用されるため、メタル材の損傷や変色を起す
。これがネガ型レジストでなぐポジ型レジストを使用す
る理由である。
Negative resists use a mixture of sulfuric acid and hydrogen peroxide as a remover, which can cause damage and discoloration of metal materials. This is the reason why a positive resist is used instead of a negative resist.

ボッ型レジストは一般にメタル材への密着はよいと言わ
れるが、バンプ電極形成領域のように下地部分が凹凸で
ある場合および電極拡散防止用メタル6のを塗布に対し
て、バンプ電極形成を塗布が接近している場合は、ホト
レジ“ストの現像・やターンは、メタル材に対してしば
しば密着性が劣り、エツチング液やメッキ液がしみ込む
問題がある。
It is generally said that the bottom resist adheres well to metal materials, but when the underlying part is uneven, such as the bump electrode formation area, and when the metal 6 for preventing electrode diffusion is applied, it is difficult to apply the bump electrode formation. If they are close together, the adhesion of photoresist development and turning to metal materials is often poor, and there is a problem that etching and plating solutions may seep into them.

このしみ込み防止には、たとえば、一般に密着性向上剤
として有機70ルシランやヘキサメチルジシラザンがボ
ッ型およびネガ型ホトレジスト、%にボッ型ホトレジス
トの密着性向上に使用されることは、周知の事実である
It is a well-known fact that to prevent this penetration, for example, organic 70 lucirane and hexamethyldisilazane are generally used as adhesion improvers to improve the adhesion of bottom-type and negative-type photoresists, and %-bottom photoresists. It is.

第5図(至)の7aはホトレジストの現像を塗布であ、
9,7bは隣接のノ母ターンである。この部分にパンツ
電極を電解メッキで形成させる。
7a in Figure 5 (to) is the application of photoresist development;
9 and 7b are adjacent mother turns. A pant electrode is formed on this part by electrolytic plating.

この場合一般にバンプ電極材は、金または鉛−錫合金で
ある。電解メッキ工程が終了し、ホトレジストをアセト
ンで除去した後のバンプ電極の形成状態を第5図■およ
び第5図C)K示す。
In this case, the bump electrode material is generally gold or a lead-tin alloy. The state of formation of the bump electrode after the electrolytic plating process is completed and the photoresist is removed with acetone is shown in FIGS.

第5図03)は断面図であシ、第5図C)は平面図であ
る。この第5図ノ〕、第5図C)において、8はバンプ
電極、9はバンプ電極材のメタルがホトレゾストの密着
性が悪いためメッキ液のしみ込みによシ成長したもので
ある。また、10は隣地のバンプ電極形成部がしみ込み
でメタルが成長したものである。
FIG. 503) is a sectional view, and FIG. 5C) is a plan view. In FIGS. 5(a) and 5(c), 8 is a bump electrode, and 9 is a metal of the bump electrode material that has grown due to penetration of the plating solution due to poor adhesion of the photoresist. In addition, 10 is one in which metal has grown by seeping into the adjacent bump electrode formation area.

°また。1ltfポンプイングツ母ツド部(バンプ電極
形成領域)と内部半導体素子とを結ぶメタル配線(アル
ミニウム)のノやターンである。
°Also. These are the holes and turns of the metal wiring (aluminum) that connects the 1ltf pumping tube motherboard (bump electrode formation region) and the internal semiconductor element.

(発明が解決しようとする問題点) 以上のように、ホトレジストの密着性が劣り、メタル9
と10の成長部分が接触し、電気的短絡を起こす。
(Problems to be Solved by the Invention) As described above, the adhesion of photoresist is poor, and metal 9
The grown portions of and 10 come into contact, creating an electrical short circuit.

また、バンプ電極8の形成不良として、チップ外観選別
で不良となる。ホトリソグラフィ工程の再処理率が高く
なる。このように密着性が悪りための欠点がある。
In addition, due to defective formation of the bump electrode 8, the chip is judged to be defective in the chip appearance screening. The reprocessing rate of the photolithography process is increased. There is a drawback due to poor adhesion as described above.

この発明の目的は、ホトレジ”ストの密着性を良くシ、
バンプ電極の形成がホトレジストI4ターン通シの良好
な形状になり得るバンプ電極の形成方−法を得ることに
ある。
The purpose of this invention is to improve the adhesion of photoresist.
An object of the present invention is to obtain a method for forming a bump electrode in which the bump electrode can be formed into a good shape through a photoresist I4 turn.

(問題点を解決するための手段) この発明の要点は、バンプ電極の形成の際の保護となる
ホトレジストを半導体基板にコーティングする前にプラ
ズマ灰化装置を使用し所定時間プラズマを照射すること
にある。
(Means for Solving the Problems) The main point of this invention is to use a plasma ashing device to irradiate plasma for a predetermined period of time before coating a semiconductor substrate with photoresist for protection during the formation of bump electrodes. be.

(作用) このようにすれば、半導体基板とホトレジストの密着性
が向上し、これにともない、ホトレジスト/母ターン通
シの良好な形状にバンプ電極が形成される。
(Function) In this way, the adhesion between the semiconductor substrate and the photoresist is improved, and accordingly, the bump electrode is formed in a shape with good photoresist/main turn penetration.

(実施例) 以下、この発明のバンプ電極の形成方法の実施例につい
て図面に基づき説明する。第1図(4)ないし第1図8
はその一実施例の工程説明図である。
(Example) Hereinafter, an example of the method for forming a bump electrode of the present invention will be described based on the drawings. Figure 1 (4) to Figure 1 8
1 is a process explanatory diagram of one example.

まず、第1図(4)において′、基板21上にシリコン
酸化jil[22を形成した後、ポンプイングツぐラド
部のメタル23をパンツ電極形成領域に形成する。
First, in FIG. 1(4), a silicon oxide film [22] is formed on the substrate 21, and then a metal 23 of the pumping rod portion is formed in the pant electrode formation region.

次に、第1図の)に示すように基板21に表面保護膜(
5ins膜また#−!PSG膜)24t−1成し、必要
とする部分にホトリソグラフィで窓25a。
Next, as shown in FIG. 1), a surface protective film (
5ins film again #-! PSG film) 24t-1 is formed and windows 25a are formed in the required areas by photolithography.

25bをあける。Open 25b.

次に、第1図C)K示すように、アルミ蒸着M26を全
面に生成する。このアルミ蒸着膜26は接合用メタルと
言う。このアルミ蒸着膜26の上にホトリソグラフィ用
のホトレジスト27(ポジ型AZ1350Jシュプレー
社製品名などである)を塗布する。
Next, as shown in FIG. 1C)K, aluminum vapor deposition M26 is formed on the entire surface. This aluminum vapor-deposited film 26 is called a bonding metal. A photoresist 27 for photolithography (positive type AZ1350J, product name of Spree Co., Ltd., etc.) is applied onto the aluminum vapor deposited film 26.

次に、第1図OK示すように、ホトリソグラフィでホト
レジスト27にノ母ターンを形成し、さらにその上にバ
ンプ電極のメタル拡散防止用のメタル28を一般に二層
構造で蒸着する。
Next, as shown in FIG. 1, a master turn is formed on the photoresist 27 by photolithography, and a metal 28 for preventing metal diffusion of the bump electrode is deposited thereon, generally in a two-layer structure.

次に、第1図■に示すように、ホトレゾスト27を有機
溶剤(アセトンなど)で除去すると、メタルのノやター
ンが残る。一般にこれをリフトオフという。
Next, as shown in FIG. 1, when the photoresist 27 is removed with an organic solvent (acetone or the like), metal holes and turns remain. This is generally called lift-off.

次に、第1図■に示すように、プラズマ灰化装置で、矢
印Aで示すようにプラズマ照射をする。
Next, as shown in FIG. 1 (2), plasma irradiation is performed as indicated by arrow A using a plasma ashing device.

このプラズマ灰化装置は第2図に詳細に示されている。This plasma ashing apparatus is shown in detail in FIG.

この第2図におりて、31は反応管であシ、この反応管
31にはプラズマ発生のための電極32が設けられてお
り、この電極32に所定の電圧がf 5 X7発振器に
ょシ供給するようにしている。
In this Figure 2, 31 is a reaction tube, this reaction tube 31 is provided with an electrode 32 for plasma generation, and a predetermined voltage is supplied to this electrode 32 to the f5X7 oscillator. I try to do that.

このプラズマ発振器の供給によシ反応管31内でプラズ
マを発生するようにしている。
Plasma is generated within the reaction tube 31 by supplying this plasma oscillator.

プラズマ反応管31内には、0寓ガス配管34を通して
0雪ガスが導入され、排気口35には真空ボンf(図示
せず)カミ連結されている。この真空ポンプによシ、反
応管31内のガスを除去するようにしている。
Zero gas is introduced into the plasma reaction tube 31 through a zero gas pipe 34, and an exhaust port 35 is connected to a vacuum bomb (not shown). This vacuum pump is used to remove gas within the reaction tube 31.

反応管31内には被プラズマ処理物33が収納される。A plasma-treated object 33 is housed in the reaction tube 31 .

このプラズマ処理物33は治具に塔載し友手導体基板で
ある。
This plasma-treated product 33 is a conductive substrate mounted on a jig.

このようなプラズマ灰化装置は反応管型で半導体基板3
3’i50枚〜100枚並べて、同時処理が可能である
Such a plasma ashing device is of a reaction tube type and has a semiconductor substrate 3.
3'i It is possible to line up 50 to 100 sheets and process them simultaneously.

この場合のプラズマ発振器Eの出力は400〜500w
、反応管31内の真空度は0.8〜1.0Torr  
であシ、ガス4けO!ガスを使用する。処理時間は0.
5〜1.0分である。
In this case, the output of plasma oscillator E is 400 to 500w
, the degree of vacuum inside the reaction tube 31 is 0.8 to 1.0 Torr.
Ashi, gas 4keO! Use gas. Processing time is 0.
It is 5 to 1.0 minutes.

次に、第1図旬に示すように、ホトレジスト29をコー
ティングし、マスク合せ、N元、現像をして、ホトレジ
ストを塗布30a、30b′ft形成する0このホトレ
ジストパターy30a、Mbは現像でホトレジスト29
が溶解除去された部分()ぐターン)である。
Next, as shown in Figure 1, photoresist 29 is coated, masked, N-based, and developed to form photoresist 30a, 30b'ft. 29
is the part ()g turn) that has been dissolved and removed.

このホトレジストを塗布30a、30bを利用して、第
1図0に示すように金メッキ31を行なう。この第1図
0け正常に金メッキ31が行なわれ、ホトレジスト29
を除去した状態の断面図である。
Using this photoresist coating 30a and 30b, gold plating 31 is performed as shown in FIG. 10. The gold plating 31 in FIG.
FIG.

第1の実施例はバンプ電極の形成方法のホトリソグラフ
ィ工程において、一般にホトレジストコーティング前に
1500〜200℃の高温ベーキングをするが、このベ
ーキングにとって代ってプラズマ灰化装置でプラズマ処
理をする。その後にレソストコーティングを行なうよう
にしている。
In the first embodiment, in the photolithography process of the bump electrode formation method, high temperature baking at 1500 to 200 DEG C. is generally performed before photoresist coating, but instead of this baking, plasma treatment is performed using a plasma ashing device. After that, Resost coating is applied.

一般にプラズマによる処理は、発生した活性種、たとえ
ばイオン、電子、ラジカルなどが基板物質と反応して揮
発性物質をつくれば表面の物質は除去されていく。
Generally, in plasma processing, the surface material is removed if generated active species such as ions, electrons, radicals, etc. react with the substrate material to create volatile materials.

たとえば、基板に有機性物質がある場合は、プラズマで
活性化された酸素によシ有機物ThC0!、H80とし
て除去されることは知られている。
For example, if there is an organic substance on the substrate, the organic substance ThC0! , H80.

この発#Jは、バンプ電極の一形成工程において、高温
熱処理(たとえば半導体装置のM OSデバイス特性閾
値電圧1丁を安定化させるために行なうH2雰囲気での
高温処理)を施した後、ホトレジストのコーティング前
にメッキ工程のためのホトリングラフィ工程を行なう場
合、プラズマ灰化装置でプラズマ処理をすることで、ホ
トレジストの密着性を向上させる。
This phenomenon occurs when the photoresist is heated after high-temperature heat treatment (for example, high-temperature treatment in an H2 atmosphere to stabilize the MOS device characteristic threshold voltage of a semiconductor device) in one step of forming the bump electrode. When performing a photolithography process for a plating process before coating, plasma treatment is performed using a plasma ashing device to improve the adhesion of the photoresist.

半導体装置の基板上のバンプ電極形成領域の拡散防止用
メタルの表面を清浄にするとともに、第3図に示すよう
に、疎水性であったものが親水性に変化をし、ホトレジ
“スト液のしみわたシを良好にする。この第3図は半導
体基板上にホトレジストを滴下した場合、ある面積に広
がるまでの時間を表わしたもので、プラズマ照射未処理
と出力に水準をとって表わしている。
In addition to cleaning the surface of the diffusion prevention metal in the bump electrode formation area on the substrate of the semiconductor device, as shown in Figure 3, the hydrophobic property changes to hydrophilic property, and the photoresist solution is absorbed. This figure shows the amount of time it takes for photoresist to spread over a certain area when dropped onto a semiconductor substrate, with the level of output compared to that of untreated plasma irradiation. There is.

このように、親水性になるので、ホトレジストは、下地
メタルの界面まで入シ込み、密着性をよくするので、金
メッキ中メッキ液のしみ込みがなく、バンプ電極が正常
な形状で形成できる。
As described above, since the photoresist becomes hydrophilic, it penetrates into the interface of the base metal and improves adhesion, so that the plating solution does not seep in during gold plating, and bump electrodes can be formed in a normal shape.

金メッキのためのホトリソグラフィ工程における現像後
の顕微鏡検査で、ホトレジ“ストの密着性が確認できる
ため、従来は現像後検査で不良ロットは再処理をしてい
た。
The adhesion of the photoresist can be confirmed through microscopic inspection after development in the photolithography process for gold plating, so conventionally defective lots were reprocessed through post-development inspection.

しかし、この発明によると、第4図に示すように、ホト
リソグラフィ再処理率の低減、バンプ電極の形状不良が
減少できて、歩留シの向上になる0すなわち、第4図は
、従来法とこの発明の方法とによるホトリソグラフィ再
処理率およびバンプ電i不良率を示し、従来法によれば
、再処理率が32チ、電極形状不良率が5%だったのが
、この発明の方法によれば前者が0%、後者が1%とな
る。
However, according to the present invention, as shown in FIG. 4, it is possible to reduce the photolithography reprocessing rate, reduce defective shapes of bump electrodes, and improve yield. The results show the photolithography reprocessing rate and bump electrode defect rate according to the method of this invention.According to the conventional method, the reprocessing rate was 32 chips and the electrode shape defect rate was 5%, but with the method of this invention. According to this, the former is 0% and the latter is 1%.

この発明は半導体装置の基板とホトレジスト29の密着
性が増加するため、金メツキ用のホトリングラフィ工程
だけでなく、半導体装置のホトリソクラフイで利用でき
る。
Since this invention increases the adhesion between the substrate of the semiconductor device and the photoresist 29, it can be used not only in the photolithography process for gold plating but also in the photolithography process of semiconductor devices.

(発明の効果) この発明は以上説明したように、バンプ電極の形成の際
の保護膜となるレソストを半導体基板にコーティングす
る前にプラズマ灰化装置を使用して所定時間プラズマ照
射するようにしたので、半導体基板とホトレジストの密
着性を向上でき、これにともない、バンプ電極の形成が
ホトレソストを塗布通シの良好な形状にできる利点があ
る。
(Effects of the Invention) As explained above, this invention uses a plasma ashing device to irradiate plasma for a predetermined period of time before coating a semiconductor substrate with Resosto, which serves as a protective film when forming bump electrodes. Therefore, the adhesion between the semiconductor substrate and the photoresist can be improved, and along with this, the formation of the bump electrode has the advantage that the photoresist can be shaped to be easily coated.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(4)ないし第1図([(lはこの発明のバンプ
電極の形成方法の一実施例の工程説明図、第2図は同上
バンプ電極の形成方法に適用されるプラズマ灰化装置の
構成を示す断面図、第3図は同上プラズマ電極の形成方
法を説明するためめ半導体基板上にホトレジストを滴下
した場合にある面積に広がるまでの時間を示す図、第4
図はホトリソグラフィ工程におりるホトリングラフィ再
処理率とバンプを極刑状不良率を従来とこの発明のバン
プ電極の形成方法とを比較して示した図、第5図(4)
ないし第5図C)は従来のバンプ電極の形成方法の工程
説明図である。 21・・・基板、22・・・シリコン酸化膜、23 、
28・・・メタル、24・・・表面保護膜、25a、2
5b・・・窓、26・・・アルミ蒸着膜、27.29・
・・ホトレジスト、31・・・金メッキ。 特許出願人 沖電気工業株式会社 第1図 (〜 Oエ 第2図 第3図 アラスマ出力(W) 第4図 咲未法     本発明
1 (4) to 1 ([(l is a process explanatory diagram of one embodiment of the method for forming a bump electrode of the present invention, and FIG. 2 is a plasma ashing apparatus applied to the method for forming a bump electrode as described above. FIG. 3 is a cross-sectional view showing the structure of the above plasma electrode, and FIG.
Figure 5 (4) shows a comparison of the photolithography reprocessing rate in the photolithography process and the defective rate of bumps between the conventional method and the method of forming bump electrodes of the present invention.
5C) to 5C are process explanatory diagrams of a conventional method for forming bump electrodes. 21...Substrate, 22...Silicon oxide film, 23,
28...Metal, 24...Surface protective film, 25a, 2
5b... Window, 26... Aluminum vapor deposited film, 27.29.
...Photoresist, 31...Gold plating. Patent applicant: Oki Electric Industry Co., Ltd. Figure 1 (~ Oe Figure 2 Figure 3 Arasma output (W) Figure 4 Sakimi method This invention

Claims (1)

【特許請求の範囲】[Claims]  半導体装置の基板上に酸化膜を介してバンプ電極形成
領域に第1のメタルを形成して、この第1のメタルに対
応する個所に窓を形成して第1のメタルと接合する第2
のメタルを全面に形成する工程と、この第2のメタル形
成後第1のホトレジストを塗布して、上記バンプ電極形
成領域に開孔してバンプ電極のメタルの拡散防止用のメ
タルを形成するとともに第1のホトレジストを除去する
工程と、この拡散防止用のメタル形成後プラズマ処理す
る工程と、このプラズマ処理後に第2のホトレジストを
塗布して上記バンプ電極形成領域に開孔して上記拡散防
止用のメタル上にバンプ電極を形成する工程とよりなる
バンプ電極の形成方法。
A first metal is formed in a bump electrode formation region on a substrate of a semiconductor device via an oxide film, and a window is formed at a location corresponding to the first metal and a second metal is bonded to the first metal.
After forming the second metal, a first photoresist is applied, and holes are formed in the bump electrode forming area to form a metal for preventing diffusion of the metal of the bump electrode. a step of removing the first photoresist, a step of plasma treatment after forming the metal for diffusion prevention, and a step of applying a second photoresist after the plasma treatment to form a hole in the bump electrode formation area to prevent the diffusion. A method for forming a bump electrode comprising the steps of forming a bump electrode on a metal.
JP59131874A 1984-06-28 1984-06-28 Formation of bump electrode Pending JPS6112045A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59131874A JPS6112045A (en) 1984-06-28 1984-06-28 Formation of bump electrode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59131874A JPS6112045A (en) 1984-06-28 1984-06-28 Formation of bump electrode

Publications (1)

Publication Number Publication Date
JPS6112045A true JPS6112045A (en) 1986-01-20

Family

ID=15068156

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59131874A Pending JPS6112045A (en) 1984-06-28 1984-06-28 Formation of bump electrode

Country Status (1)

Country Link
JP (1) JPS6112045A (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51142980A (en) * 1975-06-04 1976-12-08 Hitachi Ltd Photo resistance layer formation method
JPS54107277A (en) * 1978-02-10 1979-08-22 Hitachi Ltd Production of semiconductor device
JPS54117680A (en) * 1978-03-03 1979-09-12 Nec Corp Semiconductor device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51142980A (en) * 1975-06-04 1976-12-08 Hitachi Ltd Photo resistance layer formation method
JPS54107277A (en) * 1978-02-10 1979-08-22 Hitachi Ltd Production of semiconductor device
JPS54117680A (en) * 1978-03-03 1979-09-12 Nec Corp Semiconductor device

Similar Documents

Publication Publication Date Title
US5288660A (en) Method for forming self-aligned t-shaped transistor electrode
JPH0345895B2 (en)
JPH0263295B2 (en)
JPS6112045A (en) Formation of bump electrode
JPH03198342A (en) Manufacture of semiconductor device
JPS6329940A (en) Manufacture of semiconductor device
JPS61141158A (en) Formation of bump electrode
JPS61172336A (en) Formation of electrode opening of semiconductor device
JPH04307737A (en) Manufacture of semiconductor device
JPH02113523A (en) Manufacture of semiconductor device
JPS61141157A (en) Manufacture of semiconductor element
JPH04278543A (en) Semiconductor device and manufacture thereof
JP3532972B2 (en) Method for manufacturing compound semiconductor device
JPS62171143A (en) Multilayer interconnection method
JPS58171823A (en) Preparation of semiconductor device
JPH01207956A (en) Manufacture of semiconductor device
JPH10224029A (en) Production of bump
KR19980030400A (en) Bump formation method to remove the bonding pad of the abnormal bump
JPS59155149A (en) Manufacture of integrated circuit device
KR0175332B1 (en) D.I method for preventing pattern fixing failure using water
JPS63284861A (en) Manufacture of semiconductor device
JPH0237724A (en) Formation of bump type electrode of semiconductor device
JPS6019661B2 (en) Electrode formation method
JPH03276627A (en) Manufacture of semiconductor device
JPS6193629A (en) Manufacture of semiconductor device