JPS6111959Y2 - - Google Patents

Info

Publication number
JPS6111959Y2
JPS6111959Y2 JP1977022275U JP2227577U JPS6111959Y2 JP S6111959 Y2 JPS6111959 Y2 JP S6111959Y2 JP 1977022275 U JP1977022275 U JP 1977022275U JP 2227577 U JP2227577 U JP 2227577U JP S6111959 Y2 JPS6111959 Y2 JP S6111959Y2
Authority
JP
Japan
Prior art keywords
cable
sealed
flange
cryogenic
tapered
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP1977022275U
Other languages
Japanese (ja)
Other versions
JPS53116694U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP1977022275U priority Critical patent/JPS6111959Y2/ja
Publication of JPS53116694U publication Critical patent/JPS53116694U/ja
Application granted granted Critical
Publication of JPS6111959Y2 publication Critical patent/JPS6111959Y2/ja
Expired legal-status Critical Current

Links

Description

【考案の詳細な説明】 本考案は接続作業が簡単で熱侵入量の少ない密
封型極低温ケーブルの接続部構体に関するもので
ある。
[Detailed Description of the Invention] The present invention relates to a connection structure for a sealed cryogenic cable that is easy to connect and has little heat intrusion.

冷却対象物である信号線を収容し内部にヘリウ
ムガス等の冷媒の流れる内管と、内管の周囲に配
置される断熱層を介して設けられた外管とで構成
されている密封型極低温ケーブルは断熱層を真空
にして用いられる。超伝導通信ケーブルのように
極めて断熱性能の高いことが要求されるケーブル
では10-4Torr以上の真空度が必要である。しか
し、密封型極低温ケーブルは、細くて(直径約7
cm)長いので(数百メートル)、排気抵抗が非常
に大きい。そのためケーブル端部より真空排気装
置によつてケーブル全体を高真空に排気すること
は難しい。
A sealed electrode consisting of an inner tube that accommodates the signal line that is the object to be cooled and through which a refrigerant such as helium gas flows, and an outer tube that is provided through a heat insulating layer placed around the inner tube. Low-temperature cables are used with a vacuum insulation layer. Cables that require extremely high insulation performance, such as superconducting communication cables, require a vacuum level of 10 -4 Torr or higher. However, sealed cryogenic cables are thin (about 7 mm in diameter).
cm) long (several hundred meters), the exhaust resistance is very large. Therefore, it is difficult to evacuate the entire cable to a high vacuum from the end of the cable using a vacuum evacuation device.

さらに、従来のように現場で断熱材の装着を行
ない、真空排気する接続方法は作業性が悪い欠点
があつた。
Furthermore, the conventional connection method of attaching heat insulating material and evacuation on site had the drawback of poor workability.

このため、各ケーブルの断熱層の真空排気はケ
ーブル布設以前にケーブル製作工場等で行ない、
そのまま排気部分を密封し、各ケーブルを布設接
続後冷媒によつて冷却し、断熱層に封入された活
性炭等の吸着効果によりケーブルの長さ方向に均
等な高真空状熊を実現している、いわゆる密封型
構造のケーブルが考え出された。このケーブルを
用いると接続部分の接続作業性が大幅に向上す
る。
For this reason, the insulation layer of each cable is evacuated at a cable manufacturing factory, etc. before cable installation.
The exhaust part is sealed as it is, and each cable is cooled with a refrigerant after installation and connection, and the adsorption effect of activated carbon etc. sealed in the insulation layer creates a high vacuum condition that is uniform in the length direction of the cable. A cable with a so-called sealed structure was devised. Using this cable greatly improves the workability of connecting parts.

しかし、この場合は必然的に接続部分に密封の
ための真空フランジが必要になり、この部分から
の熱侵入量が問題になる。
However, in this case, a vacuum flange for sealing is inevitably required at the connection part, and the amount of heat intrusion from this part becomes a problem.

第1図は従来の平面型フランジを有した密封型
極低温ケーブルである。ここで、1は極低温ケー
ブルの外管、2は断熱層、3はヘリウムガス等の
冷媒の流れる内管、4は同軸ケーブル等の信号
線、5は平面型フランジである。この従来型のケ
ーブルにおいてはフランジ部からの熱侵入量が大
きく、冷却効果が悪い欠点があつた。
FIG. 1 shows a conventional sealed cryogenic cable with a planar flange. Here, 1 is an outer tube of a cryogenic cable, 2 is a heat insulating layer, 3 is an inner tube through which a refrigerant such as helium gas flows, 4 is a signal line such as a coaxial cable, and 5 is a flat flange. This conventional type of cable had the disadvantage that a large amount of heat entered through the flange portion, and the cooling effect was poor.

本考案はこの欠点を除去するため、平面フラン
ジ部における熱侵入量に着目し、平面フランジを
ケーブルの長さ方向にテーパ状に変形させ、フラ
ンジ部分からの熱侵入量を減少させたものであ
り、以下図面により詳細に説明する。
In order to eliminate this drawback, the present invention focuses on the amount of heat infiltration at the flat flange, and deforms the flat flange into a tapered shape in the length direction of the cable, thereby reducing the amount of heat intrusion from the flange. , will be explained in detail below with reference to the drawings.

第2図は本考案に係るテーパ管を有した密封型
極低温ケーブルであつて、その一端は凸型になつ
ており他端は凹型になつている。
FIG. 2 shows a sealed cryogenic cable with a tapered tube according to the present invention, one end of which is convex and the other end concave.

第2図中、第1図と同一部分は同一符号を用
い、さらに、6はテーパ管、7はフランジを示
す。
In FIG. 2, the same parts as in FIG. 1 are denoted by the same reference numerals, and 6 indicates a tapered pipe and 7 indicates a flange.

第3図は第2図で示したケーブルを接続した場
合の接続部の断面図である。これを具体的に説明
すると、まず、多層断熱材等の断熱層2,2′よ
りなる極低温ケーブルの外管1,1′を対向して
配置する。この対向する極低温ケーブルの外管
1,1′の一方の端部は接続用フランジ7と一体
の凸型のテーパ管6で密封され、他方の端部は接
続用フランジ7′と一体の凹型のテーパ管6′で密
封されており、この両端部のテーパ管6と6′を
接続用フランジ7,7′で相互に接続する。この
際、ヘリウムガス等の冷媒の流れる内管3,3′
および同軸ケーブル等の信号線4,4′も信号線
接続用コネクタ8で相互に接続する。また、2,
2′の断熱層が多層断熱材等の場合には、6,
6′のテーパ管の長さ方向の温度勾配に多層断熱
材の各層の温度が合うように積層すれば接続部で
の断熱性能はより向上する。以上のような接続部
材は全てケーブル製作時に工場で加工され、ケー
ブル全体は真空排気後密封される。つぎにケーブ
ル布設現場では、7,7′の接続用フランジによ
り両端部を接続し、同時に3,3′の内管、4,
4′の信号線も接続される。したがつて、ケーブ
ル布設現場では断熱材の装着および真空排気は必
要ない。接続部の熱侵入量は、本考案のテーパ管
6,6′の材質と寸法に関係するが、単純な平面
型フランジと較べた場合、テーパ管6,6′の長
さを長くし、厚みを薄くすれば、大幅に減少させ
ることができる。テーパ管6,6′の長さおよび
厚さはケーブル接続部の強度や許容熱侵入量等に
より決まる。また材質は極低温での機械的強度が
大きく、熱伝導率が銅、鉄などに較べて小さいス
テンレススチールなどが考えられる。
FIG. 3 is a sectional view of the connecting portion when the cable shown in FIG. 2 is connected. To explain this specifically, first, outer tubes 1 and 1' of a cryogenic cable made of heat insulating layers 2 and 2' such as multilayer heat insulating material are placed facing each other. One end of the opposing outer tubes 1, 1' of the cryogenic cable is sealed with a convex tapered tube 6 integrated with the connecting flange 7, and the other end is sealed with a concave tapered tube 6 integrated with the connecting flange 7'. The tapered tubes 6 and 6' at both ends are connected to each other by connecting flanges 7 and 7'. At this time, the inner tubes 3, 3' through which refrigerant such as helium gas flows
The signal lines 4, 4' such as coaxial cables are also connected to each other by a signal line connecting connector 8. Also, 2,
If the insulation layer 2' is a multilayer insulation material, etc., 6,
If the multilayer insulation material is laminated so that the temperature of each layer matches the temperature gradient in the longitudinal direction of the tapered pipe 6', the insulation performance at the joint will be further improved. All of the above-mentioned connection members are processed at the factory during cable production, and the entire cable is sealed after being evacuated. Next, at the cable installation site, both ends are connected using connecting flanges 7 and 7', and at the same time, the inner tubes 3 and 3',
The signal line 4' is also connected. Therefore, installation of insulation material and vacuum evacuation are not required at the cable installation site. The amount of heat infiltration at the connection part is related to the material and dimensions of the tapered pipes 6, 6' of the present invention, but when compared with a simple flat flange, the length of the tapered pipes 6, 6' is increased and the thickness is increased. It can be significantly reduced by making it thinner. The length and thickness of the tapered tubes 6, 6' are determined by the strength of the cable connection, the allowable amount of heat penetration, etc. In addition, the material may be stainless steel, which has high mechanical strength at extremely low temperatures and low thermal conductivity compared to copper, iron, etc.

第4図は本考案の別の実施例であつて、テーパ
管61,61′を波付け型にしたものであり、こ
れによりテーパ管61,61′の実効的な長さを
長くし熱侵入量をさらに小さくしたものである。
第4図中、第3図と同一部分は同一符号を附して
その説明を省略する。
FIG. 4 shows another embodiment of the present invention, in which the tapered pipes 61, 61' are corrugated, which increases the effective length of the tapered pipes 61, 61' and improves heat penetration. The amount is even smaller.
In FIG. 4, the same parts as those in FIG. 3 are given the same reference numerals, and the explanation thereof will be omitted.

第5図aは、本考案による極低温ケーブル9
1,92,93,94…を多数本接続した例であ
つて、極低温ケーブル91,92,93,94…
の一端を凸型テーパ管6で密封し、他端を凹型テ
ーパ管6′で密封したものを単位として直列に多
数本接続している。この単位ケーブルの長さを変
えたものをあらかじめ作つておけばケーブル長の
調整が出来る。
Figure 5a shows the cryogenic cable 9 according to the present invention.
In this example, a large number of cryogenic cables 91, 92, 93, 94... are connected.
One end of the tube is sealed with a convex tapered tube 6, and the other end is sealed with a concave tapered tube 6', and a large number of tubes are connected in series. The cable length can be adjusted by making unit cables with different lengths in advance.

第5図bは、第5図aと同様に本考案による極
低温ケーブル101,102,103,104…
を多数本接続した例であるが、端部の凸型テーパ
管6と凹型テーパ管6′の向きを変えた配列を含
む場合である。
FIG. 5b shows cryogenic cables 101, 102, 103, 104, . . . according to the present invention, similar to FIG. 5a.
This is an example in which a large number of pipes are connected, and the case includes an arrangement in which the convex tapered pipe 6 and the concave tapered pipe 6' at the ends are arranged in different directions.

なお、短い長さ調整には、第6図のようにあら
かじめベロー管11,11′を用いたものを接続
部に利用すればよい。
In order to adjust the short length, bellows tubes 11 and 11' may be used in advance for the connecting portion as shown in FIG.

以上説明したように本考案によれば、密封型構
造の極低温ケーブルにおいて、接続部の平面型フ
ランジに凹凸をつけることにより、熱侵量を小さ
くすることができ、また接続作業が極めて容易に
なる利点がある。したがつて超伝導通信ケーブル
等の密封型構造の極低温ケーブルの接続部構体に
適用し、その効果は大きい。
As explained above, according to the present invention, in a cryogenic cable with a sealed structure, by providing unevenness to the flat flange of the connection part, the amount of heat loss can be reduced, and the connection work is extremely easy. There are some advantages. Therefore, the present invention can be applied to connection structures of cryogenic cables with sealed structures such as superconducting communication cables, and its effects are significant.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の平面型フランジを有した密封型
極低温ケーブルの外観図、第2図は本考案のテー
パ管を有した密封型極低温ケーブルの外観図、第
3図は本考案に係る密封型極低温ケーブルを接続
した場合の接続部の一実施例の断面図、第4図は
本考案に係る接続部の別の実施例の断面図、第5
図は本考案に係る密封型極低温ケーブルを多数本
用いた使用例を示す概略断面図、第6図は本考案
の他の実施例の断面図である。 1,1′……極低温ケーブルの外管、2,2′…
…多層断熱材等の断熱層、3,3′……ヘリウム
ガス等の冷媒の流れる内管、4,4′……同軸ケ
ーブル等の信号線、5……平面型フランジ、6,
6′,61,61′……テーパ管、7,7′……フ
ランジ、8……信号線接続用コネクタ、91〜9
4および101〜104……極低温ケーブル、1
1,11′……ベロー管。
Fig. 1 is an external view of a sealed cryogenic cable with a conventional flat flange, Fig. 2 is an external view of a sealed cryogenic cable with a tapered tube of the present invention, and Fig. 3 is an external view of a sealed cryogenic cable with a tapered tube according to the present invention. FIG. 4 is a sectional view of one embodiment of the connection part when a sealed cryogenic cable is connected; FIG. 4 is a sectional view of another embodiment of the connection part according to the present invention; FIG.
The figure is a schematic cross-sectional view showing an example in which a large number of sealed cryogenic cables according to the present invention are used, and FIG. 6 is a cross-sectional view of another embodiment of the present invention. 1, 1'... outer tube of cryogenic cable, 2, 2'...
...Insulating layer such as multilayer insulation material, 3, 3'...Inner pipe through which refrigerant such as helium gas flows, 4,4'...Signal line such as coaxial cable, 5...Flat type flange, 6,
6', 61, 61'...Tapered tube, 7,7'...Flange, 8...Signal line connection connector, 91-9
4 and 101-104...cryogenic cable, 1
1,11'... Bellows tube.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 密封型極低温ケーブルの一方の端部はフランジ
と一体の凸型のテーパ管で真空密封され、またそ
れに対向する他方の端部はフランジと一体の凹型
のテーパ管で真空密封され、これらの両端部を前
記フランジによつて相互に接続することを特徴と
する密封型極低温ケーブルの接続部構体。
One end of the sealed cryogenic cable is vacuum-sealed with a convex tapered tube integrated with a flange, and the opposite end is vacuum-sealed with a concave tapered tube integrated with a flange. A connecting part structure for a sealed cryogenic cable, characterized in that the parts are mutually connected by the flange.
JP1977022275U 1977-02-25 1977-02-25 Expired JPS6111959Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1977022275U JPS6111959Y2 (en) 1977-02-25 1977-02-25

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1977022275U JPS6111959Y2 (en) 1977-02-25 1977-02-25

Publications (2)

Publication Number Publication Date
JPS53116694U JPS53116694U (en) 1978-09-16
JPS6111959Y2 true JPS6111959Y2 (en) 1986-04-15

Family

ID=28856734

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1977022275U Expired JPS6111959Y2 (en) 1977-02-25 1977-02-25

Country Status (1)

Country Link
JP (1) JPS6111959Y2 (en)

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4871376U (en) * 1971-12-10 1973-09-07

Also Published As

Publication number Publication date
JPS53116694U (en) 1978-09-16

Similar Documents

Publication Publication Date Title
JP3935751B2 (en) Insulated piping
US6883549B2 (en) Conduit for the transport of cyrogenic media
GB1274285A (en) Thermal insulation for fluid storage or transfer devices
US20010035224A1 (en) Superinsulation support system
JPS6111959Y2 (en)
JP3684557B2 (en) Superconducting cable and transportation method
US6883548B2 (en) Spacer for a long substrate
JPH09126389A (en) Extremely low temperature thermal insulation pipe
JP4330008B2 (en) Superconducting cable pooling eye and laying method of superconducting cable using pooling eye
JPH08338591A (en) Vacuum insulation pipe
JPH10288293A (en) Heat insulated pipe
JP2002216555A (en) Manufacturing method for superconductive cable
JPH07320564A (en) Superconducting cable
CN112271052A (en) Superconducting magnet cryogenic system
JPS6031398Y2 (en) Spacer for bent parts of low-temperature double piping
CN214947038U (en) Low-temperature transmission pipeline device
JP2003526175A (en) High temperature superconducting cable and method of manufacturing the same
JP2002130547A (en) Insulating pipe
JPH01304608A (en) Superconductive transmission line
CN213070771U (en) Superconducting magnet cryogenic system
JPH0532717Y2 (en)
JPS6336600Y2 (en)
JPS596443B2 (en) Cryogenic insulation cable
JPH0726638Y2 (en) Vacuum insulated quadruple pipe joint structure
CN113217719A (en) Low-temperature transmission pipeline device