JP2002216555A - Manufacturing method for superconductive cable - Google Patents

Manufacturing method for superconductive cable

Info

Publication number
JP2002216555A
JP2002216555A JP2001007050A JP2001007050A JP2002216555A JP 2002216555 A JP2002216555 A JP 2002216555A JP 2001007050 A JP2001007050 A JP 2001007050A JP 2001007050 A JP2001007050 A JP 2001007050A JP 2002216555 A JP2002216555 A JP 2002216555A
Authority
JP
Japan
Prior art keywords
core
spacer
cable
cores
twisted
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001007050A
Other languages
Japanese (ja)
Other versions
JP4031204B2 (en
Inventor
Masayuki Hirose
正幸 廣瀬
Takahito Masuda
孝人 増田
Takeshi Kato
武志 加藤
Yoshihisa Takahashi
芳久 高橋
Kimiyoshi Matsuo
公義 松尾
Shoichi Honjo
昇一 本庄
Tomoo Mimura
智男 三村
Terumitsu Aiba
輝光 相場
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Tokyo Electric Power Company Holdings Inc
Original Assignee
Tokyo Electric Power Co Inc
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP2001007050A priority Critical patent/JP4031204B2/en
Application filed by Tokyo Electric Power Co Inc, Sumitomo Electric Industries Ltd filed Critical Tokyo Electric Power Co Inc
Priority to CNB02101650XA priority patent/CN1224060C/en
Priority to KR1020020001994A priority patent/KR100608478B1/en
Priority to DE60223426T priority patent/DE60223426T2/en
Priority to EP02000235A priority patent/EP1223590B1/en
Priority to DK02000235T priority patent/DK1223590T3/en
Priority to US10/045,027 priority patent/US6718618B2/en
Publication of JP2002216555A publication Critical patent/JP2002216555A/en
Application granted granted Critical
Publication of JP4031204B2 publication Critical patent/JP4031204B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B12/00Superconductive or hyperconductive conductors, cables, or transmission lines
    • H01B12/02Superconductive or hyperconductive conductors, cables, or transmission lines characterised by their form
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B12/00Superconductive or hyperconductive conductors, cables, or transmission lines
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B13/00Apparatus or processes specially adapted for manufacturing conductors or cables
    • H01B13/02Stranding-up
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making
    • Y10T29/49014Superconductor

Abstract

PROBLEM TO BE SOLVED: To provide a manufacturing method for a superconductive cable, which can absorb thermal contraction without adding another member to the cable core. SOLUTION: The manufacturing method contains processes in which a spacer 12 is provided between the cores when twisting plural cable cores 2 and in which the spacer 12 is removed before accommodating the twisted cores 2 in a heat insulating pipe and the cores are accommodated in the heat insulating pipe with its twist loosened. Temporal insertion of the spacer leads to easy formation of three-core cable having looseness by which the thermal contraction in the heat insulating pipe can be absorbed when cooling.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は超電導ケーブルの製
造方法に関するものである。特に、冷却時のケーブルコ
アの収縮代を確保し易い超電導ケーブルが容易に得られ
る製造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a superconducting cable. In particular, the present invention relates to a manufacturing method for easily obtaining a superconducting cable in which a contraction allowance of a cable core during cooling is easily obtained.

【0002】[0002]

【従来の技術】超電導ケーブルは、布設後に液体窒素な
どの冷媒をケーブル内に流して冷却される。その際、ケ
ーブル最外層は常温で、ケーブルの内部は約−200℃と
なり、ケーブル内外の温度差は200℃以上となる。その
ときに冷却された部分のケーブル構成材料である金属は
約0.3%収縮し、具体的にはケーブル100mごとに30cm程
度の熱収縮を生じる。通常、超電導ケーブルの導体は複
数のケーブルコアが撚り合わされて構成されており、ケ
ーブルの両端部は中間接続部や終端接続部で固定される
ため、撚り合わせたケーブルコアが収縮すると撚りが締
まり、ケーブルは軸方向の応力と共に側圧を受け、機械
応力に対して性能劣化の大きい超電導導体がダメージを
受ける。そのため、この熱収縮を吸収する機構が必要と
なる。
2. Description of the Related Art A superconducting cable is cooled by flowing a refrigerant such as liquid nitrogen into the cable after the cable is laid. At that time, the outermost layer of the cable is at room temperature, the inside of the cable is about -200 ° C, and the temperature difference between the inside and outside of the cable is 200 ° C or more. At that time, the metal, which is the cable constituent material of the cooled portion, shrinks by about 0.3%, and specifically, causes a heat shrinkage of about 30 cm for every 100 m of the cable. Usually, the conductor of a superconducting cable is formed by twisting a plurality of cable cores, and both ends of the cable are fixed at an intermediate connection portion or a terminal connection portion. The cable receives lateral pressure together with the axial stress, and the superconducting conductor whose performance is greatly deteriorated by mechanical stress is damaged. Therefore, a mechanism for absorbing the heat shrinkage is required.

【0003】従来、このような熱収縮に対応する技術と
して、特開平9-134620号に記載のものが知られている。
これは、3芯のケーブルコアの中心に熱収縮率の大きい
介在物を挿入して撚り合わせ、介在物の熱収縮により3
芯ケーブルコアの撚り合わせ径を変化させて熱収縮を吸
収するものである。
Conventionally, a technique corresponding to such a heat shrink is disclosed in Japanese Patent Application Laid-Open No. Hei 9-134620.
This is done by inserting an inclusion with a high heat shrinkage into the center of the three-core cable core and twisting it, and the heat shrinkage of the inclusion causes
The heat shrinkage is absorbed by changing the twisted diameter of the core cable core.

【0004】[0004]

【発明が解決しようとする課題】しかし、上記の技術で
はケーブルコアの他に熱収縮率の大きい介在物を用いな
ければならず、部品点数が増える。
However, in the above-mentioned technique, an inclusion having a large heat shrinkage must be used in addition to the cable core, and the number of parts increases.

【0005】従って、本発明の主目的は、ケーブルコア
に他の部材を複合することなく熱収縮を吸収できる超電
導ケーブルの製造方法を提供することにある。
Accordingly, it is a primary object of the present invention to provide a method of manufacturing a superconducting cable capable of absorbing heat shrinkage without combining other members with a cable core.

【0006】[0006]

【課題を解決するための手段】本発明は、断熱管内にケ
ーブルコアを弛みを持たせた状態で収納できるよう、コ
ア間にスペーサを一時的に介在させることで上記の目的
を達成する。
According to the present invention, the above object is achieved by temporarily interposing a spacer between cores so that a cable core can be accommodated in a heat-insulated pipe with a slack.

【0007】すなわち、本発明超電導ケーブルの製造方
法は、複数芯のコアの撚り合わせ時にコア間にスペーサ
を設ける工程と、この撚り合わせたコアを断熱管内に収
納する前にスペーサを取り除き、撚りを弛ませた状態で
断熱内管内にコアを収納する工程とを具えることを特徴
とする。
That is, the method of manufacturing a superconducting cable according to the present invention comprises the steps of providing a spacer between cores when twisting a plurality of cores, removing the spacer before storing the twisted core in the heat insulating pipe, and twisting the core. Storing the core in the heat-insulated inner tube in a loosened state.

【0008】複数芯、例えば3芯のコアを撚り合わせる
際、各コアの間にスペーサを介在させる。これにより、
各コアは、スペーサの厚み分だけ間隔を持った状態で撚
り合わされる。次に、撚り合わせたコアを断熱管に収納
する際、前記スペーサを除去してスペーサの厚み分の弛
みを維持したまま断熱管に収納する。その際、スペーサ
の厚みを最適化することで、断熱管内で冷却時の熱収縮
分を吸収できる弛みを具えた3芯コアを容易に形成する
ことができる。
When twisting a plurality of cores, for example, three cores, a spacer is interposed between the cores. This allows
The cores are twisted with a space corresponding to the thickness of the spacer. Next, when the twisted core is stored in the heat insulating pipe, the spacer is removed and stored in the heat insulating pipe while the slack of the thickness of the spacer is maintained. At this time, by optimizing the thickness of the spacer, it is possible to easily form a three-core core having a slack that can absorb the heat shrinkage during cooling in the heat insulating tube.

【0009】スペーサの除去は、断熱管内に収納する工
程の直前に行うことが好ましい。通常、断熱管は外管と
内管との間に真空断熱層を形成した構造で、内管の内部
に撚り合わせたコアを収納する。この内管は、ステンレ
ス製の場合、一般的には撚り合わされたケーブルコアの
外周を金属板で被覆し、この金属板の継目を順次溶接機
で溶接しながら形成される。そこで、この溶接機に導入
される前にスペーサを除去すれば良い。また、内管が鉛
製やアルミニウム製の場合は、ケーブルコアの外周に金
属を押出して形成することもあり、この場合は押出機へ
の導入前にスペーサを除去すれば良い。
The removal of the spacer is preferably performed immediately before the step of storing the spacer in the heat insulating pipe. Usually, the heat insulating pipe has a structure in which a vacuum heat insulating layer is formed between the outer pipe and the inner pipe, and stores the twisted core inside the inner pipe. When the inner tube is made of stainless steel, generally, the outer periphery of the twisted cable core is covered with a metal plate, and the seam of the metal plate is sequentially formed by welding with a welding machine. Therefore, the spacer may be removed before being introduced into the welding machine. When the inner tube is made of lead or aluminum, a metal may be formed by extruding metal on the outer periphery of the cable core. In this case, the spacer may be removed before introduction into the extruder.

【0010】スペーサの除去は、撚り合わせたコアの撚
り溝の間から引き出すことで容易に行える。例えば、前
記溶接機または押出機に導入する直前でラインの側方に
スペーサを引き出して巻き取るなどすれば良い。
The removal of the spacer can be easily performed by pulling out the spacer from between the twist grooves of the twisted core. For example, the spacer may be drawn out to the side of the line and wound up just before being introduced into the welding machine or the extruder.

【0011】スペーサの材質は、可撓性があり、厚み方
向に強度のあるものが好ましい。より具体的には、フッ
素樹脂系、ビニール系、ゴム系、紙系、フェルト系の材
料が挙げられる。
The material of the spacer is preferably flexible and strong in the thickness direction. More specifically, examples thereof include fluororesin-based, vinyl-based, rubber-based, paper-based, and felt-based materials.

【0012】スペーサの形態は、長尺のテープ状が好適
である。特に、スペーサの厚みは以下の条件を満足する
ことが好ましい。
The spacer is preferably in the form of a long tape. In particular, the thickness of the spacer preferably satisfies the following conditions.

【0013】必要弛み量A0≦設計弛み量A1 ただし、必要弛み量A0は熱収縮によるコアの収縮率
({(収縮後のコアの1ピッチの長さ/収縮前のコアの1ピ
ッチの長さ)−1}×100であり、設計弛み量A1はスペー
サを設けたコアの1ピッチの長さをL1、スペーサを設け
ないコアの1ピッチの長さをL2としたとき、{(L1/L2)
−1}×100で表される。
Required slack amount A0 ≦ design slack amount A1 where required slack amount A0 is the shrinkage rate of the core due to heat shrinkage ({(length of one pitch of core after shrinkage / length of one pitch of core before shrinkage) ) -1} × 100, and the design slack amount A1 is {(L1 / L2) where L1 is the length of one pitch of the core provided with the spacer and L2 is the length of one pitch of the core without the spacer. )
-1} × 100.

【0014】包絡円直径≦断熱管内径B ただし、包絡円直径はスペーサを設けて撚り合わせたコ
アに外接する円の直径である。
Envelope circle diameter ≦ insulated pipe inner diameter B where the envelope circle diameter is the diameter of a circle circumscribing the core that is provided with spacers and twisted.

【0015】上記条件は、コアの縮み分を吸収するた
めに必要な条件である。ただし、必要弛み量の全部を吸
収させるか一部を吸収させるかは、設計により適宜選択
すれば良い。また、上記条件は、断熱管を加工する際
に、コアが断熱管内面に接触して損傷しないために必要
な条件である。断熱管の内径Bは、公差を考慮して最小
内径とすることが好ましい。
The above conditions are necessary to absorb the contraction of the core. However, whether to absorb all or a part of the required slack amount may be appropriately selected depending on the design. The above conditions are necessary for processing the heat insulating pipe so that the core does not contact and damage the inner surface of the heat insulating pipe. It is preferable that the inner diameter B of the heat insulating pipe be the minimum inner diameter in consideration of a tolerance.

【0016】[0016]

【発明の実施の形態】以下、本発明の実施の形態を説明
する。本発明製造方法の説明に先だって、同方法により
得られる超電導ケーブルの構成を図1に基づいて説明す
る。このケーブルは、断熱管1内に収納された3心のケ
ーブルコア2を具える。断熱管1は、外管3と内管4との間
にスーパーインシュレーション(図示せず)などの断熱
材を配置し、両管3、4の間を真空引きして構成される。
各ケーブルコアは、熱収縮分を吸収できる程度の弛みを
持って撚り合わされている。外管3と内管4とはいずれも
コルゲート管とした。また、ケーブルコア2は中心から
順に、フォーマ5、超電導導体6、絶縁層7、遮蔽層8を具
えている。また、遮蔽層8の外側に保護層(図示せず)
を設けても良い。本例ではフォーマ5を中空体にしたの
で、フォーマ5の内部および内管4と各ケーブルコア2と
の間に形成される空間がそれぞれ冷媒流路となる。フォ
ーマが中実体の場合には、内管4とケーブルコア2の間に
形成される空間が冷媒流路となる。超電導導体6には、Y
系、Bi系などの酸化物超電導体が好適である。絶縁層7
の一例としては、冷媒が含浸された紙テープや紙テープ
とプラスチックテープの複合紙を巻回したものが挙げら
れる。そして、冷媒には、液体窒素や液体ヘリウム等が
利用できる。
Embodiments of the present invention will be described below. Prior to the description of the manufacturing method of the present invention, a configuration of a superconducting cable obtained by the method will be described with reference to FIG. This cable comprises a three-core cable core 2 housed in a heat insulating tube 1. The heat insulating pipe 1 is configured by disposing a heat insulating material such as super insulation (not shown) between the outer pipe 3 and the inner pipe 4 and evacuating the two pipes 3 and 4.
Each cable core is twisted with a slack enough to absorb the heat shrinkage. Both the outer tube 3 and the inner tube 4 were corrugated tubes. The cable core 2 includes a former 5, a superconducting conductor 6, an insulating layer 7, and a shielding layer 8 in this order from the center. In addition, a protective layer (not shown) is provided outside the shielding layer 8.
May be provided. In this example, since the former 5 is a hollow body, the space formed inside the former 5 and between the inner pipe 4 and each cable core 2 becomes a refrigerant flow path. When the former is a solid body, a space formed between the inner pipe 4 and the cable core 2 serves as a coolant flow path. In superconducting conductor 6, Y
Oxide superconductors such as those based on Bi and Bi are suitable. Insulation layer 7
As an example, a paper tape wound with a refrigerant impregnated or a composite paper of a paper tape and a plastic tape wound thereon may be mentioned. Liquid nitrogen, liquid helium, or the like can be used as the refrigerant.

【0017】3芯のコアの撚り合わせに弛みを設けるに
は、ケーブルコアを製作した後、次に示す方法によりケ
ーブルの製造を行う。
In order to provide a slack in the twisting of the three-core core, after the cable core is manufactured, the cable is manufactured by the following method.

【0018】まず、3芯撚り合わせ時にコア間にスペー
サを挿入する。このスペーサの挿入は、図2に示すよう
に、コアの撚り合せ時のガイドとなる目板10に矩形のス
リット11を設け、このスリット11にテープ状のスペーサ
12を通しながら行うことで実現できる。その結果、図3
に示すように、各コア2の間にスペーサ12が挟み込ま
れ、撚り溝からスペーサ12の側面が露出する状態の3芯
コアが得られる。
First, a spacer is inserted between the cores at the time of three-core twisting. As shown in FIG. 2, a rectangular slit 11 is provided in the eye plate 10 serving as a guide for twisting the core, and a tape-shaped spacer is inserted into the slit 11.
It can be realized by passing through 12. As a result, FIG.
As shown in (1), a spacer 12 is sandwiched between the cores 2 to obtain a three-core core in which the side surfaces of the spacer 12 are exposed from the twist grooves.

【0019】次に、このスペーサ付き3芯コアを断熱管
の内管に収納する。一般に、内管は、図4に示すよう
に、撚り合わせたコア2の外周を金属板20(例えばステ
ンレス)で被覆し、この金属板20の継目を順次溶接機21
で溶接しながら形成される。この段階では、内管はコル
ゲート管ではなく直線パイプ状である。続いて、この内
管はコルゲーター22に導入され、波付け加工されてから
ドラム23に巻き取られる。そこで、この溶接機21に導入
される前にスペーサを除去する。
Next, this three-core core with spacer is housed in the inner tube of the heat insulating tube. Generally, as shown in FIG. 4, the outer circumference of the twisted core 2 is covered with a metal plate 20 (for example, stainless steel), and the seam of the metal plate 20 is sequentially welded by a welding machine 21 as shown in FIG.
It is formed while welding. At this stage, the inner pipe is not a corrugated pipe but a straight pipe. Subsequently, the inner tube is introduced into the corrugator 22, is corrugated, and is wound around the drum 23. Therefore, the spacer is removed before being introduced into the welding machine 21.

【0020】スペーサの除去は、撚り合わせたコアの撚
り溝の間から引き出すことで容易に行える。例えば、溶
接機への導入の際には、予め撚り合わせたコアの端部が
ばらけないように端末処理しておき、各スペーサの端部
はコアの間より引き出しておく。スペーサは単にコアの
間に挟まれているだけなので、人力により容易に端部を
引き出すことができる。そして、製造ラインの側方に引
出したスペーサを巻き取るなどすれば良い。
The removal of the spacer can be easily performed by pulling out the spacer from between the twisted grooves of the twisted core. For example, at the time of introduction into a welding machine, a terminal treatment is performed so that the ends of the twisted cores are not separated, and the ends of the spacers are drawn out from between the cores. Since the spacer is merely sandwiched between the cores, the end can be easily pulled out by human power. Then, the drawn-out spacer may be wound to the side of the production line.

【0021】このような製造工程により、スペーサの厚
みに相当する弛みを維持したままコルゲート内管内に3
芯コアを収納できる。この弛みはコルゲート内管の加工
時はもちろん、ケーブル組立後にまで維持される。
According to such a manufacturing process, the slack corresponding to the thickness of the spacer is maintained in the corrugated inner tube.
Can hold a core. This slack is maintained not only during processing of the inner corrugated tube but also after assembling the cable.

【0022】(試算例)実際にどの程度の厚さのスペー
サを用いれば良いかを試算してみる。ここでは、内径15
0mmの管路に収納できるように、外径135〜136mmの超電
導ケーブルを前提とし、この超電導ケーブルの断熱管
(内管)内に3芯の撚り合わせコアを収納する場合につ
いて説明する。
(Trial Calculation Example) A trial calculation will be made to determine how thick a spacer should be actually used. Here, the inner diameter 15
A case will be described in which a superconducting cable having an outer diameter of 135 to 136 mm is presupposed so that it can be housed in a 0 mm conduit, and a three-core twisted core is housed in a heat insulating tube (inner tube) of the superconducting cable.

【0023】本例では、コアの外径:D=39.5mm、コル
ゲート内管の内径:B=φ93mm、コアの撚りピッチ:1000
mmとした。なお、コルゲート内管の内径は、規格値は95
mmであるが、+0mm,−2mmの交差を考慮して、最小内径
である93mmとした。
In this example, the outer diameter of the core: D = 39.5 mm, the inner diameter of the inner pipe of the corrugate: B = φ93 mm, and the twist pitch of the core: 1000
mm. The inner diameter of the corrugated inner tube is 95
The minimum inner diameter is 93 mm in consideration of the intersection of +0 mm and −2 mm.

【0024】<スペーサ厚の考え方>前述したように、
ケーブル構成材料である金属は約0.3%収縮する。そこ
で、必要弛み量A0を0.3%とし、今回の試算では必要弛
み量A0を100%吸収することを考える。ケーブル組立
後、コアに0.3%の弛みを持たせるためには、コルゲー
ト内管製作時にできるだけ大きな弛みを持たせることが
望ましく、スペーサの厚みを極力大きくすることが考え
られる。
<Concept of spacer thickness> As described above,
The metal that is the material of the cable shrinks by about 0.3%. Therefore, the necessary slack amount A0 is set to 0.3%, and in this estimation, it is considered that the necessary slack amount A0 is absorbed by 100%. In order to give 0.3% slack to the core after assembling the cable, it is desirable to have as large a slack as possible when manufacturing the inner corrugated tube, and it is conceivable to increase the thickness of the spacer as much as possible.

【0025】一方、スペーサの厚みを大きくし過ぎる
と、ケーブルコアの製造時に3芯撚り形状が崩れやすく
なる。また、内管に収納できるコアの外径であることは
もちろんのこと、内管製造時に内管の溶接不良が生じた
り、コアを損傷することのないように、と言う製造上の
制約を考慮する必要がある。
On the other hand, if the thickness of the spacer is too large, the three-core twisted shape tends to be broken during the production of the cable core. In addition to the outer diameter of the core that can be housed in the inner pipe, consideration is given to the manufacturing constraints of preventing the inner pipe from being welded badly or damaging the core when manufacturing the inner pipe. There is a need to.

【0026】これらの検討結果から、撚り合わせたコア
を損傷することなく内管内に収納でき、約0.4%の設計
弛み量が得られることを目標としてスペーサの厚さを試
算する。
Based on the results of these studies, the thickness of the spacer is estimated on the basis that the twisted core can be housed in the inner tube without damage, and a design slack amount of about 0.4% can be obtained.

【0027】<試算手順>設計弛み量A1は、スペーサを
設けたコアの1ピッチの長さをL1、スペーサを設けない
コアの1ピッチの長さをL2としたとき、数式1で表され
る。 A1={(L1/L2)−1}×100 … 数式1
<Estimation Procedure> The design slack amount A1 is expressed by the following equation (1), where L1 is the length of one pitch of the core having the spacer and L2 is the length of one pitch of the core without the spacer. . A1 = {(L1 / L2) −1} × 100 Equation 1

【0028】そこで、0.3%≦A1で、かつスペーサを設け
た3芯コアに外接する包絡円の直径≦93mmとなるように
tを求める。
Therefore, t is determined so that 0.3% ≦ A1 and the diameter of the envelope circle circumscribing the three-core core provided with the spacer ≦ 93 mm.

【0029】L1、L2の長さは次のように求めることがで
きる。図5は、直径Dのケーブルコア2を3芯撚り合わ
せ、各ケーブルコアの間に厚さtのテープ状スペーサ12
を挟みこんだ場合の断面図である。
The lengths of L1 and L2 can be determined as follows. FIG. 5 shows a three-core twisted cable core 2 having a diameter D, and a tape-like spacer 12 having a thickness t between the cable cores.
FIG.

【0030】この図から明らかなように、スペーサを設
けた場合の3芯コアに外接する包絡円の中心から各コア
の中心までの距離r1は数式2より求められる。
As is apparent from this figure, the distance r1 from the center of the envelope circle circumscribing the three-core core to the center of each core in the case where the spacers are provided can be obtained from Equation 2.

【0031】[0031]

【数1】 (Equation 1)

【0032】また、スペーサを設けない場合(図示して
いない)の3芯コアに外接する包絡円の中心から各コア
の中心までの距離r2は数式3より求められる。
The distance r2 from the center of the circumscribed circle circumscribing the three-core core to the center of each core when no spacer is provided (not shown) can be obtained from equation (3).

【0033】[0033]

【数2】 (Equation 2)

【0034】一般に、撚り合わせた3芯コアの1ピッチ
当たりの長さLは、3芯コアに外接する包絡円の中心か
ら各コアの中心までをrとすると数式4で表される。
In general, the length L per pitch of a twisted three-core core is expressed by Equation 4 where r is the distance from the center of an envelope circle circumscribing the three-core core to the center of each core.

【0035】[0035]

【数3】 (Equation 3)

【0036】従って、rにr1またはr2を代入すると、L1
とL2は数式5、6で表わされる。
Therefore, when r1 or r2 is substituted for r, L1
And L2 are represented by Equations 5 and 6.

【0037】[0037]

【数4】 (Equation 4)

【0038】一方、スペーサを設けた3芯コアに外接す
る包絡円の直径は数式7で表されるので、これらの数式
1,5,6,7から0.3%≦A1で、かつスペーサを設けた3芯コ
アに外接する包絡円の直径≦93mmとなるtを選択すれば
良い。
On the other hand, the diameter of the envelope circle circumscribing the three-core core provided with the spacer is expressed by the following equation (7).
It suffices to select t that satisfies 0.3% ≦ A1 from 1,5,6,7 and satisfies the diameter ≦ 93 mm of the envelope circle circumscribing the three-core core provided with the spacer.

【0039】[0039]

【数5】 (Equation 5)

【0040】<試算結果>以上の試算手順に基づいて試
算を行い、スペーサの厚みと設計弛み量の関係、並びに
スペーサの厚みとスペーサを設けた3芯コアに外接する
包絡円の直径との関係を図6のグラフに示した。
<Results of Trial Calculation> Trial calculations were performed based on the above-described trial calculation procedure, and the relationship between the thickness of the spacer and the design slack amount, and the relationship between the thickness of the spacer and the diameter of the envelope circle circumscribing the three-core core provided with the spacer. Is shown in the graph of FIG.

【0041】3芯コアの撚り合せの弛みをできるだけ多
く有し、コルゲート内管製造時にコアへのダメージを生
じさせないスペーサ厚を検討した結果、設計弛み量約0.
4%に対応させるには7mm厚のスペーサを適用すれば良い
ことがわかった。
As a result of examining a spacer thickness which has as much loosening of the twisting of the three-core core as possible and does not cause damage to the core at the time of manufacturing the corrugated inner tube, the designed slack amount is about 0.
It turned out that a 7mm thick spacer should be applied to meet 4%.

【0042】なお、以上の試算例では3芯コアの場合に
ついて説明したが、コアの芯数が3芯以外の場合でも試
算例と同様の考え方によりスペーサの厚みを決定すれば
良い。
In the above example of the trial calculation, the case of a three-core core has been described. However, when the number of cores is other than three, the thickness of the spacer may be determined in the same way as in the example of the trial calculation.

【0043】[0043]

【発明の効果】以上説明したように、本発明超電導ケー
ブルの製造方法によれば、コア間にスペーサを一時的に
介在させることで、熱収縮分を吸収する弛みを持たせた
状態で断熱管内にコアを収納することができる。そのた
め、ケーブルコアに他の部材を複合することなく熱収縮
を吸収できる超電導ケーブルを製造することができる。
As described above, according to the method of manufacturing a superconducting cable of the present invention, a spacer is temporarily interposed between the cores so that the inside of the heat insulating pipe is provided with a slack for absorbing the heat shrinkage. The core can be stored in Therefore, it is possible to manufacture a superconducting cable that can absorb heat shrinkage without combining other members with the cable core.

【図面の簡単な説明】[Brief description of the drawings]

【図1】超電導ケーブルの断面図である。FIG. 1 is a cross-sectional view of a superconducting cable.

【図2】本発明方法におけるコアの撚り合せ工程の説明
図である。
FIG. 2 is an explanatory view of a core twisting step in the method of the present invention.

【図3】本発明方法において、コア間にスペーサを挟み
込んだ状態の3芯コアを示す側面図である。
FIG. 3 is a side view showing a three-core core with a spacer interposed between cores in the method of the present invention.

【図4】コアを内管に収納する工程の説明図である。FIG. 4 is an explanatory diagram of a step of storing a core in an inner tube.

【図5】スペーサを挟み込んだ3芯コアの断面図であ
る。
FIG. 5 is a sectional view of a three-core core with a spacer interposed therebetween.

【図6】スペーサの厚みと設計弛み量の関係、並びにス
ペーサの厚みとスペーサを設けた3芯コアの外接する包
絡円の直径との関係を示すグラフである。
FIG. 6 is a graph showing the relationship between the thickness of a spacer and a design slack amount, and the relationship between the thickness of the spacer and the diameter of an envelope circle circumscribing a three-core core provided with the spacer.

【符号の説明】[Explanation of symbols]

1 断熱管 2 ケーブルコア 3 外管 4 内管 5 フォーマ 6 超電導導体 7 絶縁層 8 遮蔽層 10 目板 11 スリット 12 スペーサ 20 金属板 21 溶接機 22 コルゲータ 23 ドラム DESCRIPTION OF SYMBOLS 1 Insulated pipe 2 Cable core 3 Outer pipe 4 Inner pipe 5 Former 6 Superconducting conductor 7 Insulating layer 8 Shielding layer 10 Eye plate 11 Slit 12 Spacer 20 Metal plate 21 Welding machine 22 Corrugator 23 Drum

フロントページの続き (72)発明者 増田 孝人 大阪市此花区島屋一丁目1番3号 住友電 気工業株式会社大阪製作所内 (72)発明者 加藤 武志 大阪市此花区島屋一丁目1番3号 住友電 気工業株式会社大阪製作所内 (72)発明者 高橋 芳久 神奈川県横浜市鶴見区江ヶ崎町4番1号 東京電力株式会社電力技術研究所内 (72)発明者 松尾 公義 神奈川県横浜市鶴見区江ヶ崎町4番1号 東京電力株式会社電力技術研究所内 (72)発明者 本庄 昇一 神奈川県横浜市鶴見区江ヶ崎町4番1号 東京電力株式会社電力技術研究所内 (72)発明者 三村 智男 神奈川県横浜市鶴見区江ヶ崎町4番1号 東京電力株式会社電力技術研究所内 (72)発明者 相場 輝光 神奈川県横浜市鶴見区江ヶ崎町4番1号 東京電力株式会社電力技術研究所内 Fターム(参考) 5G321 BA01 CA53 CB05 DA06 Continued on the front page (72) Inventor Takato Masuda 1-3-1 Shimaya, Konohana-ku, Osaka-shi Sumitomo Electric Industries, Ltd. Osaka Works (72) Inventor Takeshi Kato 1-3-1 Shimaya, Konohana-ku, Osaka-shi Sumitomo Electric Industries, Ltd. Osaka Works (72) Inventor Yoshihisa Takahashi 4-1 Egasaki-cho, Tsurumi-ku, Yokohama-shi, Kanagawa Prefecture Tokyo Electric Power Company, Ltd.Electric Power Research Laboratory (72) Inventor Kimiyoshi Matsuo Tsurumi, Yokohama-shi, Kanagawa Prefecture 4-1 Egasaki-cho, Ward Tokyo Electric Power Co., Inc. (72) Inventor Shoichi Honjo 4-1 Egasaki-cho, Tsurumi-ku, Yokohama, Kanagawa Prefecture Tokyo Electric Power Co., Inc. (72) Invention Person Tomio Mimura 4-1 Egasaki-cho, Tsurumi-ku, Yokohama-shi, Kanagawa Prefecture Inside the Electric Power Research Laboratory, Tokyo Electric Power Company (72) Inventor Terumitsu 4-1, Egasaki-cho, Tsurumi-ku, Yokohama-shi, Kanagawa Prefecture Tokyo Electric Power Company F-term (Reference) in the Electric Power Research Laboratory 5G321 BA01 CA53 CB05 DA06

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 複数芯のコアの撚り合わせ時にコア間に
スペーサを設ける工程と、 この撚り合わせたコアを断熱管内に収納する前にスペー
サを取り除き、撚りを弛ませた状態で断熱管内にコアを
収納する工程とを具えることを特徴とする超電導ケーブ
ルの製造方法。
Claims: 1. A step of providing a spacer between cores at the time of twisting a plurality of cores, and removing the spacer before accommodating the twisted core in the heat-insulating pipe; And a step of accommodating the superconducting cable.
【請求項2】 スペーサの厚さが以下の条件を満足する
ことを特徴とする請求項1に記載の超電導ケーブルの製
造方法。 必要弛み量A0≦設計弛み量A1 ただし、必要弛み量A0は熱収縮によるコアの収縮率、設
計弛み量はスペーサを設けたコアの1ピッチの長さをL
1、スペーサを設けないコアの1ピッチの長さをL2とし
たとき、{(L1/L2)−1}×100で表される。 包絡円直径≦断熱管内径B ただし、包絡円直径はスペーサを設けて撚り合わせたコ
アに外接する円の直径である。
2. The method for manufacturing a superconducting cable according to claim 1, wherein the thickness of the spacer satisfies the following condition. Required slack amount A0 ≦ design slack amount A1 However, required slack amount A0 is the contraction rate of the core due to heat shrinkage, and the design slack amount is the length of one pitch of the core provided with the spacer L.
1. Assuming that the length of one pitch of the core without the spacer is L2, {(L1 / L2) −1} × 100. Envelope circle diameter ≦ insulated pipe inner diameter B where the envelope circle diameter is the diameter of a circle circumscribing the core that is provided with spacers and twisted.
JP2001007050A 2001-01-15 2001-01-15 Superconducting cable manufacturing method Expired - Fee Related JP4031204B2 (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP2001007050A JP4031204B2 (en) 2001-01-15 2001-01-15 Superconducting cable manufacturing method
KR1020020001994A KR100608478B1 (en) 2001-01-15 2002-01-14 Method of manufacturing superconducting cable
DE60223426T DE60223426T2 (en) 2001-01-15 2002-01-14 Manufacturing process for superconducting cable
EP02000235A EP1223590B1 (en) 2001-01-15 2002-01-14 Method of manufacturing superconducting cable
CNB02101650XA CN1224060C (en) 2001-01-15 2002-01-14 Method of making superconducting cable
DK02000235T DK1223590T3 (en) 2001-01-15 2002-01-14 Method for fixing a superconducting cable
US10/045,027 US6718618B2 (en) 2001-01-15 2002-01-15 Method of manufacturing superconducting cable

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001007050A JP4031204B2 (en) 2001-01-15 2001-01-15 Superconducting cable manufacturing method

Publications (2)

Publication Number Publication Date
JP2002216555A true JP2002216555A (en) 2002-08-02
JP4031204B2 JP4031204B2 (en) 2008-01-09

Family

ID=18874857

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001007050A Expired - Fee Related JP4031204B2 (en) 2001-01-15 2001-01-15 Superconducting cable manufacturing method

Country Status (7)

Country Link
US (1) US6718618B2 (en)
EP (1) EP1223590B1 (en)
JP (1) JP4031204B2 (en)
KR (1) KR100608478B1 (en)
CN (1) CN1224060C (en)
DE (1) DE60223426T2 (en)
DK (1) DK1223590T3 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4482851B2 (en) * 2001-12-18 2010-06-16 住友電気工業株式会社 DC superconducting cable
US7237317B2 (en) 2003-05-20 2007-07-03 Nexans Process for producing a superconducting cable
JP4826996B2 (en) * 2004-07-29 2011-11-30 住友電気工業株式会社 Superconducting cable line
CA2580815A1 (en) * 2005-01-07 2006-07-13 Sumitomo Electric Industries, Ltd. Dielectric strenght test method of superconducting cable
WO2006098068A1 (en) * 2005-03-14 2006-09-21 Sumitomo Electric Industries, Ltd. Superconducting cable
KR101296094B1 (en) * 2005-04-21 2013-08-19 엔케이티 케이블스 울테라 에이/에스 A superconductive multi-phase cable system, a method of its manufacture and its use
US8478374B2 (en) * 2008-03-28 2013-07-02 American Superconductor Corporation Superconducting cable assembly and method of assembly

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AT293506B (en) * 1968-12-04 1971-10-11 Kabel Metallwerke Ghh Arrangement for holding one or more superconducting conductor strands inside a deep-frozen cable
US3758701A (en) * 1971-08-17 1973-09-11 Siemens Ag Spacer means for a superconductive electrical cable
DE2153392A1 (en) * 1971-10-27 1973-05-03 Linde Ag METHOD OF MANUFACTURING PIPE INSULATION
CH641911A5 (en) * 1979-06-05 1984-03-15 Bbc Brown Boveri & Cie SUPERCONDUCTIVE CABLE.
US4397807A (en) * 1980-01-14 1983-08-09 Electric Power Research Institute, Inc. Method of making cryogenic cable
JP3363948B2 (en) * 1993-06-22 2003-01-08 中部電力株式会社 Oxide superconducting power cable
JP3505204B2 (en) * 1993-06-23 2004-03-08 古河電気工業株式会社 Superconducting busbar
JP3678465B2 (en) * 1995-08-04 2005-08-03 株式会社フジクラ Superconducting power cable
JP2784160B2 (en) * 1995-08-11 1998-08-06 株式会社フジクラ Superconducting power cable
JP3568659B2 (en) * 1995-11-08 2004-09-22 住友電気工業株式会社 Superconducting cable
IT1277740B1 (en) * 1995-12-28 1997-11-12 Pirelli Cavi S P A Ora Pirelli SUPERCONDUCTOR CABLE FOR HIGH POWER
JP4623401B2 (en) 1999-06-22 2011-02-02 住友電気工業株式会社 Superconducting cable manufacturing method

Also Published As

Publication number Publication date
CN1224060C (en) 2005-10-19
DE60223426T2 (en) 2008-10-02
US20020148101A1 (en) 2002-10-17
JP4031204B2 (en) 2008-01-09
EP1223590A3 (en) 2003-02-05
EP1223590B1 (en) 2007-11-14
KR100608478B1 (en) 2006-08-09
DK1223590T3 (en) 2008-02-11
CN1366310A (en) 2002-08-28
DE60223426D1 (en) 2007-12-27
EP1223590A2 (en) 2002-07-17
KR20020061519A (en) 2002-07-24
US6718618B2 (en) 2004-04-13

Similar Documents

Publication Publication Date Title
US7498519B2 (en) Joint for superconducting cable
KR101192374B1 (en) Superconductor cable
US7237317B2 (en) Process for producing a superconducting cable
WO2006059446A1 (en) Super-conducting cable
JP2002216555A (en) Manufacturing method for superconductive cable
CN101416256B (en) Superconducting cable
JP2006059695A (en) Superconductive cable
JP2002140944A (en) Superconductive cable
JP2006302674A (en) Terminal treatment method of superconductive cable
JP2001067950A (en) Superconducting cable and manufacture thereof
JPH0955241A (en) Multi-layer superconducting cable
JP3877057B2 (en) High temperature superconducting cable
JP5003942B2 (en) Superconducting cable and superconducting cable connection
JP2003257260A (en) Superconductive cable and its manufacturing method
JP4330008B2 (en) Superconducting cable pooling eye and laying method of superconducting cable using pooling eye
JPH07320564A (en) Superconducting cable
JP2008287897A (en) Superconductive cable
JP6345995B2 (en) Superconducting cable manufacturing method
JP2000040428A (en) Superconducting bus line
JP5305180B2 (en) Room-temperature insulated superconducting cable and manufacturing method thereof
JP4505775B2 (en) Superconducting cable and spacer for superconducting cable
JPH11144942A (en) Superconducting coil connection structure
JP2003242842A (en) Superconducting cable
JPH0794043A (en) Superconducting power cable
JPH10112227A (en) System using oxide superconducting wire

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050107

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061023

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061026

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061218

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071012

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071018

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101026

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111026

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121026

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131026

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees