JPS61118140A - Catalyst material - Google Patents

Catalyst material

Info

Publication number
JPS61118140A
JPS61118140A JP59238752A JP23875284A JPS61118140A JP S61118140 A JPS61118140 A JP S61118140A JP 59238752 A JP59238752 A JP 59238752A JP 23875284 A JP23875284 A JP 23875284A JP S61118140 A JPS61118140 A JP S61118140A
Authority
JP
Japan
Prior art keywords
carbon
particles
graphite
ions
metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59238752A
Other languages
Japanese (ja)
Inventor
Hiroshi Kajiyama
博司 梶山
Kiyoshi Konno
清 今野
Tetsuo Minemura
哲郎 峯村
Hisashi Ando
寿 安藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP59238752A priority Critical patent/JPS61118140A/en
Publication of JPS61118140A publication Critical patent/JPS61118140A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

PURPOSE:To enhance the effect on preventing the cohesion of metallic particles by providing a layer which is periodically charged positively and negatively in the form of an intergraphitic compd. to specified neutral carbon, and then bringing the material into contact with ions contg. a catalytic metallic element. CONSTITUTION:A layer which is periodically charged positively and negatively is provided to electrically neutral carbon obtained by applying a hardly graphitizing treatment in the form of an intergraphitic compd., the material is brought into contact with ions cong. a catalytic metallic element to grow the catalytic metallic element and its particles from the surface of the hardly graphitizable carbon, and a catalyst material is obtained. Meanwhile, a layer which is periodically charged positively and negatively is provided in the form of an intergraphitic compd. in the direction parallel to the C-axis of the graphite of electrically neutral and easily graphtizable carbon fibers which are already graphitized. Then the material is brought into contact with ions contg. a cata lytic metallic element to grow the catalytic metallic element and its particles from the surface of the carbon fiber, and a highly corrosion-resistant catalyst material is obtained.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は例えば燃料電池等に使用し得る触媒材料に係り
、特に触媒粒子の凝集を防ぐのに好適な触媒材料、及び
高耐食性触媒材料に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to a catalyst material that can be used, for example, in fuel cells, and particularly to a catalyst material suitable for preventing agglomeration of catalyst particles, and a highly corrosion-resistant catalyst material.

〔発明の背景〕[Background of the invention]

従来の炭素を担体とする触媒材料は、′触媒設計”(日
本化学会編、憲32.1982)27〜49頁に記載さ
れているように、金属成分を含む溶液中に炭素粉末を浸
漬し、還元剤を少しずつ添加しながら金属成分を直径1
0〜30Xの粒子に成長させて炭素粉末上に分散させる
方法で作製されてい友。
Conventional catalyst materials using carbon as a carrier are produced by immersing carbon powder in a solution containing metal components, as described in ``Catalyst Design'' (edited by the Chemical Society of Japan, Ken 32, 1982), pages 27-49. , while adding the reducing agent little by little, the metal component is
It is made by growing particles of 0 to 30X and dispersing them on carbon powder.

しかしながら、この方法によると、金属粒子は炭素の表
面に単に乗っているだけなので、触媒材料の使用中に金
属粒子の凝集が起こり易く触媒性能の低下を招いていた
However, according to this method, since the metal particles simply rest on the surface of carbon, agglomeration of the metal particles tends to occur during use of the catalyst material, resulting in a decrease in catalyst performance.

他方、触媒材料を高温高圧の酸、アルカリなどの下で使
用すると、炭素が腐食されて触媒元素の凝集や欠落が起
こり、触媒の我聞積が減少するため、触媒活性が低下す
る現象がみられた。少量の金属元素全微細に分散させる
ためにはどうしても比表面積の大きな炭素粉末が必要で
あり、このため担体としては黒鉛化度の低い炭素粉末が
もちいられてきたが、一般に炭素材料は黒鉛化度が低く
なると耐食性が悪くなる傾向があり、触媒寿命を長くす
るには不利であるという欠点があった。
On the other hand, when catalyst materials are used under high-temperature, high-pressure acids, alkalis, etc., the carbon is corroded, causing agglomeration or loss of catalytic elements, which reduces the internal area of the catalyst, resulting in a decrease in catalytic activity. Ta. In order to fully disperse a small amount of metal elements, carbon powder with a large specific surface area is absolutely necessary, and for this reason carbon powder with a low degree of graphitization has been used as a carrier. When the ratio becomes low, corrosion resistance tends to deteriorate, which is disadvantageous in extending the catalyst life.

〔発明の目的〕[Purpose of the invention]

本願第1発明の目的は金属粒子の凝集を防ぐのに効果の
ある触媒材料を提供することにあり、本願第2発明の目
的は高耐食性の触媒材料を提供することにある。
An object of the first invention of the present application is to provide a catalyst material that is effective in preventing agglomeration of metal particles, and an object of the second invention of the application is to provide a catalyst material with high corrosion resistance.

〔発明の概要〕[Summary of the invention]

微細分散している粒子は一次粒子、二次粒子ということ
ばで分類できる。−次粒子とは一つ一つの微細な粒子を
表わし、その大きさを一次粒子径、   と呼ぶ・二次
粒子は一次粒子力”集ま・てできた集落を意味し、その
大きさを二次粒子径と呼んでいる。
Finely dispersed particles can be classified into primary particles and secondary particles. -Primary particle refers to each minute particle, and its size is called the primary particle diameter. -Secondary particle refers to a colony formed by the primary particle force, and its size is called the primary particle diameter. This is called the secondary particle size.

一般に超微細な金属粒子には熱履歴、酸アルカリなどの
外的環境との反応によシー次粒子が互いに接近して凝集
し、より大きな二次粒子を形成する傾向がある。粒子の
成長は外的環境と平衡するまで続き、−次粒子の凝集が
さらに進むと一次粒子が消滅して巨大な二次粒子が現わ
れるようになる。二次粒子が形成されると金属粒子の表
面積が減少するので触媒性能の低下を招く。
In general, ultrafine metal particles have a tendency for secondary particles to approach each other and aggregate due to thermal history or reactions with external environments such as acids and alkalis to form larger secondary particles. The growth of the particles continues until they reach equilibrium with the external environment, and as the aggregation of the secondary particles progresses further, the primary particles disappear and gigantic secondary particles appear. When secondary particles are formed, the surface area of the metal particles decreases, resulting in a decrease in catalyst performance.

従来の触媒材料の製造法では、金属イオンは炭素の表面
から離れたところで還元され互いの金属原子が集まり金
属粒子に成長し、炭素上に担持されている。したがって
金属粒子は炭素の表面に琳に雪のように降シつもうてい
るだけなので、外部から刺激が加わると上述し九ように
金属粒子の凝集が起こり易くなっていると推察される。
In conventional methods for producing catalyst materials, metal ions are reduced away from the surface of carbon, and metal atoms gather together to grow into metal particles, which are supported on carbon. Therefore, since the metal particles are simply falling on the surface of the carbon like snow, it is inferred that when an external stimulus is applied, the metal particles tend to agglomerate as described above.

そこで炭素表面で金属イオンを還元じて金属原子の成長
を炭素表面に限定し、かつ成長点を個々に分離すること
ができたならば、(1)金属粒子は炭  ・素表面の凹
凸、格子欠陥、転位などの構造に敏感に対応して分布し
ているので金属粒子の分散を高めることができる、(2
)金属粒子の粒径分布を従来法に比べて小さくできるの
で触媒活性を高めることができる、という効果が期待で
きる。
Therefore, if it were possible to limit the growth of metal atoms to the carbon surface by reducing metal ions on the carbon surface, and to separate the growth points individually, (1) the metal particles would be formed by the unevenness and lattice of the carbon surface. Because it is distributed in a sensitive manner to structures such as defects and dislocations, it is possible to increase the dispersion of metal particles (2
) Since the particle size distribution of metal particles can be made smaller than in conventional methods, the effect of increasing catalytic activity can be expected.

金属イオンt−炭素の表面あるいはその近傍で還元をす
る方法として電解めりき法が考えられるが、この方法で
は少量の金属元素を微細に分散させることは困難である
。そこで黒鉛化した炭素はいわゆる黒鉛層間化合物を形
成して周期的な帯電層を保有することに着目し友。
An electrolytic plating method is considered as a method for reducing the metal ion t-carbon at or near its surface, but it is difficult to finely disperse a small amount of metal element with this method. Therefore, he focused on the fact that graphitized carbon forms so-called graphite intercalation compounds and possesses periodic charged layers.

代表的な層状物質である黒鉛(Graphite)には
、アルカリ金属やアルカリ土類金属の蒸気と接触すると
、いわゆるドナー型の黒鉛層間化合物(Graphit
e −Interaalation −QOmpoun
d@) f形成する性質のあることが良く知られている
。この場合ダストであるアルカリ金属やアルカリ土類金
属からホストである黒鉛に向けて電子が移動して、黒鉛
のC軸方向に正、負の周期的な帯電層が生じる。これら
の帯電層から電荷を分離して重子を取り出すことができ
れば、金属イオンの還元に用いる事が可能である。
When graphite, a typical layered material, comes into contact with alkali metal or alkaline earth metal vapor, it forms a so-called donor-type graphite intercalation compound (graphite).
e -Interaalation -QOmpoun
d@) It is well known that it has the property of forming f. In this case, electrons move from the alkali metal or alkaline earth metal dust toward the graphite host, creating a periodically positively and negatively charged layer in the C-axis direction of the graphite. If the charges can be separated and deuterons can be extracted from these charged layers, they can be used to reduce metal ions.

一般に、ドナー型の黒鉛層間化合物の構造t−保っet
まで、電荷を分離させることは難しい。というのはホス
トとダストが静電的に結びついて準安定的な超格子構造
をしているからである。したがって電荷を分離するには
ドナー型の黒鉛層間化合物の構造t−ある程度壊してや
る必要がある。ドナー型の黒鉛層間化合物は真空中、或
いは不活性気体中においては安定であるが、水や#1累
が存在していると激しく反応して構造が破壊される。
In general, the structure of donor-type graphite intercalation compounds is kept
Until then, it is difficult to separate the charges. This is because the host and dust are electrostatically bound to form a metastable superlattice structure. Therefore, in order to separate the charges, it is necessary to destroy the structure of the donor-type graphite intercalation compound to some extent. The donor-type graphite intercalation compound is stable in a vacuum or in an inert gas, but if water or #1 compound is present, it reacts violently and its structure is destroyed.

金属イオンの還元に用いるには、ドナー凰の黒鉛層間化
合物を緩やかに壊す必要がある。ドナー型の黒鉛層間化
合物と実質的に反応しない数少ない液体としてTetr
ahydrofuran (C4H,04)が知られて
いる。ドナー型の黒鉛層間化合物をこのような液体の中
に浸漬して金属元素を含む化合物fc溶解させると、金
属イオン、その他のイオンにより黒鉛層間化合物はある
程度分解するであろう。緩やかにかつ着実に分解するに
は、塩素イオ/などの、アルカリ金属やアルカリ土類金
属のイオンと結合し易いイオンが少址含まれていること
が望ましい。このような条件では、ドナー型の黒鉛眉間
化合物が壊れることによって放出された電子が炭素中を
移動し、炭素表面に到達したのちに金属イオンt−還元
する。すなわち、従来金属イオンを還元するのに外部か
ら還元剤を加えてい九(便宜的に外部還元法と呼ぶ)の
に対して、予め炭素材料内に黒鉛層間化合物を設けて還
元能力を炭素材料内部に付与する事により、単に金属イ
オンを炭素(黒鉛層間化合物)と接触させるだけで還元
できる(内部還元法と呼ぶ)であろう。
In order to use it for reducing metal ions, it is necessary to slowly break down the graphite intercalation compound of the donor layer. Tetr is one of the few liquids that do not substantially react with donor-type graphite intercalation compounds.
ahydrofuran (C4H,04) is known. When a donor-type graphite intercalation compound is immersed in such a liquid to dissolve the compound fc containing a metal element, the graphite intercalation compound will be decomposed to some extent by metal ions and other ions. In order to decompose slowly and steadily, it is desirable to contain a small amount of ions, such as chlorine ions, which easily bond with alkali metal or alkaline earth metal ions. Under such conditions, electrons released by the breakdown of the donor-type graphite compound move through the carbon, reach the carbon surface, and then undergo metal ion t-reduction. In other words, whereas conventionally a reducing agent is added from the outside to reduce metal ions (referred to as the external reduction method for convenience), a graphite intercalation compound is provided in the carbon material in advance to increase the reducing ability inside the carbon material. By adding metal ions to carbon (graphite intercalation compound), reduction can be achieved simply by bringing the metal ions into contact with carbon (graphite intercalation compound) (referred to as an internal reduction method).

このような還元法を用匹ることにより従来法との比較に
おいて特徴的なことがらが浮びあがる。
By using such a reduction method, characteristics emerge when compared with conventional methods.

外部還元法では金属イオンは炭素粉末の表面からかなり
離れたところで還元され、10〜301の金属粒子とし
て成長した後に炭素粉末と衝突して、金属−炭素触媒が
形成される。一方、内部還元法では、炭素粉末表面での
電子の移動によプ金属イオンが還元されるので、金属の
分散に偏りがすくなく粒径分布も従来法に比較して小さ
い方に寄っていると期待できる。さらに、一度炭素t−
黒鉛層間化合物に加工することによプ炭素の規則構造が
乱されるので分散している金属粒子の凝集を防ぐ効果も
期待できるであろう。
In the external reduction method, metal ions are reduced at a considerable distance from the surface of the carbon powder, grow as 10-301 metal particles, and then collide with the carbon powder to form a metal-carbon catalyst. On the other hand, in the internal reduction method, metal ions are reduced by the movement of electrons on the carbon powder surface, so there is less bias in metal dispersion and the particle size distribution is closer to the smaller side than in the conventional method. You can expect it. Furthermore, once carbon t-
Processing into a graphite intercalation compound disturbs the regular structure of carbon, so it can also be expected to have the effect of preventing agglomeration of dispersed metal particles.

炭素材料は、その黒鉛化度、密度で表わすことができる
が、触媒粒子の凝集を防ぐのに好適な炭素材料としては
、黒鉛化度はより低い方が、密度はより小さい方が望ま
しい。なぜなら、黒鉛化度が高ければ内部に蓄積されて
いる電荷容量が大きく、還元される金属イオンの数は多
くなり、さらに黒鉛C面に分散している金属粒子の割合
も黒鉛化度が高くなるにつれて高くなる。黒鉛C面は1
面にくらべて滑らかであるので、粒子の成長を規制する
ものは1面より少ない。し友がって黒鉛化度が高いと一
つ一つの金属粒子が大きく、凝集しやすいという欠点が
あり、触媒効率の点で不利だからである。
A carbon material can be expressed by its degree of graphitization and density, but as a carbon material suitable for preventing agglomeration of catalyst particles, a lower degree of graphitization and a lower density are desirable. This is because the higher the degree of graphitization, the greater the charge capacity accumulated inside, the greater the number of metal ions to be reduced, and the higher the degree of graphitization, the higher the proportion of metal particles dispersed on the graphite C-plane. It gets higher as time goes on. Graphite C side is 1
Because it is smoother than a single surface, there is less to regulate particle growth than a single surface. On the other hand, if the degree of graphitization is high, each metal particle is large and tends to aggregate, which is disadvantageous in terms of catalyst efficiency.

炭素(黒鉛)の密度は2.251/cmsであるが、こ
れよ)密度が小さい炭素は充填度が低く、内部   腎 に空隙が沢山あるということを示している。このことは
金属粒子を分散させる上で有利に働く。即ち内部還元法
によれば炭素の表面で金属イオンを還元できるので、密
度が小さい炭素材料では表面はもとより、従来の触媒材
料では実現できなかった内部までも金属粒子を分散させ
念触媒材料を作製できる。このような黒鉛化度、密度に
対する条件全満足する炭素材料としては一部黒鉛化して
いる難黒鉛化炭素を挙げることができる。
The density of carbon (graphite) is 2.251/cms, and carbon with a low density (graphite) has a low degree of filling, indicating that there are many voids in the internal kidney. This works advantageously in dispersing metal particles. In other words, the internal reduction method can reduce metal ions on the surface of carbon, so metal particles can be dispersed not only on the surface of carbon materials with low density, but also inside, which was not possible with conventional catalyst materials, to create a psychocatalytic material. can. An example of a carbon material that satisfies all of the conditions regarding the degree of graphitization and density is non-graphitizable carbon that is partially graphitized.

よって、本願第1発明の要旨とするところは、難黒鉛化
炭素に一部黒鉛化処理を施して得た電気的に中性な炭素
に、黒鉛層間化合物の形で周期的な正、負の帯電層を設
けたのち触媒金属元素を含むイオンと接触させることに
よシ、難黒鉛化炭素の表面から前記触媒金属元素及びそ
の粒子を成長させ之ことを特徴とする触媒材料にある。
Therefore, the gist of the first invention of the present application is that electrically neutral carbon obtained by partially graphitizing non-graphitizable carbon has periodic positive and negative polarization in the form of a graphite intercalation compound. The catalytic material is characterized in that the catalytic metal element and its particles are grown from the surface of non-graphitizable carbon by providing a charged layer and then contacting it with ions containing the catalytic metal element.

ここで用いられる炭素材料の形態にはなんら制限はなく
、粉末、板、繊維のどれでも構わない。
There are no restrictions on the form of the carbon material used here, and it may be powder, plate, or fiber.

一部黒鉛化している難黒鉛化炭素の黒鉛化度は40チ以
下、密度は1.5〜2.0 i 7cm  の範囲が適
している。
Suitably, the degree of graphitization of the partially graphitized non-graphitizable carbon is 40 inches or less, and the density is in the range of 1.5 to 2.0 i 7 cm.

他方、触媒材料の耐食性を向上させるには、担体である
炭素材料の黒鉛化度を高めるのが有効であると考えられ
る。しかし従来の触媒材料製造法においては黒鉛化度が
高い炭素材料では触媒成分1m細に分散出来ないという
難点があった。従来の触媒材料の製造法では、金属イオ
ンは炭素の表面から離れたところで還元され互いの金属
原子が集まシ金属粒子に成長し、炭素上に分散している
だけだからである。
On the other hand, in order to improve the corrosion resistance of the catalyst material, it is considered effective to increase the degree of graphitization of the carbon material that is the carrier. However, in the conventional catalyst material manufacturing method, there was a problem in that a carbon material with a high degree of graphitization could not be dispersed into a 1 m fine particle. This is because in conventional methods for producing catalyst materials, metal ions are reduced away from the carbon surface, and metal atoms gather together to grow into metal particles, which are simply dispersed on the carbon.

ところが、内部還元法によると、比衣面積の小さい(2
0m”/I以下)炭素材料でも、人為的に構造欠陥を導
入することによって、金属原子t−it細に分散するこ
とができる。例えば、炭素繊維では表面付近の方が内部
よりも黒鉛化が進んでおり、金属原子を微細に分散する
うえで都合が悪いが、炭素1栽維の表面に人為的に構造
欠陥を導入することによって、炭素繊維表面の黒鉛化度
とともにその密度も下げることができ、金属原子を微細
に分散することができる。
However, according to the internal reduction method, the ratio area is small (2
Even in carbon materials (less than 0 m"/I), metal atoms can be finely dispersed by artificially introducing structural defects. For example, in carbon fibers, graphitization occurs more near the surface than inside. Although this is not convenient for finely dispersing metal atoms, it is possible to reduce the degree of graphitization and density of the carbon fiber surface by artificially introducing structural defects on the surface of carbon fibers. It is possible to finely disperse metal atoms.

よって、本願第2発明の要旨とするところは、黒鉛化し
ている電気的に中性な易黒鉛化炭’A tiR雑の黒鉛
C軸に平行な方向に黒鉛層間化合物の形で周期的な正、
負の帯電層を設けたのち触媒金属元素を含むイオンと接
触させることにより、炭素繊維の表面から前記触媒金属
元素及びその粒子を成長させたことを特徴とする高耐食
性触媒材料にある。
Therefore, the gist of the second invention of the present application is that the graphitized electrically neutral graphitizable carbon 'AtiR miscellaneous graphite generates periodic polarization in the form of graphite intercalation compounds in the direction parallel to the C axis. ,
A highly corrosion-resistant catalyst material characterized in that the catalyst metal element and particles thereof are grown from the surface of carbon fibers by providing a negatively charged layer and then contacting with ions containing the catalyst metal element.

黒鉛化している電気的に中性な易黒鉛化炭素繊維の表面
を物理的、化学的に前処理し、人為的に構造欠陥を導入
することが好ましい。炭素繊維の表面に人為的に構造の
欠陥を導入する孔設としては、ス・臂ツタ、電子ビーム
、あるいは酸による処理を周込ることができる。
It is preferable to physically and chemically pretreat the surface of the electrically neutral graphitizable carbon fiber to artificially introduce structural defects. Holes can be formed by artificially introducing structural defects into the surface of the carbon fibers by using ivy, an electron beam, or an acid treatment.

〔発明の実施例〕[Embodiments of the invention]

以下、本願第1発明の実施例を実施例1〜4として、本
願第2発明の実施例を実施例5.6として説明する。
Hereinafter, examples of the first invention of the present application will be described as Examples 1 to 4, and examples of the second invention of the present application will be described as Examples 5 and 6.

実施gRJI A    3000℃で24h加熱し九アセチレンブラ
ックIJと金属カリウA0.4#t−40φX200L
の・tイレックスアングルに入れ%0.IPILの真空
度で封止した。このノ奢イレックスアングルを3本用意
し、アルミ箔で包んだのち、250℃×24h加熱して
、黒青色の反応生成物を得た。他方、モレキュラーシー
ツで水分含有率20 ppmに脱水したテトラヒドロフ
ラン(C4H804)に塩化白金酸(H2ptct6−
eH20) を溶解サセテ2 X 10−’  。
Implementation gRJI A Heated at 3000℃ for 24 hours and 9 acetylene black IJ and metal potash A0.4#t-40φX200L
%0. It was sealed with IPIL vacuum. Three of these luxurious Ilex angles were prepared, wrapped in aluminum foil, and then heated at 250° C. for 24 hours to obtain a black-blue reaction product. On the other hand, chloroplatinic acid (H2ptct6-
eH20) Dissolve 2×10-'

4X10 .8X10  モル濃度の塩化白金酸溶液全
作り、3つのビーカーに100dずつ取った。アルゴン
雰囲気下で先はどの・臂イレックスアングルを開封し、
スターラーでかきまぜながら少しずつ黒青色に変色した
アセチレンブラックを上記ビーカー中の塩化白金酸溶液
に浸漬させた。3h靜置した後アセチレンブラックを取
り出し、蒸留水で充分洗い、50℃で8h乾燥した。第
1図に塩化白金酸溶液濃度とアセチレンブラックの白金
含有量の関係を示す。次にこのアセチレンブラックを1
mola度のリン酸溶液(200℃)に48h浸漬し、
浸漬の前と後での白金粒子の大きさをX線   □回折
測定よ)求めた。その結果金嬉2図に示す。
4X10. A total of 8×10 molar chloroplatinic acid solution was prepared and 100 d each was placed in three beakers. Under an argon atmosphere, open the tip and arm of the irex angle,
The acetylene black, which gradually turned black and blue, was immersed in the chloroplatinic acid solution in the beaker while stirring with a stirrer. After standing for 3 hours, the acetylene black was taken out, thoroughly washed with distilled water, and dried at 50° C. for 8 hours. FIG. 1 shows the relationship between the concentration of chloroplatinic acid solution and the platinum content of acetylene black. Next, add 1 of this acetylene black.
Immersed in a molar phosphoric acid solution (200°C) for 48 hours,
The size of the platinum particles before and after immersion was determined by X-ray diffraction measurement. The results are shown in Figure 2.

本実施例によれば、白金i13 wt%のアセチレンブ
ラックの白金粒子の凝集i85%以下に抑えることがで
きることがわかった。
According to this example, it was found that the aggregation i of platinum particles in acetylene black containing platinum i of 13 wt% could be suppressed to 85% or less.

実施例2 2500℃で24h加熱したアセチレンブラック1gと
金属カリウム0.41’に40φX200Lのパイレッ
クスアングルに入れ、0.1Paの真空度で封止した。
Example 2 1 g of acetylene black heated at 2500° C. for 24 hours and 0.41' of metallic potassium were placed in a 40φ×200L Pyrex angle and sealed at a vacuum degree of 0.1 Pa.

このノ9イレックスアンプルを3本用意しアルミ箔で包
んだのち250℃×24h加熱して、黒青色の反応生成
物を得た。他方、モレキュラーシープで水分含有率20
 ppmに脱水したテトラヒドロフラン(C4H804
)に塩化白金酸(H2PtCt、−6H20) t−溶
解gせて2X10−5,4X10−3゜8×10 モル
濃度の塩化白金酸溶液を作り、3つのビーカーに1OO
IJLlずつ取った。アルゴン雰囲気下で先はどのパイ
レックスアングルを開封シ、スターラーでかきまぜなが
ら少しずつ黒青色に変色したアセチレンブラック全上記
ビーカー中の塩化白金酸溶液に浸漬させた。3h静置し
た後アセチレンブラック全域シ出し、蒸留水で充分洗い
、50℃で8h乾燥し友。第3図に塩化白金酸溶液濃度
とアセチレンブラックの白金含有量の関係を示す。次に
このアセチレンブラックt1mol濃度のリン酸溶液(
200C)に48h浸漬し、浸漬の前と後での白金粒子
の大きざをX線回折測定より求めた。その結果を第4図
に示す。゛本災施例によれば、白金ffi 3 ft%
のアセチレンブラックの白金粒子の凝集i80%以下に
抑えることができることがわかった。
Three of these ampoules were prepared, wrapped in aluminum foil, and heated at 250° C. for 24 hours to obtain a black-blue reaction product. On the other hand, molecular sheep has a moisture content of 20
Tetrahydrofuran (C4H804) dehydrated to ppm
) to make a solution of chloroplatinic acid (H2PtCt, -6H20) at a molar concentration of 2X10-5, 4X10-3゜8x10, and add 100% to 3 beakers.
I took each IJLl. Under an argon atmosphere, each Pyrex angle was unsealed, and while stirring with a stirrer, the acetylene black, which had gradually turned black and blue, was immersed in the chloroplatinic acid solution in the beaker. After standing for 3 hours, acetylene black was removed from the entire area, thoroughly washed with distilled water, and dried at 50°C for 8 hours. FIG. 3 shows the relationship between the concentration of chloroplatinic acid solution and the platinum content of acetylene black. Next, this acetylene black t1 mol phosphoric acid solution (
200C) for 48 hours, and the size difference of the platinum particles before and after the immersion was determined by X-ray diffraction measurement. The results are shown in FIG.゛According to this disaster example, platinum ffi 3 ft%
It was found that the agglomeration i of platinum particles in acetylene black can be suppressed to 80% or less.

実施例3 2000℃で24h加熱したアセチレンブラック1gと
金属カリウム0.4.9を40φX200Lノ/母(レ
ックスアングルに入れ、O,l Paの真空度で封止し
た。この・9イレックスアングル全3本用意しアルミ箔
で包んだのち250℃×24h加熱して、黒青色の反応
生成物を得た。他方、モレキュラーシープで水分含有率
20 pp+nに脱水したテトラヒドロフラy (04
HI304 )に塩化白金酸(H2PtCl4−6H2
0) t−e解させテ2X10−3.4X10−’。
Example 3 1 g of acetylene black heated at 2000°C for 24 hours and 0.4.9 g of metallic potassium were placed in a 40φ x 200L x 200L (rex angle) and sealed at a vacuum level of 0,1 Pa. Three tubes were prepared, wrapped in aluminum foil, and heated at 250°C for 24 hours to obtain a black-blue reaction product.On the other hand, tetrahydrofuryl (04
HI304) to chloroplatinic acid (H2PtCl4-6H2
0) t-e solved te 2X10-3.4X10-'.

8X10−3モル濃度の塩化白金酸溶液を作り、3つの
ビーカーに100dずつ取った。アルゴン雰囲気下で先
はどの74’イレツクスアングルを開封L、スターラー
でかきまぜながら少しずつ黒青色に変色シタアセチレン
ブラックを上記ビーカー中ノ塩化白金酸溶液に浸漬させ
た。3h靜置した後アセチレンブラックを取り出し、蒸
留水で充分洗い、50℃で8h乾燥した。第5図に塩化
白金酸溶液濃度とアセチレンブラックの白金含有量の関
係を示す。次にこのアセチレンブラックf 1 mol
 濃度のリン酸溶液(200℃)に48h浸漬し、浸漬
の前と後での白金粒子の大きさt−X線回折測定より求
め念。その結果を第6図に示す。
An 8×10 −3 molar solution of chloroplatinic acid was prepared and 100 d each was placed in three beakers. Under an argon atmosphere, each 74' angle was opened, and while stirring with a stirrer, the white acetylene black, which gradually turned black and blue, was immersed in the chloroplatinic acid solution in the beaker. After standing for 3 hours, the acetylene black was taken out, thoroughly washed with distilled water, and dried at 50° C. for 8 hours. FIG. 5 shows the relationship between the concentration of chloroplatinic acid solution and the platinum content of acetylene black. Next, this acetylene black f 1 mol
The platinum particles were immersed in a concentrated phosphoric acid solution (200°C) for 48 hours, and the size of the platinum particles before and after immersion was determined by t-X-ray diffraction measurements. The results are shown in FIG.

本実施例によれば、白金t 3 wt*のアセチレンブ
ラックの白金粒子の凝得185fi以下に抑えることが
できることがわかった。
According to this example, it was found that the agglomeration of platinum particles in acetylene black of platinum t 3 wt* could be suppressed to 185 fi or less.

実施例4 1500℃で24h加熱したアセチレンブラック1fI
と金属カリウム0.41t−40φX200L?  の
パイレックスアングルに入れ、0.1Paの真空度で封
止した。このノ4イレックスアングルt−3本用意しア
ルミ箔で包んだのち250CX24b770熱して、黒
青色の反応生成物を得た。他方、モレキ為う−シーブで
水分含有率20 ppmに脱水したテトラヒドロフラン
(04H804)に塩化白金酸(H2PtC/、6・6
H20) k溶Ngセテ2Xloジ4X10−’。
Example 4 Acetylene black 1fI heated at 1500°C for 24 hours
And metallic potassium 0.41t-40φX200L? It was placed in a Pyrex angle and sealed at a vacuum degree of 0.1 Pa. Three pieces of this 4irex angle T- were prepared, wrapped in aluminum foil, and heated to 250CX24B770 to obtain a black-blue reaction product. On the other hand, chloroplatinic acid (H2PtC/, 6.6
H20) k soluble Ng set 2Xlodi4X10-'.

8×10 モル濃度の塩化白金酸溶液を作り・、3つの
ビーカーに100dずつ取。た。アルゴン雰囲気下で先
はどのノ9イレックスアングルを開封し、スターラーで
かきまぜながら少しずつ黒青色に変色し友アセチレンプ
ラックを上記ビーカー中の塩化白金酸溶液に浸漬させた
。3h靜置した後アセチレンブラックを取り出し蒸留水
で充分洗い50℃で8h乾燥し北。第7図に塩化白金酸
溶液濃度とアセチレンブラックの白金含有量の関係を示
す。
Make a chloroplatinic acid solution with a molar concentration of 8 x 10 and add 100 d each to three beakers. Ta. Under an argon atmosphere, the acetylene plaque was opened, and while stirring with a stirrer, the acetylene plaque gradually changed color to blackish blue and was immersed in the chloroplatinic acid solution in the beaker. After standing for 3 hours, the acetylene black was taken out, thoroughly washed with distilled water, and dried at 50°C for 8 hours. FIG. 7 shows the relationship between the concentration of chloroplatinic acid solution and the platinum content of acetylene black.

次にこのアセチレンブラックk 1 mot濃度のリン
酸溶液(200℃)に48h浸漬し、浸漬の前と後での
白金粒子の大きざ’exa回折測定より求めた。その結
果金第8図に示す。
Next, the platinum particles were immersed in this acetylene black k 1 mot concentration phosphoric acid solution (200° C.) for 48 hours, and the size of the platinum particles before and after the immersion was determined by exa diffraction measurement. The results are shown in Figure 8.

本実施例によれば、白金量3 wt4のアセチレン  
 ′ブラックの白金粒子の凝集t−5ol以下に抑える
ことができることがわかった。
According to this example, acetylene with a platinum content of 3 wt4
It was found that the aggregation of black platinum particles could be suppressed to t-5 ol or less.

実施例5 3000℃で熱処理した黒鉛繊維ペーノ!−を10Pa
のアルコ9ン分圧下で100Vの電圧金かけて8hス・
9ツタ−した。第9図、第10図は夫々ス・4ツタ−の
前後のラマンス(クトルを示す。スパッターにより黒鉛
繊維の結晶構造が乱されていることがわかる。別々のパ
イレックス管(30φX100L)にス/Jツター前後
の黒鉛繊維と金属カリウムを重量比3対1で入れ、0.
1Paで真空封止した後250cxsh熱処理し、黄金
色の反応生成物金得た。これら反応生成物をアルゴン雰
囲気下で塩化白金酸のテトラヒドロフラン(C4H80
4)溶液に浸漬した。塩化白金酸はH2PtCL6・6
)120’i用い、テトラヒドロフランは水分含有率2
0 ppm K脱水したものを用い、溶液濃度は10 
 mol/lとした。浸漬後の黒鉛繊維イー・母−には
どちらにも約3 vt%の白金が付着していることが定
量分析より明らかになった。
Example 5 Graphite fiber peno heat treated at 3000°C! -10Pa
8 hours with a voltage of 100 V under the partial pressure of Alcon 9.
I stumbled 9 times. Figures 9 and 10 show the laminations before and after the sputter, respectively. It can be seen that the crystal structure of the graphite fiber is disturbed by the sputtering. Add the graphite fibers before and after the vines and metallic potassium at a weight ratio of 3:1, and add 0.
After vacuum-sealing at 1 Pa, heat treatment was performed for 250 cxsh to obtain a golden reaction product. These reaction products were mixed with chloroplatinic acid in tetrahydrofuran (C4H80) under an argon atmosphere.
4) Immersed in solution. Chloroplatinic acid is H2PtCL6.6
) 120'i, tetrahydrofuran has a water content of 2
0 ppm K dehydrated solution was used, and the solution concentration was 10
It was set as mol/l. Quantitative analysis revealed that about 3 vt% of platinum was attached to both of the graphite fibers after soaking.

次に黒鉛繊維(−・9−に10’QAJのテフロンを塗
布した後、70℃、7規定のKOI(水溶液中に浸漬し
、電極の片面に酸素を供給しながら、開路電位で放置後
、水洗乾燥して!量変化を測定した。
Next, after applying Teflon of 10' QAJ to the graphite fiber (-・9-), it was immersed in a 7N KOI (aqueous solution) at 70°C, and left at an open circuit potential while supplying oxygen to one side of the electrode. After washing with water and drying, the change in amount was measured.

放置時間は100,200,300.400hとした。The standing time was 100, 200, 300, and 400 hours.

結果を第11図に示す。The results are shown in FIG.

本実施例によれば、人工的に結晶に欠陥を導入する処理
をした黒鉛繊維に白金を担持させた触媒材料のKOH中
での腐食量は、未処理の黒鉛繊維に比較して20%の増
加に抑えることができ、従来の白金担持炭素触媒よυ大
巾に耐食性を向上できることがわかった。
According to this example, the amount of corrosion in KOH of a catalyst material in which platinum is supported on graphite fibers that have been treated to artificially introduce defects into the crystals is 20% less than that of untreated graphite fibers. It was found that the corrosion resistance could be suppressed to a small amount, and the corrosion resistance could be greatly improved compared to conventional platinum-supported carbon catalysts.

実施例6 2500℃で熱処理した黒鉛fRmペー・イーを、80
℃の5Nの硝M(HNO,)に100h浸漬した。
Example 6 Graphite fRm P.E. heat-treated at 2500°C was heated to 80°C.
It was immersed in 5N nitrate M (HNO,) at ℃ for 100 hours.

第12図、第13図にこの酸処理の前後のラマンス(ク
トルを示すが、酸処理により黒鉛繊維の結晶構造が乱さ
れていることがわかる。別々の・9イレツクス管(30
φX100L)に処理前後の黒鉛繊維と金属カリウムを
重量比10対1で入れ、0.1Paで真空封止した後2
50℃xsh50cxs背合処理応生成物を得た。これ
ら反応生成*Jをアルゴン雰囲気下で塩化白金酸のテト
ラヒドロフラン(C4H804)溶液に浸漬した。塩化
白金酸はH2PtCA、・6H20ft用い、テトラヒ
ドロフランは水分含有率20 ppmに脱水したものを
用い、溶液濃度は10−3mol/l  とした。浸漬
後の黒鉛繊維ペーパーにはどちらにも約1 *t%の白
金が付着していることが定量分析より明らかになった。
Figures 12 and 13 show the ramance before and after this acid treatment, and it can be seen that the crystal structure of the graphite fibers is disturbed by the acid treatment.
After putting the graphite fiber before and after treatment and metallic potassium in a φ
A reaction product was obtained through back-reaction treatment at 50°C x sh50cxs. These reaction products *J were immersed in a solution of chloroplatinic acid in tetrahydrofuran (C4H804) under an argon atmosphere. 20 ft of H2PtCA, .6H was used as chloroplatinic acid, and the tetrahydrofuran was dehydrated to a water content of 20 ppm, and the solution concentration was 10-3 mol/l. Quantitative analysis revealed that about 1*t% of platinum was attached to both graphite fiber papers after soaking.

次に黒鉛繊維ペーパーに10 ail/cm2のテフロ
ンを塗布した後、70℃、7規定のKOH水溶液中に浸
漬し、電極の片面に酸素を供給しながら、開路電位で放
置後、水洗乾燥して重量変化を測定した。
Next, after coating graphite fiber paper with Teflon at 10 ail/cm2, it was immersed in a 7N KOH aqueous solution at 70°C, left at open circuit potential while supplying oxygen to one side of the electrode, washed with water, and dried. Weight changes were measured.

放置時間は100,200,300,400hとした。The standing time was 100, 200, 300, and 400 hours.

結果を第14図に示す。The results are shown in FIG.

本実施例によれば、人工的に結晶に欠陥を導入する処理
した黒鉛繊維に白金を担持させた触媒材料のKOH中で
の腐食量は、未処理の黒鉛繊維に比、   較して10
%の増加に抑えることができることがわかった。
According to this example, the amount of corrosion in KOH of a catalyst material in which platinum is supported on graphite fibers treated to artificially introduce defects into the crystals is 10 times higher than that of untreated graphite fibers.
It was found that the increase could be suppressed to just 1%.

〔発明の効果〕〔Effect of the invention〕

本願第1発明によると、触媒粒子の分散がよく触媒粒子
の凝集を防ぐことが出来るので、触媒性能の低下を防ぐ
ことができる。また、本願第2発明によると、担体に耐
食性の高い黒鉛化炭素音用いることができ、担体である
炭素の腐食を防ぐことができるので、触媒活性の低下を
防ぐことができる。
According to the first aspect of the present invention, the catalyst particles are well dispersed and agglomeration of the catalyst particles can be prevented, so that deterioration in catalyst performance can be prevented. Further, according to the second invention of the present application, graphitized carbonaceous material having high corrosion resistance can be used as the carrier, and corrosion of the carbon serving as the carrier can be prevented, thereby preventing a decrease in catalytic activity.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、実施例1における塩化白金酸濃度と白金量の
関係、第2図は同じく白金粒径の変化を示した図、第3
図は実施例2における塩化白金酸濃度と白金量の関係、
第4図は同じく白金粒径の変化を示した図、第5図は実
施例3における塩化白金酸濃度と白金量の関係、第6図
は同じく白金粒径の変化を示した図、第7図は実施例4
における塩化白金酸濃度と白金量の関係、第8図は同じ
し白金粒径の変化を示し次回、第9図は実施例5におけ
るス・母ツタ処理前の黒鉛繊維のラマンシフ   ト、
第10図は同じくスフ9ツタ処理後の黒鉛繊維のラマン
シフト、第11図は同じく浸漬時間と重量変化率の関係
を示す図、第12図は実施例6における酸処理前の黒鉛
繊維のラマンシフト、第13図は同じく酸処理後の黒鉛
繊維のラマンシフト、第14図は同じく浸漬時間と重量
変化率の関係を示した図である。 第1図 よM1イビ、白 1を練旦ANも(ポOべ/7)f3盆
4 (wt%) 第3図 ユS(イと、臼 堂1&3#庭 C瞠0’/l)白盆量
(wt%) ムイL白 tML3農庭(肩Oり1) 012.54 臼會量(畦%) 第7図 第8図 白金t(wt%) 第9図 第10図 うマンレフト(スパッタ蹟) 第12図 第18図 つマンシつ)−(M父8.王!狭) 第11図 3憂 3貴 晴間 (h) 涜J @ M (h)
Figure 1 shows the relationship between the chloroplatinic acid concentration and the amount of platinum in Example 1, Figure 2 also shows the change in platinum particle size, and Figure 3
The figure shows the relationship between chloroplatinic acid concentration and platinum amount in Example 2,
FIG. 4 is a diagram similarly showing the change in platinum particle size, FIG. 5 is a diagram showing the relationship between the chloroplatinic acid concentration and the amount of platinum in Example 3, FIG. 6 is a diagram similarly showing the change in platinum particle size, and FIG. The figure shows Example 4
Figure 8 shows the relationship between the concentration of chloroplatinic acid and the amount of platinum in Example 5, and Figure 9 shows the Raman shift of the graphite fibers before the suction and mother ivy treatment in Example 5.
Figure 10 shows the Raman shift of the graphite fiber after the Sufu9 ivy treatment, Figure 11 shows the relationship between immersion time and weight change rate, and Figure 12 shows the Raman shift of the graphite fiber before the acid treatment in Example 6. FIG. 13 shows the Raman shift of graphite fibers after acid treatment, and FIG. 14 shows the relationship between immersion time and weight change rate. Figure 1 M1 Ibi, White 1 Rendan AN also (Po Obe/7) f3 Bon 4 (wt%) Figure 3 Yu S (I, Usudou 1 &3# Garden Cmori 0'/l) White Tray volume (wt%) Mui L white tML3 farmland (shoulder O 1) 012.54 Mortar volume (furrow %) Fig. 7 Fig. 8 Platinum t (wt%) Fig. 9 Fig. 10 Man left (spatter Figure 12 Figure 18 Tsumanshitsu) - (M father 8. King! narrow) Figure 11 3 sorrow 3 Taka Haruma (h) Sacred J @ M (h)

Claims (1)

【特許請求の範囲】 1、難黒鉛化炭素に一部黒鉛化処理を施して得た電気的
に中性な炭素に、黒鉛層間化合物の形で周期的な正、負
の帯電層を設けたのち触媒金属元素を含むイオンと接触
させることにより、難黒鉛化炭素の表面から前記触媒金
属元素及びその粒子を成長させたことを特徴とする触媒
材料。 2、黒鉛化している電気的に中性な易黒鉛化炭素繊維の
黒鉛C軸に平行な方向に黒鉛層間化合物の形で周期的な
正、負の帯電層を設けたのち触媒金属元素を含むイオン
と接触させることにより、炭素繊維の表面から前記触媒
金属元素及びその粒子を成長させたことを特徴とする触
媒材料。 3、黒鉛化している電気的に中性な易黒鉛化炭素繊維の
表面を物理的、化学的に前処理して部分的に構造欠陥を
導入した特許請求の範囲第2項記載の触媒材料。
[Claims] 1. Electrically neutral carbon obtained by partially graphitizing non-graphitizable carbon is provided with periodic positively and negatively charged layers in the form of a graphite intercalation compound. A catalytic material characterized in that the catalytic metal element and its particles are grown from the surface of non-graphitizable carbon by subsequently contacting it with ions containing the catalytic metal element. 2. After providing periodic positively and negatively charged layers in the form of a graphite intercalation compound in the direction parallel to the graphite C axis of the graphitized electrically neutral easily graphitizable carbon fiber, it contains a catalytic metal element. A catalytic material characterized in that the catalytic metal element and its particles are grown from the surface of carbon fibers by contacting with ions. 3. The catalyst material according to claim 2, wherein the surface of electrically neutral graphitizable carbon fiber is physically and chemically pretreated to partially introduce structural defects.
JP59238752A 1984-11-13 1984-11-13 Catalyst material Pending JPS61118140A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59238752A JPS61118140A (en) 1984-11-13 1984-11-13 Catalyst material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59238752A JPS61118140A (en) 1984-11-13 1984-11-13 Catalyst material

Publications (1)

Publication Number Publication Date
JPS61118140A true JPS61118140A (en) 1986-06-05

Family

ID=17034731

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59238752A Pending JPS61118140A (en) 1984-11-13 1984-11-13 Catalyst material

Country Status (1)

Country Link
JP (1) JPS61118140A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008183508A (en) * 2007-01-30 2008-08-14 Tokyo Institute Of Technology Composite material and its manufacturing method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008183508A (en) * 2007-01-30 2008-08-14 Tokyo Institute Of Technology Composite material and its manufacturing method

Similar Documents

Publication Publication Date Title
Liu et al. Balanced Interfacial Ion Concentration and Migration Steric Hindrance Promoting High‐Efficiency Deposition/Dissolution Battery Chemistry
Wilcox et al. Factors influencing the quality of carbon coatings on LiFePO4
JP5745002B2 (en) Electrode materials with enhanced ion transport properties
Zhang et al. Hierarchical Self‐assembly of Microscale Cog‐like Superstructures for Enhanced Performance in Lithium‐Ion Batteries
EP1343410B1 (en) Branched vapor-grown carbon fiber, electrically conductive transparent composition and use thereof
Frysz et al. Improving the electrochemical behavior of carbon black and carbon filaments by oxidation
KR101609282B1 (en) Carbon coated lithium transition metal phosphate and process for its manufacture
Doi et al. Electrochemical insertion and extraction of lithium ion at uniform nanosized Li4/3Ti5/3O4 particles prepared by a spray pyrolysis method
Wang et al. Fluorinated nanographite as a cathode material for lithium primary batteries
Zhang et al. Tailoring NiO Nanostructured Arrays by Sulfate Anions for Sodium‐Ion Batteries
EP0474183A2 (en) A secondary battery or cell with a non-aqueous electrolyte
Mendoza-Sánchez et al. A study of the charge storage properties of a MoSe2 nanoplatelets/SWCNTs electrode in a Li-ion based electrolyte
Sagues et al. A simple method for producing bio-based anode materials for lithium-ion batteries
Gürsu et al. Preparation of N‐doped graphene powders by cyclic voltammetry and a potential application of them: anode materials of Li‐ion batteries
Li et al. Effect of continuous capacity rising performed by FeS/Fe3C/C composite electrodes for lithium‐ion batteries
DE19722487A1 (en) Graphite particles used in electrode of electrochemical element
US20070275160A1 (en) Carbon Nanostructure-Based Electrocatalytic Electrodes
Wang et al. Improvement of O 2 adsorption for α-MnO 2 as an oxygen reduction catalyst by Zr 4+ doping
JPS62290060A (en) Voltage delay free lithium/carbon fluoride battery
KR20010042303A (en) Lithium battery and electrode
Wang et al. Organic solvothermal method promoted monoclinic Prussian blue as a superior cathode for Na-ion batteries
Ren et al. Electrochemical behavior promotion of polysulfides by cobalt selenide/carbon cloth interlayer in lithium− sulfur batteries
Lee et al. Vapor–Solid Reaction Growth of Rutile TiO2 Nanorods and Nanowires for Li-Ion-Battery Electrodes
Zheng et al. Few‐layer tellurium: cathodic exfoliation and doping for collaborative hydrogen evolution
Sung et al. Graphene‐Assisted Room‐Temperature Synthesis of 2D Nanostructured Hybrid Electrode Materials: Dramatic Acceleration of the Formation Rate of 2D Metal Oxide Nanoplates Induced by Reduced Graphene Oxide Nanosheets