JPS61112391A - Semiconductor laser device - Google Patents

Semiconductor laser device

Info

Publication number
JPS61112391A
JPS61112391A JP59233159A JP23315984A JPS61112391A JP S61112391 A JPS61112391 A JP S61112391A JP 59233159 A JP59233159 A JP 59233159A JP 23315984 A JP23315984 A JP 23315984A JP S61112391 A JPS61112391 A JP S61112391A
Authority
JP
Japan
Prior art keywords
layer
region
type
ingaasp
irregularities
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59233159A
Other languages
Japanese (ja)
Inventor
Akio Oishi
大石 昭夫
Naoki Kayane
茅根 直樹
Shinji Tsuji
伸二 辻
Michiharu Nakamura
中村 道治
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP59233159A priority Critical patent/JPS61112391A/en
Publication of JPS61112391A publication Critical patent/JPS61112391A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/12Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region the resonator having a periodic structure, e.g. in distributed feedback [DFB] lasers

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Optics & Photonics (AREA)
  • Semiconductor Lasers (AREA)

Abstract

PURPOSE:To make coupling of irregularities and electromagnetic waves large and to make the threshold value, at which laser oscillation is started, small, by forming the irregularities in the inside of a region wherein the electromagnetic waves are guided so that the irregularities are separated from an active region. CONSTITUTION:On an N type InP substrate, an N type InGaAsP layer 6, whose lattice alignment is achieved, is formed by a liquid phase epitaxial growing method. Thereafter, grating (periodic irregularities) having a period of 2,340Angstrom is formed on the surface by a well known interference exposing method. On this starting, an N type InGaAsP layer 7, an InGaAsP active layer 8, a P type InGaAsP anti-melt-back layer 9, a P type InP clad layer 4 and P type InGaAsP cap layer 5 are continuously grown by a continuous liquid phase epitaxial growing method. After the growing of the crystal layers, mesa etching is performed by using a stripe shape silicon oxide film. Then embedded growing is performed, a BH structure is formed and ohmic electrodes are formed on the substrate 1 and the layer 5.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は、半導体レーザ装置の構造に関するものである
。更に詳しくはいわゆる分布帰還型の半導体レーザ装置
に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to the structure of a semiconductor laser device. More specifically, the present invention relates to a so-called distributed feedback type semiconductor laser device.

〔発明の背景〕[Background of the invention]

半導体レーザにおいて、電磁波が導波される活性領域ま
たはそれに隣接する領域の屈折率または利得を電磁波の
進行方向に周期的に変化させた、分布帰還型レーザは正
確な波長制御が可能であるなどの利点を有する。これま
での分布帰還型レーザの構造としては、たとえば第1図
に示すようなものが考えられてきた。第1図において、
1はn型InP基板、2はn型I n G a A s
 P層、3はI n G a A s P活性層、4は
p型InP層、5はp型InGaAsPMである。この
図において、活性領域3のバンド幅Et3と光導波領域
2のバンド幅E、□はE。>E、3の関係にある。また
、光のフィードバックは光導波領域2とInP基板の界
面に形成された周期的な凸凹により実現されている。
In semiconductor lasers, distributed feedback lasers, in which the refractive index or gain of the active region where electromagnetic waves are guided or the region adjacent to it, is periodically changed in the direction of propagation of the electromagnetic waves, are capable of precise wavelength control. has advantages. As a structure of a distributed feedback laser, the structure shown in FIG. 1, for example, has been considered so far. In Figure 1,
1 is an n-type InP substrate, 2 is an n-type InGaAs
3 is an InGaAs P active layer, 4 is a p-type InP layer, and 5 is p-type InGaAsPM. In this figure, the bandwidth Et3 of the active region 3 and the bandwidth E of the optical waveguide region 2, □ is E. > E, there is a relationship of 3. Further, optical feedback is realized by periodic irregularities formed at the interface between the optical waveguide region 2 and the InP substrate.

ここで、領域1.領域2および領域3の屈折率n1+ 
n 2およびn3はn 1 < n x < n 3 
の関係にある。したがって、電磁波は主に領域2および
領域3に閉じ込められる。そのため、凹凸の存在する界
面において電磁波が弱くなり、凹凸と電磁波(光)の結
合を大きくとれない欠点がある。領域2を薄くすれば、
結合は大きくなるが、凹凸の部分には非発光再結合中心
が存在し、このため領域2はあまり薄くすることができ
ない。レーザ発振開始のしきい値を低くするためには、
凹凸と光の結合を大きくすることが必要であるが、上記
の理由のため、従来構造ではしきい値を充分に低くする
に困難を伴った。
Here, area 1. Refractive index n1+ of region 2 and region 3
n 2 and n 3 are n 1 < n x < n 3
There is a relationship between Therefore, electromagnetic waves are mainly confined to regions 2 and 3. Therefore, the electromagnetic waves become weak at the interface where the unevenness exists, and there is a drawback that the coupling between the unevenness and the electromagnetic waves (light) cannot be made large. If you make region 2 thinner,
Although the coupling increases, non-radiative recombination centers exist in the uneven portions, and therefore region 2 cannot be made very thin. In order to lower the threshold for starting laser oscillation,
It is necessary to increase the coupling between the unevenness and light, but for the reasons mentioned above, it has been difficult to lower the threshold value sufficiently with the conventional structure.

〔発明の目的〕[Purpose of the invention]

本発明の目的は発振開始のしきい値の低い分布帰還型半
導体レーザ装置を得ることにある。
An object of the present invention is to obtain a distributed feedback semiconductor laser device with a low threshold for starting oscillation.

〔発明の概要〕[Summary of the invention]

上記の目的を達成するために、電磁波が導波される領域
の内部に活性領域から離して凹凸を形成した。このこと
により、凹凸の存在する領域において充分な電磁波の強
度が得られる。したがって、従来構造に較べ、凹凸と電
磁波(光)との結合を大きくとることができる。
In order to achieve the above object, unevenness is formed inside the region where electromagnetic waves are guided away from the active region. As a result, sufficient electromagnetic wave intensity can be obtained in the region where the unevenness exists. Therefore, compared to the conventional structure, it is possible to achieve greater coupling between the unevenness and electromagnetic waves (light).

〔発明の実施例〕 以下、本発明の一実施例を第2図により説明する。第2
図は本発明による注入型レーザのレーザ光の進行方向に
平行な面での断面図である。n型InP基板のLに液相
エピタキシャル成長法で格子整合のとれたn型InGa
AsP層6(λFL”0.9〜1.2μm)を形成した
後、表面に周知の干渉露光法により、周期2340 A
のグレーティング(周期的な凹凸)を形成する。この上
に連続液相エピタキシャル成長法により、n型InGa
AsP層7(λ、L= 1.25−1.45 μm)、
InGaAsP活性JW’8 (λ、、=1.52μm
に設計する)、p型InGaAsPアンチメルトバック
層(λ、L= 1.25〜1.45 μm) 9、p型
InPクラッド層4、P型InGaAsPキャップ層(
λ、L=l、Q 〜1.3μm)5を連続成長する。
[Embodiment of the Invention] An embodiment of the present invention will be described below with reference to FIG. Second
The figure is a cross-sectional view of the injection laser according to the present invention in a plane parallel to the direction in which laser light travels. N-type InGa is lattice-matched by liquid phase epitaxial growth on the L of the n-type InP substrate.
After forming the AsP layer 6 (λFL" 0.9 to 1.2 μm), the surface is patterned with a period of 2340 A by a well-known interference exposure method.
A grating (periodic irregularities) is formed. On top of this, n-type InGa was grown by continuous liquid phase epitaxial growth.
AsP layer 7 (λ, L = 1.25-1.45 μm),
InGaAsP activity JW'8 (λ, , = 1.52 μm
(designed to
λ, L=l, Q ~1.3 μm) 5 are continuously grown.

ただし、λ2&はホトルミネッセンス測定による結晶の
発光波長を示す。InGaAsP層はこの発光波長とな
る組成に調整する。ここで添加不純物としては層61層
7ではTe、層91層49層5ではZnを用いた。層の
厚さは、層6は0.1 μm以上・層7はQ・1〜0・
3μm・層8は0・1〜     、・、0.2μm、
層9は0.1 μm以上1層4は1μm以上1層5は0
.1  μm以上を多用する。以上の結晶層を成長の後
、ストライプ状のシリコン酸化膜を用い、メサエッチン
グを行なった後に、埋め込み成長を行い、BH槽構造形
成した。さらに基板1および層5にそれぞれオーミック
電極を形成した。
However, λ2& indicates the emission wavelength of the crystal measured by photoluminescence measurement. The composition of the InGaAsP layer is adjusted to provide this emission wavelength. Here, as the added impurity, Te was used in the layer 61 layer 7, and Zn was used in the layer 91 layer 49 layer 5. The layer thickness is 0.1 μm or more for layer 6 and Q for layer 7.
3 μm・Layer 8 is 0.1 to 0.2 μm,
Layer 9 is 0.1 μm or more 1 layer 4 is 1 μm or more 1 layer 5 is 0
.. Frequently use 1 μm or more. After growing the above crystal layer, mesa etching was performed using a striped silicon oxide film, and then buried growth was performed to form a BH tank structure. Furthermore, ohmic electrodes were formed on each of the substrate 1 and the layer 5.

第1図に示した従来構造では、その多層成長方向ノ\の
屈折率分布および電界強度は各々第3図(a)および(
b)のようになる。同図における一点鎖線は回折格子(
diffraction grating ;単にグレ
ーティングと略称する)の位置を示している。
In the conventional structure shown in Fig. 1, the refractive index distribution and electric field strength in the multilayer growth direction are shown in Figs. 3(a) and (), respectively.
b) The dashed-dotted line in the figure is the diffraction grating (
The position of the diffraction grating (simply abbreviated as grating) is shown.

第3図(a)に引き出し線をもって示したのは第2図に
図示し、た半導体層に対応している。これに対して1本
実施例においては、層6がInGaAsP層であるため
、多層成長方向への屈折率分布および電界強度は各々第
4図(a)および(b)の様になる。そのため、層7の
厚さが同じならば、グレーティングが存在する層6と層
7の境界における電界強度は、従来構造より大きくなり
、従来構造に較べ強い光とグレーティングの結合か得ら
れる。
The lead lines shown in FIG. 3(a) correspond to the semiconductor layers shown in FIG. 2. On the other hand, in this embodiment, since layer 6 is an InGaAsP layer, the refractive index distribution and electric field strength in the multilayer growth direction are as shown in FIGS. 4(a) and 4(b), respectively. Therefore, if the thickness of layer 7 is the same, the electric field strength at the boundary between layer 6 and layer 7 where the grating is present is greater than that of the conventional structure, and a stronger coupling between light and the grating can be obtained than in the conventional structure.

その結果、従来構造に較べ約30%しきい値が低減され
た。本実施例においてグレーティングか形成される層6
の組成はλ、L=0.9〜1.2μmに限らず1層7と
組成の異なるInGaAsPまたはInGaAsならば
同様の効果が得られる。
As a result, the threshold value was reduced by about 30% compared to the conventional structure. Layer 6 where a grating is formed in this embodiment
The composition of the layer 7 is not limited to λ, L=0.9 to 1.2 μm, and the same effect can be obtained if the layer 7 is InGaAsP or InGaAs having a different composition.

また本発明によれば、第5図のような構成も実現できる
。第5図は本発明による注入型レーザの別な例の断面図
である。作製方法は第3図の場合と同様である。ただし
、1はn型InP基板、10はn型のInGaAsPJ
WあるいはInGaAs層、11はn型InP層、12
は十分に薄いInGaAsP活性層、4はp型InP層
、5はp型InGaAsPキャップ層である。本実施例
においてグレーティングはWjtoと層11の境界に形
成されている。本実施例においては光のガイド層は存在
しない。しかし、活性層が充分に薄い(0,1〜0.2
μm)ため、電磁波は活性層外にしみ出しグレーティン
グと結合する。従来構造では、活性層がInP層よりバ
ンド幅の小さい充ガイド層ど接している。本発明によれ
ば、従来用いられている光ガイド層よりバンド幅の大き
いInP層が活性層と接しているため、注入されたキャ
リアをより有効に活性層内に閉じ込めることができる。
Further, according to the present invention, a configuration as shown in FIG. 5 can also be realized. FIG. 5 is a sectional view of another example of an injection laser according to the present invention. The manufacturing method is the same as that shown in FIG. However, 1 is an n-type InP substrate, 10 is an n-type InGaAsPJ
W or InGaAs layer, 11 is n-type InP layer, 12
4 is a sufficiently thin InGaAsP active layer, 4 is a p-type InP layer, and 5 is a p-type InGaAsP cap layer. In this embodiment, the grating is formed at the boundary between Wjto and layer 11. In this example, there is no light guide layer. However, the active layer is sufficiently thin (0.1~0.2
μm), the electromagnetic waves seep out of the active layer and couple with the grating. In the conventional structure, the active layer is in contact with a charging guide layer whose bandwidth is smaller than that of the InP layer. According to the present invention, since the InP layer, which has a wider band width than the conventionally used optical guide layer, is in contact with the active layer, injected carriers can be more effectively confined within the active layer.

このことにより、しきい値を低減することができる。This allows the threshold value to be reduced.

さらに本発明によれば、第6図の構成にしても良い。す
なわち、InP基板1上に活性層よりバンド幅の広いI
nGaAsP層7、InP層11を設け、inP層11
にグレーティングを形成する。
Further, according to the present invention, the configuration shown in FIG. 6 may be adopted. That is, I, which has a wider band width than the active layer, is formed on the InP substrate 1.
An nGaAsP layer 7 and an InP layer 11 are provided, and the inP layer 11
forming a grating.

その上にInGaAsP層7、InGaAsP活性層3
、アンチメルトバック層9.InPクラッド層4、In
GaAsPキャップ層5を設ける。この構造では、In
GaAsP層7が光ガイド層となり、光ガイド層内にあ
るグレーティングと光の強い結合が得られる。
On top of that, an InGaAsP layer 7, an InGaAsP active layer 3
, anti-meltback layer9. InP cladding layer 4, In
A GaAsP cap layer 5 is provided. In this structure, In
The GaAsP layer 7 serves as a light guide layer, and strong coupling of light with the grating within the light guide layer is obtained.

以上の例は活性層の下側(基板側)にグレーティングを
形成した場合を示したが、同様の効果は活性層の上側に
グレーティングを形成した第7図および第8図の構造で
も得られる。第7図はグレーティングが活性層の上部に
ある点を除いては第2図の場合と同じである。また第8
図もグレーティングが上部にある点を除いては第5図の
場合と同じである。
Although the above example shows the case where the grating is formed below the active layer (on the substrate side), similar effects can also be obtained with the structures shown in FIGS. 7 and 8 where the grating is formed above the active layer. FIG. 7 is the same as FIG. 2 except that the grating is on top of the active layer. Also the 8th
The figure is the same as that of FIG. 5, except that the grating is at the top.

以上の構成を実現するためには、InP基板の導伝型は
n型である必要はなく、n型基板を用いでも良い。n型
基板を用いた場合には活性層より下側(基板側)の層は
n型となり、上側の層はn型となる。これに対してn型
基板を用いた場合には活性層より下側の層はn型となり
、上側の層はn型となる。
In order to realize the above configuration, the conductivity type of the InP substrate does not need to be n-type, and an n-type substrate may be used. When an n-type substrate is used, the layer below the active layer (on the substrate side) becomes n-type, and the layer above becomes n-type. On the other hand, if an n-type substrate is used, the layers below the active layer will be n-type, and the layers above will be n-type.

以上、I nP、InGaAsPを用いた例を述へだが
、本発明は他の材料系1例えばGaAs。
Examples using InP and InGaAsP have been described above, but the present invention also applies to other materials such as GaAs.

AlllGaAsを用いた半導体レーザにも適用可能で
ある。
It is also applicable to a semiconductor laser using AllGaAs.

実施例では横モード制御構造としてBH構造を用いたが
、他の構造でも良い。
In the embodiment, a BH structure was used as the transverse mode control structure, but other structures may be used.

また、これまでの説明では注入型レーザを中心としたが
、本発明はキャリアの励起方法に依存せず、他の励起方
法、例えば光励起、でも同じ効果が得られる。グレーテ
ィングの周期は必らずしも      )゛隼回周期で
ある必要はなく、周期を少しずつずらしたチャープトゲ
レーティングなどに対しても、本発明は効果がある。
Further, although the explanation so far has focused on injection lasers, the present invention does not depend on the carrier excitation method, and the same effect can be obtained with other excitation methods, such as optical excitation. The period of the grating does not necessarily have to be a 2000 period, and the present invention is also effective for chirp-to-gelating where the period is slightly shifted.

〔発明の効果〕〔Effect of the invention〕

以上説明した様に1本発明は電磁波が導波される領域の
内部に規則的な凹凸を設けることにより、従来の光閉じ
込め領域の表面に規則的な凹凸を設ける方法に較べ、電
磁波と規則的凹凸との結合を大きくできる。そのため、
レーザ発振開始のしきい値を小さくする効果がある6
As explained above, the present invention provides regular unevenness inside the region where electromagnetic waves are guided, thereby making it possible to improve the relationship between electromagnetic waves and The connection with unevenness can be increased. Therefore,
Effective in reducing the threshold for starting laser oscillation6

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来構造の半導体レーザの断面図、第2図は本
発明による半導体レーザの断面図、第3図は従来構造に
おける成長方向の屈折率と電界強度の分布を示す図、第
4図は本発明における成長方向の屈折率と電界強度の分
布を示す図、第5図〜第8図は本発明にて半導体レーザ
の例を示す断面図である。 1− r n P基板、2− I nG a AsP光
ガイド層、3・・・InGaAsP活性層、4・・・丁
nPクラッド層、5− jnG a AsPキャップ層
、6− I nG a AsPまたはInGaAs層、
7− I nG a AsP層、8−・・InGaAs
P活性層、9 ・・InGaAsPアンチメルトバック
層、10・・・InGaAsPまたはInGaAs層、
1l−InP層、12=4nGaAsP■ 1  回 Nz  図 Z4 団 罵 5 図
Figure 1 is a cross-sectional view of a semiconductor laser with a conventional structure, Figure 2 is a cross-sectional view of a semiconductor laser according to the present invention, Figure 3 is a diagram showing the distribution of refractive index and electric field strength in the growth direction in the conventional structure, and Figure 4. 1 is a diagram showing the distribution of refractive index and electric field strength in the growth direction in the present invention, and FIGS. 5 to 8 are cross-sectional views showing examples of semiconductor lasers in the present invention. 1- rnP substrate, 2- InGaAsP light guide layer, 3... InGaAsP active layer, 4... nP cladding layer, 5- jnGaAsP cap layer, 6- InGaAsP or InGaAs. layer,
7-InGaAsP layer, 8-...InGaAs
P active layer, 9... InGaAsP anti-meltback layer, 10... InGaAsP or InGaAs layer,
1l-InP layer, 12=4nGaAsP ■ 1 time Nz Figure Z4 Group abuse 5 Figure

Claims (1)

【特許請求の範囲】[Claims] 電磁波が導波される第1の領域の一部に、少なくとも第
2の領域と利得の存在する第3の領域を設け、第1の領
域中の第2および第3の領域を除いた領域を第4の領域
とし、第2の領域に接する第4の領域は当該第2の領域
とは異なる屈折率となるように構成し、第1の領域の内
部で第2の領域に接する第4の領域と第2の領域との境
界のうち少なくとも一方の境界に規則的な凹凸を設けた
ことを特徴とする半導体レーザ装置。
At least a second region and a third region where a gain exists are provided in a part of the first region in which the electromagnetic waves are guided, and the region in the first region excluding the second and third regions is provided. The fourth region is configured to have a refractive index different from that of the second region, and the fourth region that is in contact with the second region is configured to have a refractive index different from that of the second region. A semiconductor laser device characterized in that regular irregularities are provided on at least one boundary between a region and a second region.
JP59233159A 1984-11-07 1984-11-07 Semiconductor laser device Pending JPS61112391A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59233159A JPS61112391A (en) 1984-11-07 1984-11-07 Semiconductor laser device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59233159A JPS61112391A (en) 1984-11-07 1984-11-07 Semiconductor laser device

Publications (1)

Publication Number Publication Date
JPS61112391A true JPS61112391A (en) 1986-05-30

Family

ID=16950642

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59233159A Pending JPS61112391A (en) 1984-11-07 1984-11-07 Semiconductor laser device

Country Status (1)

Country Link
JP (1) JPS61112391A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005512308A (en) * 2001-11-16 2005-04-28 マサチューセッツ・インスティテュート・オブ・テクノロジー Nanocrystal structure

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005512308A (en) * 2001-11-16 2005-04-28 マサチューセッツ・インスティテュート・オブ・テクノロジー Nanocrystal structure
JP4703112B2 (en) * 2001-11-16 2011-06-15 マサチューセッツ インスティテュート オブ テクノロジー Nanocrystal structure

Similar Documents

Publication Publication Date Title
JP2941805B2 (en) Solid-state optical waveguide, laser using the optical waveguide, and method for manufacturing optical waveguide and laser
JPH0738204A (en) Semiconductor optical device and manufacture thereof
JPH02205092A (en) Semiconductor device laser and its manufacture
JP4690515B2 (en) Optical modulator, semiconductor optical device, and manufacturing method thereof
JPH08213703A (en) Laser diode, manufacture thereof, and optical communication system utilizing the laser diode
JPS58216486A (en) Semiconductor laser and manufacture thereof
US6374028B2 (en) Ridge waveguide-type optical semiconductor device and method of fabricating the same
JPH01319986A (en) Semiconductor laser device
JPH1197799A (en) Fabrication of semiconductor device
JP4097950B2 (en) Distributed feedback laser device, semiconductor optical device, and distributed feedback laser device manufacturing method
JPS63265485A (en) Semiconductor laser
JPS61112391A (en) Semiconductor laser device
JP2003140100A (en) Waveguide type optical element, integrated waveguide element using it, and its manufacturing method
JP2542570B2 (en) Method for manufacturing optical integrated device
JPH02212804A (en) Optical semiconductor element and production thereof
JPS61220389A (en) Integrated type semiconductor laser
JPS6354234B2 (en)
JPH0582888A (en) Distributed feedback semiconductor laser
JPS5858783A (en) Semiconductor laser
JPS6292385A (en) Semiconductor laser
JP2687404B2 (en) Distributed feedback semiconductor laser
JPH084178B2 (en) Method for manufacturing distributed Bragg reflection semiconductor laser
JPH09260782A (en) Selectively grown waveguide type optical control element and manufacturing method thereof
JPS60165782A (en) Semiconductor laser
JPH04120786A (en) Quantum well semiconductor laser element