JPS6097561A - Solid electrolyte secondary battery - Google Patents

Solid electrolyte secondary battery

Info

Publication number
JPS6097561A
JPS6097561A JP58205270A JP20527083A JPS6097561A JP S6097561 A JPS6097561 A JP S6097561A JP 58205270 A JP58205270 A JP 58205270A JP 20527083 A JP20527083 A JP 20527083A JP S6097561 A JPS6097561 A JP S6097561A
Authority
JP
Japan
Prior art keywords
solid electrolyte
polyacetylene
solvent
electrode
battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58205270A
Other languages
Japanese (ja)
Inventor
Kazunori Fujita
一紀 藤田
Shinpei Matsuda
松田 臣平
Shigeoki Nishimura
西村 成興
Noboru Ebato
江波戸 昇
Hiroyuki Sugimoto
博幸 杉本
Atsuko Toyama
遠山 厚子
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Resonac Holdings Corp
Original Assignee
Showa Denko KK
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Denko KK, Hitachi Ltd filed Critical Showa Denko KK
Priority to JP58205270A priority Critical patent/JPS6097561A/en
Publication of JPS6097561A publication Critical patent/JPS6097561A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0565Polymeric materials, e.g. gel-type or solid-type
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Chemical & Material Sciences (AREA)
  • Electrochemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Dispersion Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PURPOSE:To make high current density discharge possible by arranging solid electrolyte on surfaces and in pores of electrode active material. CONSTITUTION:Solid electrolyte is placed on surfaces and in pores of electrode active material. For example, polyethylene oxide and LiBF4 are dissolved in acetonitrile solvent, and gelled polyacetylene is immersed overnight in this solution. Refrigerant and polyacetylene are separated, and solvent in the polyacetylene is removed in a vacuum and solid electrolyte is held in the fine pores of polyacetylene 2 and 4. Polyacetylene obtained is pressed to make film. Solvent of solution prepared by dissolving polyethylene oxide and LiBF4 in acetonitrile solvent is vaporized to prepare 0.2-0.3mm. thick solid electrolyte 3. Solid electrolyte 3 is combined with polyacetylene electrodes 2 and 4 to form a battery.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は主鎖に共役二重結合を有する高分子化合、1勿
を成極とし、固体電解質を電解質とする充放電=I能な
電池に係り、特に高い電流密度のとれる固体1解*に関
する。
[Detailed Description of the Invention] [Field of Application of the Invention] The present invention relates to a battery capable of charging and discharging using a polymer compound having a conjugated double bond in its main chain, polarization using a monomer, and a solid electrolyte as an electrolyte. In particular, it relates to a solid-state solution* that can provide a high current density.

「鎚明の背合) 主鎖に共役二重結合を有する高分子化合物の代表例とし
てポリアセチレンがある。ポリアセチレンは電気化学的
にClO4−、BF4”、 PF5− 、 ASFa−
などのアニオンを、またアルカリ金属や(04H9) 
4 N”などのカチオ/がドーピングされp型及びn型
の導電性ポリアセチレンを作る(J、 C,S、Che
m。
Polyacetylene is a typical example of a polymer compound having a conjugated double bond in its main chain.Polyacetylene is electrochemically ClO4-, BF4'', PF5-, ASFa-
anions such as alkali metals and (04H9)
4 N” and other cations are doped to make p-type and n-type conductive polyacetylene (J, C, S, Che
m.

Comm、 (1979)Pp594−595; C&
FN、 26.39(1981))。またドーピングさ
れたポリアセチレンはアニオン及びカチオンを電気化学
的にアンド−ピングすることができ、この反応を利用し
た充放電可能な電池が報告されている(J、 C,S。
Comm, (1979) Pp594-595; C&
FN, 26.39 (1981)). Furthermore, doped polyacetylene can electrochemically and-dope anions and cations, and chargeable and dischargeable batteries using this reaction have been reported (J, C, S).

Chem、 Comm、、 (1981)I)i)31
7〜319)。本°1池の特徴は軽量かつエネルギー密
度が大きく、かつ出力密度も従来の二次電池よp大きい
Chem, Comm, (1981) I)i) 31
7-319). The characteristics of this single battery are that it is lightweight and has a high energy density, and its output density is also higher than that of conventional secondary batteries.

電池の系として■正極及び負極にポリアセチレンを使用
し、イオンのドーピングが充電、アンド−ピングが放電
反応であるもの、■正極にポリアセチレン、負極にli
などのアルカリ金属を用い、ドーピング並びにアルカリ
金属の析出が光電反応−P水ス、Ltrz請2/’P虫
加1−1表 1上述のいずれの゛電池においても電解質
には液体が用いられておシ、例えば■の電池ではL I
 Clchをプロピレンカーボネートとジメトキシエタ
ンの混合溶媒に溶解させたものが使用されている。液体
4解質は導′4率が高く、よい電池性能が得られる反面
、シール性による液漏れがあり、電池の信頼性に問題が
ある。このような問題を解決するため1匡解質に固体電
解質を使用する二次電池が検討されている[Polym
er、22.1454〜1456(1981)]、本磁
性は第1図に概略を示すように、1の正極集成体と2の
正極ポリアセチレンからなる正極、4の負極集成体と5
の負極ポリアセチレンからなる負極及びポリエチレンオ
キシドとNaIの混合物からなる3の固体゛電解質より
構成されている。この電池では前述の液漏れの心配はな
いが、充pH,放電の電流密度が高くとれないという新
たな問題が生じ、ひいては本電池の応用範囲が1UIJ
限されることになる。
As a battery system, ■ polyacetylene is used for the positive and negative electrodes, and ion doping is a charging reaction, and undoping is a discharging reaction; ■ polyacetylene is used for the positive electrode, and Li is used for the negative electrode.
Doping and precipitation of alkali metals are carried out using alkali metals such as photoelectric reactions. For example, in the case of ■ battery, L I
A solution of Clch in a mixed solvent of propylene carbonate and dimethoxyethane is used. Although the liquid 4 electrolyte has a high conductivity and can provide good battery performance, there is a problem with the reliability of the battery due to leakage due to the sealing properties. In order to solve these problems, secondary batteries that use a solid electrolyte as one solution are being considered [Polymer
er, 22.1454-1456 (1981)], as schematically shown in FIG.
The negative electrode consists of a negative electrode made of polyacetylene and a solid electrolyte made of a mixture of polyethylene oxide and NaI. Although this battery does not have the above-mentioned concern about liquid leakage, a new problem arises in that the charging pH and discharging current density cannot be maintained high, and as a result, the application range of this battery is limited to 1UIJ.
It will be limited.

〔発明の目的〕[Purpose of the invention]

本発明の目的は正極及び負極に共役二重結合を有する高
分子化合物、電解質に固体電解質を用いる・′電池にお
いて、高い電流密度で使用できる固体電解質二次電池を
提供することにある。
An object of the present invention is to provide a solid electrolyte secondary battery that can be used at high current density in a battery that uses a polymer compound having a conjugated double bond for the positive and negative electrodes and a solid electrolyte for the electrolyte.

〔発明の概要〕[Summary of the invention]

41図に示すように従来の固体電解質二次電池では電極
であるポリアセチレンj換と固体電解質はそれぞれ独立
にあり、電池構成時にそれぞれが密着された状態となる
。それゆえ電極と固体電解質の接触面をみると、ポリア
セチレン膜の表面のみに固体電解質が接しておシ、ドー
ピングされるイオンの固体′電解質からのポリアセチレ
ンへの移動は非常に狭い面積で行われる。すなわち゛電
極反応の活性点が少なく、電流密度がとれないことにな
る。
As shown in Fig. 41, in a conventional solid electrolyte secondary battery, the polyacetylene J electrode and the solid electrolyte are each independent, and they are brought into close contact with each other when the battery is constructed. Therefore, when looking at the contact surface between the electrode and the solid electrolyte, the solid electrolyte is in contact only with the surface of the polyacetylene membrane, and the transfer of doped ions from the solid electrolyte to the polyacetylene takes place in a very narrow area. In other words, there are fewer active sites for electrode reactions, and current density cannot be maintained.

本発明者らは電極活物質に使われるポリアセチレン膜の
かさ密度が0.15〜0.9にわたり、かつ比表面積が
50〜xoom”/gあることに着目した。すなわち、
これらのことからポリアセチレンj摸に微細孔があり、
この部分にも固体゛電解質を存在させることが必要で、
これによシミ極反応の活性点を増やし、高い電流密度が
とれるという結論に至った。
The present inventors focused on the fact that the bulk density of the polyacetylene film used as the electrode active material ranges from 0.15 to 0.9, and the specific surface area ranges from 50 to xoom"/g. That is,
For these reasons, there are micropores in the polyacetylene model.
It is necessary to have a solid electrolyte in this part as well.
They concluded that this increases the number of active sites for the stain electrode reaction and allows for higher current densities.

〔発明の実施例〕[Embodiments of the invention]

実施例1 アセトニ) l)ル溶媒に分子量5000〜7000の
ポリエチレンオキシド(以降PEOと記す。)とLIB
F4 tそのモル比4〜5:1になるように溶解し、こ
の溶媒にゲル状のポリアセチレンを入れ一晩放置した。
Example 1 Polyethylene oxide (hereinafter referred to as PEO) with a molecular weight of 5000 to 7000 and LIB in acetonyl solvent
F4t was dissolved at a molar ratio of 4 to 5:1, and gel-like polyacetylene was added to this solvent and left overnight.

溶媒とポリアセチレンを分離し、次いでポリアセチレン
中のアセトニトリル溶媒を真空下で除去し、ポリアセチ
レンの微細孔に固体電解質を存在させた。得られたポリ
アセチレンをおおよそ400Kg/crn2の圧力で圧
縮成形し、フィルム状とした。電極としてのポリアセチ
レンは直径10配とし、厚みは0.35 陥であった。
The solvent and polyacetylene were separated, and then the acetonitrile solvent in the polyacetylene was removed under vacuum, leaving the solid electrolyte present in the micropores of the polyacetylene. The obtained polyacetylene was compression molded at a pressure of approximately 400 Kg/crn2 to form a film. The polyacetylene used as an electrode had a diameter of 10 and a thickness of 0.35 mm.

一方、先のアセトニトリル溶媒にPEOとLjBF4 
を溶解させたものの溶媒を揮散させ、厚さ0.2〜0.
3 rtanの固体電解質を調製し、前述のポリアセチ
レン電価を用い、第3図に示す如くの電池を波設した一 本電池を温度40Cに保ち、定這流で充放電試験を行っ
た。第4図の(a)に電流密度とクーロン効率(充dで
入った電気量と放電で出た山、気量の比)の関係を示す
。クーロン効率が50チになる電流密度はZ5mA/C
m!であった。
On the other hand, PEO and LjBF4 were added to the acetonitrile solvent.
The solvent of the solution is evaporated, and the thickness is 0.2 to 0.
A solid electrolyte of 3 rtan was prepared, and using the above-mentioned polyacetylene electric potential, a single battery made of corrugated batteries as shown in FIG. 3 was maintained at a temperature of 40 C, and a charge/discharge test was conducted at a steady flow. FIG. 4(a) shows the relationship between current density and Coulombic efficiency (the ratio of the amount of electricity introduced during charging to the amount of air released during discharge). The current density at which the coulombic efficiency becomes 50 inches is Z5mA/C.
m! Met.

実施例2 実施例1のポリアセチレン電極調製において、ポリアセ
チレンへの固体電解質を保持させる操作を3回行った。
Example 2 In preparing the polyacetylene electrode in Example 1, the operation of retaining the solid electrolyte in polyacetylene was performed three times.

すなわち含浸−溶媒除去の操作を3回行った。その後の
電極調製並びに′@池構成は実施1511と同様に行っ
た。電池を構成した後、この電池を一旦、温度を60C
X 1時間保ち、電極−固定電解質の一体化をはかった
That is, the operation of impregnation and solvent removal was performed three times. The subsequent electrode preparation and pond configuration were carried out in the same manner as in Example 1511. After constructing the battery, heat the battery to 60C.
The mixture was maintained for 1 hour to integrate the electrode and the fixed electrolyte.

本電池を温度40Cに保ち、定″屯流で充放電試験を行
った。第4図の(b)に電流密度とクーロン効率の関係
を示す。クーロン効率が50チになるfi電流密度3.
8〜4mA/1yn2であった。本固体′覗解質二次電
池ではポリアセチレン電極は第2図に示すごとく、ポリ
アセチレン膜の微細孔に固体電解質を十分に存在させる
ことができ、電流密度を大きくとることができる。
This battery was maintained at a temperature of 40 C and a charge/discharge test was conducted at a constant tonne current. Figure 4 (b) shows the relationship between current density and Coulombic efficiency. fi current density 3.
It was 8-4 mA/1yn2. In the present solid-state electrolyte secondary battery, the polyacetylene electrode allows a sufficient amount of solid electrolyte to be present in the micropores of the polyacetylene membrane, and a large current density can be obtained.

(比較例1) ゲル状ポリアセチレンの圧縮成形を実施例1と同様に行
い、直径10門、厚み0.2 mmのポリアセチレン眠
極を調製した。一方、アセトニトリルにPBOとL i
 B F4 を溶解させたもののアセトニトリル溶媒を
揮散させ、厚み012mの固体電解質を調製した。これ
らを用いて第1図に示す如く電池を構成し、温度を40
tl’に保ち、定電流充放電実験を行った。電流密度と
クーロン効率の関係を第4図の(C)に示す。クーロン
効率が50%になる電流密度は1mA/cm2であった
(Comparative Example 1) Compression molding of gel-like polyacetylene was performed in the same manner as in Example 1 to prepare polyacetylene sleep electrodes having a diameter of 10 and a thickness of 0.2 mm. On the other hand, PBO and Li in acetonitrile
A solid electrolyte having a thickness of 012 m was prepared by volatilizing the acetonitrile solvent in which B F4 was dissolved. Using these, a battery was constructed as shown in Figure 1, and the temperature was set to 40
A constant current charging/discharging experiment was performed while maintaining the voltage at tl'. The relationship between current density and Coulombic efficiency is shown in FIG. 4(C). The current density at which the Coulombic efficiency was 50% was 1 mA/cm2.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、ポリアセチレン電極の微細孔に固定電
解質を保持し、かつ電極と固体電解質を一体化すること
によシ、1池の充放電時の電流密度を大きくとれる効果
がある。
According to the present invention, by holding a fixed electrolyte in the micropores of the polyacetylene electrode and integrating the electrode and the solid electrolyte, the current density during charging and discharging of one cell can be increased.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の固体電解質二次電池のイ1イ成を示す概
略断面図、第2図はポリアセチレン電極の微細孔に固体
電解質を保持させた状態を示す概略断面図、第3図は電
極と固体電解質を一体化した電池の構成図を示す概略断
面図、第4図は本発明の実施列および比較例についてク
ーロン効率と電流密度との関係を示す特性図である。 1・・・正極集電体、2・・・正極、3・・・固体電解
質、4% l 図 12図 篤3図 箪4図 第1頁の続き 0発 明 者 江 波 戸 昇 日立市幸町3丁目所内 0発 明 者 杉 本 博 幸 日立市幸町3丁目所内 0発 明 者 遠 山 厚 子 日立市幸町3丁目所内
Figure 1 is a schematic cross-sectional view showing the formation of a conventional solid electrolyte secondary battery, Figure 2 is a schematic cross-sectional view showing the solid electrolyte held in the micropores of the polyacetylene electrode, and Figure 3 is the electrode. FIG. 4 is a schematic cross-sectional view showing the configuration of a battery that integrates a solid electrolyte and a solid electrolyte, and FIG. 4 is a characteristic diagram showing the relationship between Coulomb efficiency and current density for embodiments of the present invention and comparative examples. 1...Positive electrode current collector, 2...Positive electrode, 3...Solid electrolyte, 4% l Fig. 12 Fig. Atsushi 3 Fig. 4 Fig. 1 continued from page 0 Inventor Noboru Ebato Ichiyuki Hitachi Inventor Hiroyuki Sugimoto 3-chome, Saiwai-cho, Hitachi 0 Inventor Atsuko Toyama, 3-chome, Saiwai-cho, Hitachi

Claims (1)

【特許請求の範囲】 1、正極、負極および電解質を含み、主鎖に共役二重結
合を有する高分子化合物または該高分子化合物にドーパ
ントをドープして得られる導電性化合物を′IIL極活
物極上物質二次電池において、該電極活物質の表面及び
細孔に固体電解質を存在させたことを特徴とする固体電
解質二次電池。 λ 特許請求の範囲第1項記載の固体電解質二次1に池
において、前記導電性化合物の電極活物質と前記固体電
解質とが一体化されていることを特徴とする固体電解質
二次電池。
[Claims] 1. A polymer compound containing a positive electrode, a negative electrode, and an electrolyte and having a conjugated double bond in its main chain, or a conductive compound obtained by doping the polymer compound with a dopant, is referred to as an 'IIL electrode active material. A solid electrolyte secondary battery characterized in that a solid electrolyte is present on the surface and pores of the electrode active material in a superlative material secondary battery. λ A solid electrolyte secondary battery according to claim 1, wherein the electrode active material of the conductive compound and the solid electrolyte are integrated.
JP58205270A 1983-10-31 1983-10-31 Solid electrolyte secondary battery Pending JPS6097561A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58205270A JPS6097561A (en) 1983-10-31 1983-10-31 Solid electrolyte secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58205270A JPS6097561A (en) 1983-10-31 1983-10-31 Solid electrolyte secondary battery

Publications (1)

Publication Number Publication Date
JPS6097561A true JPS6097561A (en) 1985-05-31

Family

ID=16504193

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58205270A Pending JPS6097561A (en) 1983-10-31 1983-10-31 Solid electrolyte secondary battery

Country Status (1)

Country Link
JP (1) JPS6097561A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61281458A (en) * 1985-05-07 1986-12-11 Sanyo Electric Co Ltd Nonaqueous electrolyte secondary battery
JPH01112719A (en) * 1987-10-27 1989-05-01 Kuraray Co Ltd Electric double-layer capacitor
JPH01503741A (en) * 1987-06-18 1989-12-14 ソシエテ・ナシオナル・エルフ・アキテーヌ Method of manufacturing an electrochemical subassembly comprising an electrode and an electrolyte, and a subassembly manufactured by the method
JPH01319268A (en) * 1988-06-21 1989-12-25 Ricoh Co Ltd Secondary battery
KR100430767B1 (en) * 2001-11-13 2004-05-10 한국과학기술연구원 A composite electrode, fabrication method thereof and lithium batteries comprising the same
CN112436108A (en) * 2020-11-30 2021-03-02 蜂巢能源科技有限公司 Pole piece for solid-state battery and preparation method and application thereof

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61281458A (en) * 1985-05-07 1986-12-11 Sanyo Electric Co Ltd Nonaqueous electrolyte secondary battery
JPH01503741A (en) * 1987-06-18 1989-12-14 ソシエテ・ナシオナル・エルフ・アキテーヌ Method of manufacturing an electrochemical subassembly comprising an electrode and an electrolyte, and a subassembly manufactured by the method
JPH01112719A (en) * 1987-10-27 1989-05-01 Kuraray Co Ltd Electric double-layer capacitor
JPH01319268A (en) * 1988-06-21 1989-12-25 Ricoh Co Ltd Secondary battery
KR100430767B1 (en) * 2001-11-13 2004-05-10 한국과학기술연구원 A composite electrode, fabrication method thereof and lithium batteries comprising the same
CN112436108A (en) * 2020-11-30 2021-03-02 蜂巢能源科技有限公司 Pole piece for solid-state battery and preparation method and application thereof

Similar Documents

Publication Publication Date Title
Feuillade et al. Ion-conductive macromolecular gels and membranes for solid lithium cells
KR100281589B1 (en) Blended Polymer Gel Electrolytes
JP4352475B2 (en) Solid electrolyte secondary battery
US3353999A (en) Conductive film battery
CN109411808A (en) Selfreparing gel-type electrolyte composite material
JPS63213266A (en) Solid state battery electrolyte
US6258487B1 (en) Lithium secondary battery including a divided electrode base layer
US20030027045A1 (en) Lithium polymer secondary cell
JPS6097561A (en) Solid electrolyte secondary battery
JP4193248B2 (en) Gel electrolyte battery
JPH10112321A (en) Nonaqueous electrolyte secondary battery and its manufacture
JP2553560B2 (en) Non-aqueous electrolyte secondary battery
JPH07240233A (en) High polymer solid electrolyte lithium secondary battery
JP3276741B2 (en) Non-aqueous electrolyte secondary battery
JPH10112305A (en) Nonaqueous electrolyte secondary battery and its manufacture
JP2822659B2 (en) Non-aqueous electrolyte secondary battery
Appetecchi et al. Plastic power sources
JP2811389B2 (en) Rechargeable battery
JP3561580B2 (en) Paper battery using solid polymer electrolyte
JP2819201B2 (en) Lithium secondary battery
KR101919746B1 (en) Electrochemical device and manufacturing method of the same
JP3021517B2 (en) Organic electrolyte secondary battery
JPS61281458A (en) Nonaqueous electrolyte secondary battery
JP3249668B2 (en) Lithium secondary battery
JP3144929B2 (en) Non-aqueous electrolyte secondary battery