JP3276741B2 - Non-aqueous electrolyte secondary battery - Google Patents

Non-aqueous electrolyte secondary battery

Info

Publication number
JP3276741B2
JP3276741B2 JP26878993A JP26878993A JP3276741B2 JP 3276741 B2 JP3276741 B2 JP 3276741B2 JP 26878993 A JP26878993 A JP 26878993A JP 26878993 A JP26878993 A JP 26878993A JP 3276741 B2 JP3276741 B2 JP 3276741B2
Authority
JP
Japan
Prior art keywords
battery
aqueous electrolyte
electrolyte secondary
secondary battery
charge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP26878993A
Other languages
Japanese (ja)
Other versions
JPH07122301A (en
Inventor
祐之 村井
正樹 長谷川
修二 伊藤
靖彦 美藤
▲吉▼徳 豊口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP26878993A priority Critical patent/JP3276741B2/en
Publication of JPH07122301A publication Critical patent/JPH07122301A/en
Application granted granted Critical
Publication of JP3276741B2 publication Critical patent/JP3276741B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、高エネルギー密度を有
する非水電解質二次電池に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a non-aqueous electrolyte secondary battery having a high energy density.

【0002】[0002]

【従来の技術】リチウムまたはリチウム化合物を負極と
する非水電解質二次電池は、高電圧で高エネルギー密度
が期待され、盛んに研究がなされている。これまでに、
非水電解質二次電池の正極活物質としてV25、Cr2
5、MnO2、TiS2などが知られている。近年、よ
り高エネルギー密度を有する4ボルト級の非水電解質二
次電池の正極活物質としてLiMn24、LiCo
2、LiNiO2、LiFeO2などが注目されてい
る。特に、LiMn24、LiNiO2やLiFeO2
低コストであることや、原料供給が安定しており、大容
量の非水電解質二次電池の活物質として活発な研究が行
われている。一方、負極活物質としては、安全性やレー
ト特性などの点から金属リチウムに代わり、炭素材料が
注目を集めている。特に、黒鉛化度の進んだ黒鉛粉末
は、高容量で、放電電位が金属リチウムに比べ約0.1
V貴であり、電池電圧の低下が少ないという特徴を有し
ており、盛んに研究がなされている。
2. Description of the Related Art Non-aqueous electrolyte secondary batteries using lithium or a lithium compound as a negative electrode are expected to have a high voltage and a high energy density, and are being actively studied. So far,
V 2 O 5 , Cr 2 as a positive electrode active material of a nonaqueous electrolyte secondary battery
O 5 , MnO 2 , TiS 2 and the like are known. In recent years, LiMn 2 O 4 , LiCo as a positive electrode active material of a 4 volt class non-aqueous electrolyte secondary battery having a higher energy density
O 2 , LiNiO 2 , LiFeO 2 and the like have been attracting attention. In particular, LiMn 2 O 4 , LiNiO 2 and LiFeO 2 are inexpensive, have a stable supply of raw materials, and are being actively studied as active materials for large-capacity non-aqueous electrolyte secondary batteries. On the other hand, as a negative electrode active material, a carbon material has attracted attention instead of lithium metal in terms of safety and rate characteristics. In particular, graphite powder with a high degree of graphitization has a high capacity and a discharge potential of about 0.1 times that of metallic lithium.
It has a feature that it is V-noble and has a small decrease in battery voltage, and has been actively studied.

【0003】[0003]

【発明が解決しようとする課題】ところが、負極に黒鉛
粉末などのリチウムイオンをインターカーレートする物
質を用いた場合、電池の充放電時にリチウムの吸蔵・放
出を伴い、極板の膨張・収縮を繰り返されることによ
り、極板が緩み、負極活物質(炭素材料)間の接触が悪
くなる。その結果、極板の集電能力が低下し、電池の充
放電サイクルに伴う容量低下が生じるという問題点があ
った。この対応策として、負極に繊維状の黒鉛などを添
加し、極板の集電のネットワークを形成し、極板の集電
能力を向上させることも行われているが、かさ高い繊維
状の黒鉛を添加する場合、極板の強度を高めるため、結
着剤の増量が必要となり、電池の絶対容量の低下を招く
などの問題が残されている。さらに、繊維状の黒鉛など
を添加しても、負極板の膨張・収縮を抑えることにはな
らず、長期の充放電サイクルには、いまだ問題が残され
ている。従って、本発明は、負極に炭素材料を用いる非
水電解質二次電池の充放電サイクル特性を向上すること
を目的としている。
However, when a material that intercalates lithium ions, such as graphite powder, is used for the negative electrode, lithium is absorbed and released during charging and discharging of the battery, and the expansion and contraction of the electrode plate is reduced. By being repeated, the electrode plate is loosened, and the contact between the negative electrode active materials (carbon materials) deteriorates. As a result, there has been a problem that the current collecting capability of the electrode plate is reduced, and the capacity is reduced due to the charge / discharge cycle of the battery. As a countermeasure, fibrous graphite and the like are added to the negative electrode to form a current collecting network of the electrode plate to improve the current collecting ability of the electrode plate. In the case of adding, it is necessary to increase the amount of the binder in order to increase the strength of the electrode plate, and there remains a problem that the absolute capacity of the battery is reduced. Further, even if fibrous graphite or the like is added, expansion and shrinkage of the negative electrode plate are not suppressed, and a long charge / discharge cycle still has a problem. Accordingly, an object of the present invention is to improve charge / discharge cycle characteristics of a nonaqueous electrolyte secondary battery using a carbon material for a negative electrode.

【0004】[0004]

【課題を解決するための手段】上記課題を解決するため
に、本発明は、正極板と負極板とセパレータとからなる
極板群の表面を親水処理された熱収縮性樹脂フィルムで
覆うものである。熱収縮性樹脂としては、ポリプロピレ
ン、ポリエチレン、架橋ポリオレフィン、ポリ塩化ビニ
ルあるいはポリエチレンテレフタレートなどを利用する
ことができる。使用する樹脂フィルムとしては、厚みが
20〜45μm、縦方向の収縮率が5〜15%、横方向
の収縮率が40〜60%のものが適している。
In order to solve the above-mentioned problems, the present invention is to cover the surface of an electrode group consisting of a positive electrode plate, a negative electrode plate and a separator with a heat-shrinkable resin film which has been subjected to hydrophilic treatment. is there. As the heat-shrinkable resin, polypropylene, polyethylene, cross-linked polyolefin, polyvinyl chloride, polyethylene terephthalate, or the like can be used. As the resin film to be used, a film having a thickness of 20 to 45 μm, a contraction ratio in the vertical direction of 5 to 15%, and a contraction ratio in the horizontal direction of 40 to 60% is suitable.

【0005】[0005]

【作用】本発明によれば、正極板と負極板とセパレータ
とから成る極板群の表面の一部を熱収縮性樹脂フィルム
で覆い、フィルムを熱収縮させることにより極板群を外
部から物理的に圧迫することができる。従って、電池の
充放電に伴う膨張・収縮による極板の緩みを抑えること
ができ、充放電サイクルに伴う容量低下を抑制すること
ができる。また、前記熱収縮性樹脂フィルムを界面活性
剤で親水処理することにより、電池容量のバラツキを少
なくすることができる。この界面活性剤としては、オレ
イン酸アミド、オレイン酸アミドエチレンオキサイド付
加物、オレイン酸ジエタノールアミドおよびオレイン酸
ジエタノールアミンなどが用いられる。さらに、極板群
がフィルムで覆われていることから、この極板群を電槽
に挿入する際の作業性を向上することができる。
According to the present invention, a part of the surface of an electrode group consisting of a positive electrode plate, a negative electrode plate, and a separator is partially covered with a heat-shrinkable resin film, and the film is thermally shrunk so that the electrode group is physically exposed from the outside. Can be oppressed. Therefore, loosening of the electrode plate due to expansion and contraction due to charge / discharge of the battery can be suppressed, and a decrease in capacity due to a charge / discharge cycle can be suppressed. Further, by subjecting the heat-shrinkable resin film to a hydrophilic treatment with a surfactant, it is possible to reduce variations in battery capacity. As the surfactant, oleic acid amide, oleic acid amide ethylene oxide adduct, oleic acid diethanolamide, oleic acid diethanolamine, and the like are used. Furthermore, since the electrode group is covered with the film, the workability when inserting the electrode group into the battery case can be improved.

【0006】[0006]

【実施例】以下、本発明の実施例を説明する。 [参考例1] 電池を以下の手順により作製した。正極活物質であるL
iMn1.8Co0.24は、Li2CO3とMn34とCo
CO3とを5:6:2のモル比で混合し、900℃で加
熱することによって合成した。さらに、これを100メ
ッシュ以下に分級したものを正極活物質とした。正極活
物質100gに対して導電剤の炭素粉末を10g、結着
剤のポリ4フッ化エチレンの水性ディスパージョンを樹
脂分で20g加え、混練して、ペースト状にし、チタン
の芯材に塗布、乾燥し、圧延して正極とする。負極は、
負極活物質である黒鉛粉末100gに対して20gのポ
リフッ化ビニリデンを加え、さらにジメチルホルムアミ
ドを溶媒として加え、混練して、ペースト状にし、ニッ
ケルの芯材に塗布、乾燥し圧延して作製する。
Embodiments of the present invention will be described below. Reference Example 1 A battery was manufactured according to the following procedure. L which is a positive electrode active material
iMn 1.8 Co 0.2 O 4 is composed of Li 2 CO 3 , Mn 3 O 4 and Co
CO 3 was synthesized by mixing at a molar ratio of 5: 6: 2 and heating at 900 ° C. Furthermore, what classified this into 100 mesh or less was used as the positive electrode active material. To 100 g of the positive electrode active material, 10 g of a carbon powder of a conductive agent and 20 g of an aqueous dispersion of polytetrafluoroethylene as a binder are added, and the mixture is kneaded to form a paste, which is applied to a titanium core material. After drying and rolling, a positive electrode is obtained. The negative electrode is
20 g of polyvinylidene fluoride is added to 100 g of graphite powder as a negative electrode active material, dimethylformamide is added as a solvent, and the mixture is kneaded to form a paste, which is coated on a nickel core material, dried and rolled.

【0007】本参考例で使用した角型電池の縦断面図を
図1に示す。この電池の組み立ては、まず図1のように
多孔性ポリプロピレン製セパレータ3を介して、負極2
と正極1とを外側に負極がくるように配置する。この極
板群に厚さ20μmのポリ塩化ビニル樹脂製の熱収縮チ
ューブ9をかぶせたのち、熱収縮させ、物理的に圧迫さ
せた極板群を作製する。次に、正極の集電板6に接続し
たリードを正極端子に、負極の集電板7に接続したリー
ドを負極端子5にスポット溶接する。これら極板群を縦
110mm、横70mm、幅25mmのケース4に入れ
る。次に、プロピレンカーボネートとエチレンカーボネ
ートとを体積比1:1の割合で混合した溶媒に1モル/
lの過塩素酸リチウムを溶解した電解液を注入し、封口
板8をケースに接着して電池とする。
[0007] The longitudinal section of the prismatic battery used in this reference example shown in FIG. First, as shown in FIG. 1, the battery 2 was assembled through a porous polypropylene separator 3 through a negative electrode 2.
And the positive electrode 1 are arranged so that the negative electrode is on the outside. After covering the electrode group with a heat-shrinkable tube 9 made of polyvinyl chloride resin having a thickness of 20 μm, the electrode group is thermally contracted and physically pressed to produce an electrode group. Next, the lead connected to the positive current collector 6 is spot-welded to the positive terminal, and the lead connected to the negative current collector 7 is spot-welded to the negative terminal 5. These electrode plates are placed in a case 4 having a length of 110 mm, a width of 70 mm and a width of 25 mm. Next, 1 mol / mol was added to a solvent in which propylene carbonate and ethylene carbonate were mixed at a volume ratio of 1: 1.
Then, an electrolyte solution in which 1 l of lithium perchlorate is dissolved is injected, and the sealing plate 8 is adhered to the case to obtain a battery.

【0008】[比較例1]参考 例1の電池製造工程で、熱収縮樹脂製チューブをか
ぶせる工程を除き、その他は参考例1と同様の方法で電
池を作製する。
[0008] In Comparative Example 1 Reference Example 1 cell manufacturing process, except for the step of overlaying a heat-shrinkable resin tube, others to produce a battery in the same manner as in Reference Example 1.

【0009】これら、作製した電池について、充放電電
流2A、充放電電圧範囲4.3V〜3.0Vで充放電サ
イクル試験を行った。その結果を表1に示す。ここで、
容量維持率を次のように定義する。 1サイクル目の放電容量をC0、nサイクル目の放電容
量をCnとすると、容量維持率(%)=(C0−Cn)/
C0 ×100 比較例の電池は、充放電サイクルによる容量低下が激し
く、100サイクルにおける容量維持率は30%であ
る。これに対して、参考例の電池は、比較例の電池に比
べ、サイクル性は非常に良好で、100サイクルにおけ
る容量維持率は95%である。
The batteries thus prepared were subjected to a charge / discharge cycle test at a charge / discharge current of 2 A and a charge / discharge voltage range of 4.3 V to 3.0 V. Table 1 shows the results. here,
The capacity retention rate is defined as follows. Assuming that the discharge capacity at the first cycle is C0 and the discharge capacity at the nth cycle is Cn, the capacity retention ratio (%) = (C0-Cn) /
C0 × 100 In the battery of the comparative example, the capacity greatly decreased due to the charge / discharge cycle, and the capacity retention rate in 100 cycles was 30%. On the other hand, the battery of the reference example has much better cyclability than the battery of the comparative example, and the capacity retention rate at 100 cycles is 95%.

【0010】[0010]

【表1】 [Table 1]

【0011】[実施例] つぎに、参考例1で使用したものと同種の熱収縮性フィ
ルムを親水処理したものを用いた場合について検討し
た。まず、ポリ塩化ビニル樹脂製の熱収縮性チューブを
界面活性剤であるオレイン酸アミドの3重量%エチルア
ルコール溶液に浸漬し、引き上げた後、真空乾燥してエ
チルアルコールを除去する。このように界面活性剤で処
理した熱収縮チューブを用い、参考例1と同様の方法で
電池を100個作製する。
Example 1 Next, the case where a heat-shrinkable film of the same type as that used in Reference Example 1 subjected to a hydrophilic treatment was used was examined. First, a heat-shrinkable tube made of a polyvinyl chloride resin is immersed in a 3% by weight ethyl alcohol solution of oleic acid amide as a surfactant, pulled up, and then dried under vacuum to remove ethyl alcohol. Using the heat-shrinkable tube treated with the surfactant in this manner, 100 batteries are manufactured in the same manner as in Reference Example 1.

【0012】[比較例2]参考 例1で示した方法で100個の電池を作製する。[Comparative Example 2] 100 batteries are manufactured by the method shown in Reference Example 1.

【0013】これらの電池を充放電電流2A、充放電電
圧範囲4.3V〜3.0Vの条件で充放電行い、初期容
量のばらつきを確認した。その結果を表2に示す。極板
群を覆う樹脂フィルムに親水処理が施されていない場
合、電池の初期容量は表2の様に±15%もばらつきが
生じる。ところが、フィルムに親水処理を施すと、電池
容量のばらつきは低下し、5%となる。これは、電池に
注液する際、親水処理を行っていないフィルムを用いた
場合、電極群への電解液の浸透がうまくいかないためと
考えられる。
These batteries were charged / discharged under the conditions of a charge / discharge current of 2 A and a charge / discharge voltage range of 4.3 V to 3.0 V, and variations in initial capacity were confirmed. Table 2 shows the results. When the hydrophilic treatment is not performed on the resin film covering the electrode group, the initial capacity of the battery varies as much as ± 15% as shown in Table 2. However, when the film is subjected to a hydrophilic treatment, the variation in battery capacity is reduced to 5%. This is presumably because, when a film that has not been subjected to a hydrophilic treatment is used when injecting the battery, the electrolyte does not penetrate into the electrode group.

【0014】[0014]

【表2】 [Table 2]

【0015】以上の実施例では、非水電解液としてプロ
ピレンカーボネートとエチレンカーボネートの等体積混
合溶媒に1モル/lの過塩素酸リチウムを溶解した系を
用いた場合について説明したが、溶媒としてはこの他
に、プロピレンカーボネート、エチレンカーボネート、
ジエトキシカーボネートなどのカーボネート類、ガンマ
ーブチロラクトン、酢酸メチルなどのエステル類を単独
あるいは1つ以上を混合して用い、溶質として過塩素酸
リチウム、ホウフッ化リチウム、六フッ化りん酸リチウ
ムを用いた場合でも、同様の結果を得られる。また、実
施例では正極活物質としてLiMn1.8Co0.24を用
いて説明したが、正極活物質としてはこの他に、V
25、Cr25、MnO2、TiS2、LiMn24、L
iCoO2、LiNiO2、LiFeO2などを用いても
同様の結果が得られることはいうまでもない。さらに、
実施例では、角型電池を用いて説明したが、角型電池に
限らず、円筒型電池においても、極板群を熱収縮性樹脂
フィルムで圧迫することにより、サイクル特性が向上す
る。
In the above embodiment, the case where a system in which 1 mol / l lithium perchlorate is dissolved in an equal volume mixed solvent of propylene carbonate and ethylene carbonate is used as the non-aqueous electrolyte is described. In addition, propylene carbonate, ethylene carbonate,
When carbonates such as diethoxy carbonate, esters such as gamma-butyrolactone, and methyl acetate are used alone or in combination of one or more, and lithium perchlorate, lithium borofluoride, or lithium hexafluorophosphate is used as a solute. However, similar results can be obtained. Further, in the examples, LiMn 1.8 Co 0.2 O 4 was used as the positive electrode active material.
2 O 5 , Cr 2 O 5 , MnO 2 , TiS 2 , LiMn 2 O 4 , L
iCoO 2, LiNiO 2, LiFeO is of course obtained similar results using 2 or the like. further,
In the embodiment, the description has been made using the prismatic battery. However, not only the prismatic battery but also the cylindrical battery, the cycle characteristics are improved by pressing the electrode plate group with the heat-shrinkable resin film.

【0016】[0016]

【発明の効果】以上のように、本発明によれば、炭素材
料を負極とする非水電解質二次電池の充放電サイクル特
性を著しく向上させることができる。
As described above, according to the present invention, the charge / discharge cycle characteristics of a nonaqueous electrolyte secondary battery using a carbon material as a negative electrode can be remarkably improved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施例の角型非水電解質二次電池の縦
断面図である。
FIG. 1 is a longitudinal sectional view of a prismatic nonaqueous electrolyte secondary battery according to an embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1 正極板 2 負極板 3 セパレータ 4 電槽 5 負極端子 6 正極集電板 7 負極集電板 8 封口板 9 熱収縮性樹脂フィルム DESCRIPTION OF SYMBOLS 1 Positive electrode plate 2 Negative electrode plate 3 Separator 4 Battery case 5 Negative terminal 6 Positive current collecting plate 7 Negative current collecting plate 8 Sealing plate 9 Heat shrinkable resin film

───────────────────────────────────────────────────── フロントページの続き (72)発明者 美藤 靖彦 大阪府門真市大字門真1006番地 松下電 器産業株式会社内 (72)発明者 豊口 ▲吉▼徳 大阪府門真市大字門真1006番地 松下電 器産業株式会社内 (56)参考文献 特開 平4−184871(JP,A) (58)調査した分野(Int.Cl.7,DB名) H01M 10/40 H01M 4/02 - 4/04 ──────────────────────────────────────────────────の Continued on the front page (72) Inventor Yasuhiko Mito 1006 Kadoma Kadoma, Kadoma City, Osaka Prefecture Inside Matsushita Electric Industrial Co., Ltd. (56) References JP-A-4-184871 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) H01M 10/40 H01M 4/02-4/04

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 リチウムイオンの充放電に対して可逆性
を有する正極、炭素材料を主活物質とする負極およびセ
パレータから成る極板群ならびにリチウムイオン伝導性
の非水電解質を具備し、前記極板群の表面を親水処理さ
れた熱収縮性樹脂フィルムで被覆したことを特徴とする
非水電解質二次電池。
1. An electrode group comprising a positive electrode having reversibility to charge and discharge of lithium ions, a negative electrode mainly composed of a carbon material and a separator, and lithium ion conductivity.
Non-aqueous electrolyte, and the surface of the electrode group is hydrophilically treated.
A non-aqueous electrolyte secondary battery covered with a heat-shrinkable resin film.
JP26878993A 1993-10-27 1993-10-27 Non-aqueous electrolyte secondary battery Expired - Fee Related JP3276741B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26878993A JP3276741B2 (en) 1993-10-27 1993-10-27 Non-aqueous electrolyte secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26878993A JP3276741B2 (en) 1993-10-27 1993-10-27 Non-aqueous electrolyte secondary battery

Publications (2)

Publication Number Publication Date
JPH07122301A JPH07122301A (en) 1995-05-12
JP3276741B2 true JP3276741B2 (en) 2002-04-22

Family

ID=17463304

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26878993A Expired - Fee Related JP3276741B2 (en) 1993-10-27 1993-10-27 Non-aqueous electrolyte secondary battery

Country Status (1)

Country Link
JP (1) JP3276741B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100573097B1 (en) * 1999-06-30 2006-04-24 삼성에스디아이 주식회사 secondary battery
JP4558279B2 (en) * 2003-02-21 2010-10-06 パナソニック株式会社 Square battery and method for manufacturing the same
JP7119956B2 (en) * 2018-11-29 2022-08-17 トヨタ自動車株式会社 Non-aqueous electrolyte secondary battery

Also Published As

Publication number Publication date
JPH07122301A (en) 1995-05-12

Similar Documents

Publication Publication Date Title
US6528212B1 (en) Lithium battery
JP3213459B2 (en) Non-aqueous electrolyte secondary battery
JP2000348730A (en) Nonaqueous electrolyte secondary battery
JP3291750B2 (en) Non-aqueous electrolyte secondary battery and method of manufacturing the same
JPH11121012A (en) Nonaqueous electrolytic battery
JPH07335261A (en) Lithium secondary battery
CN111480252A (en) Method for preparing negative electrode for lithium secondary battery
JP3223523B2 (en) Non-aqueous electrolyte secondary battery
JPH08273671A (en) Electrode plate for nonaqueous electrolyte secondary battery
JP2001250536A (en) Method of producing negative electrode plate for nonaqueous electrolyte secondary battery
JP3276741B2 (en) Non-aqueous electrolyte secondary battery
JPH09289022A (en) Nonaqueous electrolyte secondary battery
JP3223051B2 (en) Lithium secondary battery
JPH0554910A (en) Manufacture of nonaqueous secondary battery
JP2000306602A (en) Lithium secondary battery
JP3152307B2 (en) Lithium secondary battery
JP3262404B2 (en) Non-aqueous electrolyte battery
JP3404929B2 (en) Non-aqueous electrolyte battery
JP3383454B2 (en) Lithium secondary battery
JP3541481B2 (en) Non-aqueous electrolyte secondary battery
JPH0855637A (en) Nonaqueous electrolytic secondary battery
JP4147691B2 (en) Nonaqueous electrolyte and lithium secondary battery using the same
JPH08195197A (en) Nonaqueous electrolyte secondary battery
JP2000195522A (en) Nonaqueous electrolyte seconday battery
JPH08306353A (en) Nonaqueous electrolyte secondary battery and its manufacture

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees