JPS6092234A - Production of cyclopentanone - Google Patents

Production of cyclopentanone

Info

Publication number
JPS6092234A
JPS6092234A JP58201832A JP20183283A JPS6092234A JP S6092234 A JPS6092234 A JP S6092234A JP 58201832 A JP58201832 A JP 58201832A JP 20183283 A JP20183283 A JP 20183283A JP S6092234 A JPS6092234 A JP S6092234A
Authority
JP
Japan
Prior art keywords
compound
cyclopentene
cyclopentanone
reaction
selectivity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58201832A
Other languages
Japanese (ja)
Inventor
Kazufumi Obata
小幡 一史
Yoshihide Mori
森 美秀
Osamu Moriya
修 守谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Chemical Co Ltd
Original Assignee
Sumitomo Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Chemical Co Ltd filed Critical Sumitomo Chemical Co Ltd
Priority to JP58201832A priority Critical patent/JPS6092234A/en
Publication of JPS6092234A publication Critical patent/JPS6092234A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Abstract

PURPOSE:To obtain cyclopentanone useful as a raw material for sebacic acid or glutaric acid, etc. easily and effectively in high conversion and selectivity, by oxidizing cyclopentenone in the liquid phase with molecular oxygen in the presence of a composite catalyst, e.g. Pd-Bi system. CONSTITUTION:Cyclopentene containing preferably cyclopentane and/or cyclopentadiene preferably in a large amount is oxidized with molecular oxygen in the liquid phase in the presence of a composite catalyst containing a Pd compound and a Bi compound in an amount of 1-30 gram atoms Bi based on one gram atom Pd at 20-250 deg.C under >=1kg/cm<2>.G to give the aimed compound. The higher the ratio of the Bi compound, the higher the reaction rate and selectivity. Palladium nitrate or Pd supported on alumina or activated carbon, etc. may be preferably used as the Pd compound, and bismuth nitrate is preferably used as the Bi compound.

Description

【発明の詳細な説明】 本発明はシクロペンチンを分子状酸素で酸化してシクロ
ペンタノンを製造する方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing cyclopentanone by oxidizing cyclopentyne with molecular oxygen.

シクロペンタノンは酸化2量化することにより耐寒性可
塑剤、合成潤滑油およびヘキサメチレンジアミンと重縮
合させたポリアミド系高分子の原料であるセバシン酸を
合成する原料となるばかりか、グルタル酸等の工業薬品
原料として工業的にきわめて有用な物質である。通常シ
クロペンタノンはアジピン酸をバリウム/鉄系触媒にて
反応させて得る方法、天然の本タールより抽出・蒸留に
て得る方法等によって製造されているがいずれの方法も
原料高、低収率のため工業的には望ましい方法ではない
。一方最近エチレン生産量の4〜5重量%をしめる副生
物であるシクロペンタジェンの有効利用が検討され、シ
クロペンタジェンを水添しシクロペンテンとした後永和
してシクロペンタノールとし、これを脱水素してシクロ
ペンタノンとする方法が検討されている。しかしながら
この方法はシクロペンテンの水和−脱水素と2段法であ
るため設備費が高くまたシクロペンタノンの収率が低い
という不都合を有している。よってシクロペンテンより
効′率よくシクロペンタノンを製造する方法が切に望ま
れており、このような方法としてはシクロペンテンの酸
化によるシクロペンタノンの製造がある。
By oxidizing and dimerizing, cyclopentanone not only becomes a raw material for synthesizing sebacic acid, which is a raw material for cold-resistant plasticizers, synthetic lubricating oils, and polyamide polymers polycondensed with hexamethylene diamine, but also for the synthesis of sebacic acid, which is a raw material for polyamide polymers polycondensed with cold-resistant plasticizers, synthetic lubricating oils, and hexamethylene diamine. It is an extremely useful substance industrially as a raw material for industrial chemicals. Cyclopentanone is usually produced by reacting adipic acid with a barium/iron catalyst, or by extracting and distilling natural tar, but both methods require high raw materials and low yields. Therefore, this is not an industrially desirable method. On the other hand, recently, the effective use of cyclopentadiene, a byproduct that accounts for 4 to 5% by weight of ethylene production, has been studied. A method of converting cyclopentanone into cyclopentanone is being considered. However, since this method is a two-step process involving hydration and dehydrogenation of cyclopentene, it has the disadvantages of high equipment costs and a low yield of cyclopentanone. Therefore, a method for producing cyclopentanone more efficiently than cyclopentene is strongly desired, and such a method includes production of cyclopentanone by oxidation of cyclopentene.

シクロペンテンと分子状酸素よりシクロペンタノンを得
る方法としては、例えば英国特許1122040号およ
びジャーナル・オブ・オ−ガー’−ツク、・ケミストリ
ー(The Journal of。
Methods for obtaining cyclopentanone from cyclopentene and molecular oxygen are described, for example, in British Patent No. 1122040 and The Journal of Chemistry.

Organic Chemistry 、vol、84
 s A12 、P、8949〜8952、1969年
)に示されている液扁でアルコールの共存下触媒として
パラジウム化合物と銅化合物からなるいわゆるワラカー
副触媒を用いる方法が公知である。
Organic Chemistry, vol. 84
A method is known in which a so-called Wallaker subcatalyst consisting of a palladium compound and a copper compound is used as a catalyst in the presence of an alcohol in a liquid flattened liquid as shown in J. S. A12, P., 8949-8952, 1969).

しかしながら、これらワラカー型の触媒を使用する方法
においては、パラジウムの酸化還元電位が高すぎて、銅
化合物および鉄化合物としては塩化物のみが有効であり
、塩化物以外はまったく効果を発揮しないかもしくはき
わめてわずかの効果しか得られず工業的実施に当っては
一多量の試剤を使用しなければケらないという不都合を
有している。又塩化物を使用する場合にはOl−イオン
の強い腐食性のためにチタン等のひじように高価な装置
を使用する必要があるばかりか有機塩素化合物の生成が
あるという不都合を有している。
However, in methods using these Waraker-type catalysts, the redox potential of palladium is too high, and as a copper compound and iron compound, only chloride is effective; other compounds may not be effective at all, or may not be effective at all. It has the disadvantage that only a very small effect can be obtained, and in industrial implementation, a large amount of reagent must be used. Furthermore, when chloride is used, it is not only necessary to use expensive equipment made of titanium or the like due to the strong corrosivity of Ol- ions, but also has the disadvantage of generating organic chlorine compounds. .

本発明者らはシクロペンテンと分子状酸素よりシクロペ
ンタノンを製造するに際し、これら従来法の欠点を克服
し、より簡単な方法でしかもシクロペンテンの転化率を
高め、高い選択率で効縞よ・くシクロペンタノンを得る
方法につき鋭意検討を重ねた結果本発明に至った。すな
わち本発明はパラジウム化合物とビスマス化合物とから
なる複合系触媒を用い、液相でシクロペンテンと分子状
酸素で酸化してより効率よくシクロペンタノンが得られ
る方法である。
The present inventors have overcome the shortcomings of these conventional methods to produce cyclopentanone from cyclopentene and molecular oxygen, using a simpler method, increasing the conversion rate of cyclopentene, and achieving high efficiency with high selectivity. As a result of extensive research into methods for obtaining cyclopentanone, the present invention was achieved. That is, the present invention is a method that uses a composite catalyst consisting of a palladium compound and a bismuth compound and oxidizes cyclopentene with molecular oxygen in a liquid phase to more efficiently obtain cyclopentanone.

本発明方法で用いられるシクロペンテンは特に限定され
るものではないが、シクロペンタジェンの部分水素添加
あるいはシクロペンタノールノ脱水反応およびシクロペ
ンクンの部分脱水素等によって得られるシクロペンテン
、もしくは多量のシクロペンタンおよび/もしくはシク
ロペンタジェンを含むシクロペンテン等が好適に用いら
れる。一般にこれらの方法によって製造されるシクロペ
ンテンに含まれるシクロペンタン、シクロペンタジェン
は沸点が余りにも接近しているため分離精製してシクロ
ペンテンのみを得ることは実用的には極めて困難である
が、本発明方法を実施する場合にはこれら混合系からシ
クロペンテンを分離精製することなく反応原料として使
用できる。
The cyclopentene used in the method of the present invention is not particularly limited, but may include cyclopentene obtained by partial hydrogenation of cyclopentadiene, cyclopentanol dehydration reaction, partial dehydrogenation of cyclopenkune, etc., or a large amount of cyclopentane and/or Alternatively, cyclopentene containing cyclopentadiene, etc. are preferably used. Generally, cyclopentane and cyclopentadiene contained in cyclopentene produced by these methods have very close boiling points, so it is practically extremely difficult to separate and purify to obtain only cyclopentene. However, the present invention When carrying out the method, cyclopentene can be used as a reaction raw material from these mixed systems without being separated and purified.

本発明に用いるパラジウム化合物としては、硫酸パラジ
ウム、硝酸パラジウム等の無機塩、酢酸パラジウム、プ
ロピオン酸パラジウム等の有機酸塩、およびアルミナ、
ゼオライト、シリカ、シリカアルミナ、活性炭に担持し
たパラジウムなどが用いられる。
Palladium compounds used in the present invention include inorganic salts such as palladium sulfate and palladium nitrate, organic acid salts such as palladium acetate and palladium propionate, and alumina,
Zeolite, silica, silica alumina, palladium supported on activated carbon, etc. are used.

好ましくは硝酸、パラジウム、及び担持したパラジウム
である。担持したパラジウムは一般的に担持パラジウム
触媒として入手可能なものでよい。
Preferred are nitric acid, palladium, and supported palladium. The supported palladium may be any commonly available supported palladium catalyst.

本発明に用いるビスマス化合物は、硝酸ビスマス、硫酸
ビスマス、酸化ビスマス、ビスマスの有機錯塩なとであ
り、好しくは硝酸ビスマスで化合物の比率が大きい程、
シクロペンテンの反(5) くなると、大きくする割に該反応率、選択率が向上しな
い。
The bismuth compounds used in the present invention include bismuth nitrate, bismuth sulfate, bismuth oxide, and organic complex salts of bismuth, preferably bismuth nitrate, and the larger the proportion of the compound, the more
When it becomes the opposite of cyclopentene (5), the reaction rate and selectivity do not improve even though the size is increased.

シクロペンテンに対するパラジウム化合物の本発明で言
うところの分子状酸素は、純酸素ガスまたは酸素ガスを
反応に不活性な希釈剤、例えば窒素、ヘリウム等で希釈
した混合ガス、およ、び空気等であり、反応系に存在さ
せる酸素の量は反応に必要な化学量論モル以上であれば
よい。反応時の圧力は、1r4/dG以上の加圧系が望
ましく、反応時の最高使用圧力は設備費および傷発等に
関する安全性より決定される。
The molecular oxygen referred to in the present invention in the palladium compound for cyclopentene includes pure oxygen gas or a mixed gas of oxygen gas diluted with a diluent inert to the reaction, such as nitrogen, helium, etc., and air. The amount of oxygen present in the reaction system may be at least the stoichiometric molar amount required for the reaction. The pressure during the reaction is preferably a pressurized system of 1r4/dG or more, and the maximum working pressure during the reaction is determined based on equipment costs and safety with respect to injury.

本発明の反応温度は触媒の添加量および種類、反応圧力
によって異なるが、一般には反応温度(6) が200℃以上では副反応が増大するばかりか高価な設
備を要するし、20℃より反応温度が低い場合には反応
温度の大幅な低下および反応熱の効果的な除去が困難と
なるので、通常20〜200℃の温度範囲が使用される
。特に好ましくは40−150℃の温度範囲が用いられ
る。
The reaction temperature of the present invention varies depending on the amount and type of catalyst added and the reaction pressure, but in general, if the reaction temperature (6) is 200°C or higher, not only will side reactions increase, but also expensive equipment will be required; If the reaction temperature is low, it becomes difficult to significantly lower the reaction temperature and effectively remove the reaction heat, so a temperature range of 20 to 200°C is usually used. Particularly preferably a temperature range of 40-150°C is used.

本発明の触媒を使用し、シクロペンテンのみ又はシクロ
ペンクンおよび/もしくはシクロペンタジェン共存下の
シクロペンテンのみを分子状酸素と接触させることによ
ってシクロペンタノンを得ることは可能であるが、シク
ロペンタノンをさらに効率よく得るためにはエタノール
、プロパツール、ブタノール等の脂肪族アルコールを共
存させることが望ましい。
Although it is possible to obtain cyclopentanone by contacting only cyclopentene or only cyclopentene in the coexistence of cyclopenkune and/or cyclopentadiene with molecular oxygen using the catalyst of the present invention, it is possible to obtain cyclopentanone even more efficiently. In order to obtain a good result, it is desirable to coexist an aliphatic alcohol such as ethanol, propatool, butanol, etc.

以下実施例により本発明を更に詳細に説明するが、本発
明はこれら実施例により何ら制限を受けるものではない
。なお、反応生成物の分析にはガスクロマトグラフィー
を用いた。
The present invention will be explained in more detail with reference to Examples below, but the present invention is not limited in any way by these Examples. Note that gas chromatography was used to analyze the reaction products.

選択率は(反応により生成したシクロペンタノンのモル
数)/(反応前と反応後のシクロペンテンのモル数の差
)転換率は(反応前と反応後のシクロペンテンのモル数
の差)/(シクロペンテンの反応前のモル数)である。
Selectivity is (number of moles of cyclopentanone produced by reaction)/(difference between number of moles of cyclopentene before and after reaction) Conversion rate is (difference between number of moles of cyclopentene before and after reaction)/(cyclopentene) (number of moles before reaction).

実施例1゜ 84、19のシクロペンテンおよび85.39のエタノ
ールを200CCのクーラー付丸底フラスコに仕込み、
触媒として19.4Fの硝酸ビスマスおよび10.6P
の市販5%pd−活性炭担持触媒(日本エンゲルハルト
社製)を添加した後、純度99%酸素(残りは窒素)を
51/■r 連続的に十分攪拌した液中へ供給した。反
応温度を45℃に設定し、4時間反応させた後反応生成
物を分析した結果、シクロヘンテンの転化率は75%、
シクロペンタノンの選択率は72%であった。
Example 1 Cyclopentene of 84, 19 and ethanol of 85.39 were charged into a 200 cc round bottom flask with a cooler,
19.4F bismuth nitrate and 10.6P as catalyst
After adding a commercially available 5% PD-activated carbon supported catalyst (manufactured by Nippon Engelhard Co., Ltd.), 99% pure oxygen (the remainder being nitrogen) was continuously supplied at 51/r into the well-stirred liquid. The reaction temperature was set at 45°C, and after 4 hours of reaction, the reaction product was analyzed, and the conversion rate of cyclohentene was 75%.
The selectivity for cyclopentanone was 72%.

比較例1 実施例−1において硝酸ビスマスを添加しない以外は全
く同様にして処理した。得られた反応生成物を分析した
結果シクロペンテンの転化率は26%であり、シクロペ
ンタノンの選択率は1%以下であった。
Comparative Example 1 The same treatment as in Example 1 was carried out except that bismuth nitrate was not added. As a result of analysis of the obtained reaction product, the conversion rate of cyclopentene was 26%, and the selectivity of cyclopentanone was 1% or less.

実施例2 実施例1と同じ組成のシクロペンテン、エタノール混合
物119yを実施例1で用いたと同一装置に仕込み、触
媒として19.Elの硝酸ビスマスおよび1.88yの
硝酸パラジウムを添加した後実施例1と同様な方法及び
条件で反応を行った。得られた反応生成物を分析した結
果シクロペンテンの転化率は82%、シクロペンタノン
の選択率は6896であった。
Example 2 A mixture of cyclopentene and ethanol 119y having the same composition as in Example 1 was charged into the same apparatus used in Example 1, and 19. After adding El of bismuth nitrate and 1.88y of palladium nitrate, a reaction was carried out in the same manner and under the same conditions as in Example 1. As a result of analysis of the obtained reaction product, the conversion rate of cyclopentene was 82%, and the selectivity of cyclopentanone was 6896.

比較例2 ・7 実施例2において硝酸ビスマスを添加しない以外
は全く同様にして処理した。得られた反応生成物を分析
した結果シクロペンテンの転化率は48%であり、シク
ロペンタノンの選択率は1.9%であった。
Comparative Examples 2 and 7 The same treatment as in Example 2 was carried out except that bismuth nitrate was not added. As a result of analysis of the obtained reaction product, the conversion rate of cyclopentene was 48%, and the selectivity of cyclopentanone was 1.9%.

実施例8 17.59のシクロペンタンおよび84. I Pのシ
クロペンテンおよび68.2yのエタノールを実施例1
で用いたと同一装置に仕込み、(9) 触媒として9.62の硝酸ビスマスおよび5.27の市
販5%pd−A/203担持触媒(日本エンゲルハルト
ン社製)を添加した後実施例1と同様な方法及び条件で
反応を行った。得られた反応生成物を分析した結果シク
ロペンテンの転化率は68%、シクロペンタノンの選択
率は64%であった。
Example 8 17.59 cyclopentane and 84. Example 1 cyclopentene of IP and ethanol of 68.2
(9) Same as Example 1 after adding 9.62 bismuth nitrate and 5.27 commercially available 5% PD-A/203 supported catalyst (manufactured by Nippon Engel Halton Co., Ltd.) as catalysts. The reaction was carried out using the following methods and conditions. As a result of analysis of the obtained reaction product, the conversion rate of cyclopentene was 68%, and the selectivity of cyclopentanone was 64%.

実施例4 17、5 Fのシクロペンタンおよび84.19のシク
ロペンテンおよび68.29のn−プロピルアルコール
を実施例1で用いたと同一装置に仕込み、触媒として9
,7ノの硝酸ビスマスおよび0.869の硫酸パラジウ
ムを添加した後実施例1と同様な方法及び条件で反応を
行った。得られた反応生成物を分析した結果、シクロペ
ンテンの転化率は54%、シクロペンタノンの選択率は
88%であった。
Example 4 Cyclopentane of 17,5 F, cyclopentene of 84.19 and n-propyl alcohol of 68.29 were charged to the same apparatus used in Example 1, and 9
, 7 of bismuth nitrate and 0.869 of palladium sulfate were added, and the reaction was carried out in the same manner and under the same conditions as in Example 1. As a result of analyzing the obtained reaction product, the conversion rate of cyclopentene was 54%, and the selectivity of cyclopentanone was 88%.

(10完)(10 complete)

Claims (1)

【特許請求の範囲】[Claims] 液相でシクロペンテンを分子状酸素で酸化することによ
りシクロペンタノンを製造する方法+tおいて、パラジ
ウム化合物とビスマス化合物とからなる複合系触媒を用
いることを特徴とするシクロペンタノンの製造法。
A method for producing cyclopentanone by oxidizing cyclopentene with molecular oxygen in a liquid phase, characterized in that a composite catalyst comprising a palladium compound and a bismuth compound is used.
JP58201832A 1983-10-26 1983-10-26 Production of cyclopentanone Pending JPS6092234A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58201832A JPS6092234A (en) 1983-10-26 1983-10-26 Production of cyclopentanone

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58201832A JPS6092234A (en) 1983-10-26 1983-10-26 Production of cyclopentanone

Publications (1)

Publication Number Publication Date
JPS6092234A true JPS6092234A (en) 1985-05-23

Family

ID=16447630

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58201832A Pending JPS6092234A (en) 1983-10-26 1983-10-26 Production of cyclopentanone

Country Status (1)

Country Link
JP (1) JPS6092234A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5489965A (en) * 1992-09-18 1996-02-06 Minolta Co., Ltd. Finder display apparatus
JP2008513531A (en) * 2004-09-23 2008-05-01 ビーエーエスエフ ソシエタス・ヨーロピア Method for producing cyclopentanone
CN100408532C (en) * 2004-06-21 2008-08-06 沈阳工业大学 Cyclopentanol preparation method
CN105330523A (en) * 2015-10-22 2016-02-17 复旦大学 Method for preparing cyclopentanone by taking biomass resource as raw material

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5489965A (en) * 1992-09-18 1996-02-06 Minolta Co., Ltd. Finder display apparatus
CN100408532C (en) * 2004-06-21 2008-08-06 沈阳工业大学 Cyclopentanol preparation method
JP2008513531A (en) * 2004-09-23 2008-05-01 ビーエーエスエフ ソシエタス・ヨーロピア Method for producing cyclopentanone
CN105330523A (en) * 2015-10-22 2016-02-17 复旦大学 Method for preparing cyclopentanone by taking biomass resource as raw material

Similar Documents

Publication Publication Date Title
US5019652A (en) Catalysts and method
UA72617C2 (en) A method for the preparation of vinyl acetate
JP4328535B2 (en) Direct synthesis of hydrogen peroxide in a multi-component solvent system
US6274764B1 (en) Process for one step gas phase production of acetic acid from ethylene
EA039836B1 (en) Ethane oxidative dehydrogenation
JPS6092234A (en) Production of cyclopentanone
RU2288211C2 (en) Method for catalytic decomposition of c6-c12-cycloalkyl hydroperoxides
US4215226A (en) Selective hydrogenation of nitroaromatic acetylenes over an unsupported RuS2 catalyst
JPS5811408B2 (en) Production method of trichlorethylene
JPH01313313A (en) Method for reducing carbon dioxide
JPH04149160A (en) Production of 1-amino-4-alkoxybenzene compounds
US4009216A (en) Preparation of isopropyl chloride
US1955050A (en) Production of monocarboxylic acids
JPS6362500B2 (en)
JP3541448B2 (en) Method for producing acetamide
JPS63214353A (en) Catalyst for reducing carboxylic acid or ester thereof to aldehyde compound
JPH0436142B2 (en)
KR830002477B1 (en) Method for producing aromatic carboxylic acid
JPS60199855A (en) Production of benzoic acid
JPS6092235A (en) Preparation of cyclohexanone
JPS60332B2 (en) Manufacturing method of cyclohexanone
JPH0635414B2 (en) Method for producing glycolaldehyde
JPH06501014A (en) Method for producing naphthalene and 2-monoiodonaphthalene enriched product streams
FR2482089A1 (en) PROCESS FOR THE CATALYTIC TRANSFORMATION OF ACETIC ANHYDRIDE TO ETHYLIDENE DIACETATE
JPS649969B2 (en)