JPS60332B2 - Manufacturing method of cyclohexanone - Google Patents

Manufacturing method of cyclohexanone

Info

Publication number
JPS60332B2
JPS60332B2 JP4338481A JP4338481A JPS60332B2 JP S60332 B2 JPS60332 B2 JP S60332B2 JP 4338481 A JP4338481 A JP 4338481A JP 4338481 A JP4338481 A JP 4338481A JP S60332 B2 JPS60332 B2 JP S60332B2
Authority
JP
Japan
Prior art keywords
cyclohexanone
alcohol
reaction
cyclohexene
present
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP4338481A
Other languages
Japanese (ja)
Other versions
JPS57156429A (en
Inventor
勝臣 竹平
敏夫 石川
孝 早川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP4338481A priority Critical patent/JPS60332B2/en
Priority to DE19823203286 priority patent/DE3203286A1/en
Publication of JPS57156429A publication Critical patent/JPS57156429A/en
Publication of JPS60332B2 publication Critical patent/JPS60332B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Description

【発明の詳細な説明】 本発明はシクロヘキサノンを製造する方法に関するもの
である。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing cyclohexanone.

詳しくは、本発明はシクロヘキセンを分子状酸素で酸化
してシクロヘキサノンを製造する方法であり、さらに詳
しくは、本発明は液相で脂肪族アルコールの共存下‘1
’パラジウム化合物と{21鋼化合物および鉄化合物よ
り選ばれる少なくとも1種の化合物とを含む複合触媒を
使用し、シクロヘキセンを酸化してシクロヘキサノンを
製造する方法である。シクロヘキサノンは現在ナイロン
あるいはポリエステル用モノマーの原料として大きな需
要がある他、その高い反応性のために多種の譲導体の開
発が可能であり、工業的に極めて有用な物質である。
Specifically, the present invention is a method for producing cyclohexanone by oxidizing cyclohexene with molecular oxygen, and more specifically, the present invention is a method for producing cyclohexanone by oxidizing cyclohexene with molecular oxygen.
'This is a method for producing cyclohexanone by oxidizing cyclohexene using a composite catalyst containing a palladium compound and at least one compound selected from {21 steel compounds and iron compounds. Cyclohexanone is currently in great demand as a raw material for monomers for nylon or polyester, and its high reactivity makes it possible to develop a wide variety of derivatives, making it an extremely useful substance industrially.

しかるに、シクロヘキサノンは現在、主としてシクロヘ
キサンの液相空気酸化法で製造されているが、極めて効
率の悪い製造法を余儀なくされている。
However, cyclohexanone is currently produced mainly by a liquid phase air oxidation method of cyclohexane, which is an extremely inefficient production method.

即ち液相自動酸化法によるこの製造条件では生成物のシ
クロヘキサノンが原料のシクロヘキサンより酸化されや
すいため、シクロヘキサンの転化率を極めて低く(7〜
8%)抑えねばならず、かつシクロヘキサノンとほゞ等
量生成するシクロヘキサノールを合せても選択率は70
〜80%であり、さらにこのシクロヘキサノールは脱水
素してシクロヘキサノtンにする必要がある。この製造
法の効率向上のために触媒の改良等が種々検討されてき
たが、前記のシクロヘキサノンの高い反応性のために極
めて困難であり未だ成功例はない。本発明はこの現行製
造法をより効率的な方法に転換することを目的とするも
のであり、詳しくはベンゼンの部分水素添加あるいはシ
クロヘキサンの部分脱水素により得られるシクロヘキセ
ンを原料としこれを効率的に酸化してシクロヘキサノン
を製造しようとするものである。この方法については既
にエチレンからのアセトアルデヒド製造法として実用化
されている塩化パラジウム−塩化銅−塩酸水溶液の触媒
系を用いて試みられているが、この系ではシクロヘキセ
ンが鋼塩と鰭体を作り、銅のパラジウム再酸化館が失わ
れるために反応は進行しないとされている(触媒10、
24(19斑))。本発明者らは、シクロヘキセン酸化
法によるシクロヘキサノンの製造法について鋭意研究を
重ねた結果炭素数2〜10の脂肪族アルコ−/kを共存
させることにより、{1}パラジウム化合物と‘21鋼
化合物および鉄化合物より選ばれる少なくとも1種の化
合物とを含む複合触媒がこの反応に対して高活性と高選
択性を有し、高収率でシクロヘキサノンを与えることを
見出し、この知見に基づいて本発明を完成するに到った
That is, under these production conditions using the liquid phase autooxidation method, the product cyclohexanone is more easily oxidized than the raw material cyclohexane, so the conversion rate of cyclohexane is extremely low (7 to
8%), and even if you combine cyclohexanol, which is produced in approximately the same amount as cyclohexanone, the selectivity is 70%.
~80%, and this cyclohexanol must further be dehydrogenated to cyclohexanotone. Various attempts have been made to improve the catalyst in order to improve the efficiency of this production method, but this is extremely difficult due to the high reactivity of cyclohexanone, and no success has yet been achieved. The purpose of the present invention is to convert this current production method to a more efficient method. Specifically, the present invention uses cyclohexene obtained by partial hydrogenation of benzene or partial dehydrogenation of cyclohexane as a raw material and efficiently converts it into a more efficient method. The aim is to oxidize it to produce cyclohexanone. This method has already been attempted using a catalyst system of palladium chloride-copper chloride-hydrochloric acid aqueous solution, which has already been put into practical use as a method for producing acetaldehyde from ethylene, but in this system, cyclohexene forms steel salt and fin bodies. It is said that the reaction does not proceed because the palladium reoxidation site of copper is lost (catalyst 10,
24 (19 spots)). The present inventors have conducted intensive research on a method for producing cyclohexanone using a cyclohexene oxidation method. As a result, by coexisting an aliphatic alcohol/k having 2 to 10 carbon atoms, a {1} palladium compound, a '21 steel compound and It was discovered that a composite catalyst containing at least one compound selected from iron compounds has high activity and selectivity for this reaction, and gives cyclohexanone in high yield, and based on this knowledge, the present invention was developed. It has been completed.

すなわち、本発明はシクロヘキセンを炭素数2〜10の
脂肪族アルコールならびに(1’パラジウム化合物と■
銅化合物および鉄化合物より選ばれる少なくとも1種の
化合物とを含む複合触媒の存在下、室温〜200℃液相
で分子状酸素と反応させてシクロヘキサノンを製造する
方法を提供するものである。
That is, the present invention combines cyclohexene with an aliphatic alcohol having 2 to 10 carbon atoms and (1'palladium compound and
The present invention provides a method for producing cyclohexanone by reacting it with molecular oxygen in a liquid phase at room temperature to 200°C in the presence of a composite catalyst containing at least one compound selected from a copper compound and an iron compound.

本発明で用いられる触媒において、パラジウム、銅なら
びに鉄化合物は、無機塩、有機錆塩等が使用可能で特に
制限はないが、なかんずく塩化パラジウム、塩化第一銅
、塩化第二鋼、塩化第一鉄、塩化第二鉄等の塩化物が良
好な反応成績を示し、さらに反応溶媒中への溶解性を高
める意味で結晶水を有するものが好ましい。
In the catalyst used in the present invention, the palladium, copper, and iron compounds can be inorganic salts, organic rust salts, etc., and are not particularly limited. Chlorides such as iron and ferric chloride exhibit good reaction results, and those containing water of crystallization are preferred in order to increase solubility in the reaction solvent.

また本発明で用いる脂肪族アルコールは、炭素数2〜1
0の室温〜200℃の反応温度範囲で液状のものであれ
ば直鎖および分岐あるいは一級、二級、および三級の如
何を問わず特に制限はないが、エチルアルコール、プロ
プルアルコール、ブチルアルコール、インブチルアルコ
ールあるいはベンチルアルコールのような炭素数2〜5
でかつ一級のアルコールが良好な反応結果を与える。脂
肪族アルコールの添加は、本発明の方法において必須の
要素であり、その添加量を低減させると反応速度は低下
し、脂肪族アルコール無添加では反応は進行せずシクロ
へキサノンの生成は認められなかった。触媒の添加量は
シクロヘキセンに対してパラジウム化合物について0.
001〜1の重量%、好ましくは0.01〜1重量%、
鋼または鉄化合物については0.01〜20重量%好ま
しくは0.1〜10重量%、分子状酸素源としては純酸
素ガスあるいは空気のいずれを用いてもよく常圧〜30
k9/地の範囲で有効である。
Furthermore, the aliphatic alcohol used in the present invention has 2 to 1 carbon atoms.
There is no particular restriction on whether it is linear or branched or primary, secondary, or tertiary as long as it is liquid in the reaction temperature range of 0°C to 200°C, but ethyl alcohol, propyl alcohol, butyl alcohol , carbon number 2-5 such as inbutyl alcohol or bentyl alcohol
Large and primary alcohols give good reaction results. Addition of aliphatic alcohol is an essential element in the method of the present invention, and reducing the amount added reduces the reaction rate, and without the addition of aliphatic alcohol, the reaction does not proceed and the formation of cyclohexanone is not observed. There wasn't. The amount of catalyst added is 0.0 for the palladium compound relative to cyclohexene.
001-1% by weight, preferably 0.01-1% by weight,
For steel or iron compounds, it is 0.01 to 20% by weight, preferably 0.1 to 10% by weight, and as a molecular oxygen source, either pure oxygen gas or air may be used at normal pressure to 30% by weight.
Valid in the k9/earth range.

反応温度は室温〜200℃付近の温度で行なうことがで
きるが、あまり低温すぎると反応速度が遅くなり、一方
、高すぎると溶媒の損失あるいは副反応が多くなるので
40〜150qoの範囲で実施するのが好ましい。次に
実施例により本発明の詳細を説明するが、本発明は下記
実施例のみに限定されるものではない。
The reaction temperature can be carried out at room temperature to around 200°C, but if it is too low, the reaction rate will be slow, while if it is too high, solvent loss or side reactions will increase, so it should be carried out in the range of 40 to 150 qo. is preferable. Next, the details of the present invention will be explained with reference to Examples, but the present invention is not limited only to the following Examples.

なお、反応生成物の分析にはガスクロマトグラフを用い
た。実施例 1 シクロヘキセン10の【、エチルアルコール20のZ、
塩化パラジウム(PdC12)0.6mmol、塩化第
二鉄(FeC13・細20)3mmolを100机上の
ガラス製容器に仕込み、反応温度6000酸素圧860
ゅHgで2時間反応させた。
Note that a gas chromatograph was used to analyze the reaction products. Example 1 Cyclohexene 10 [, ethyl alcohol 20 Z,
0.6 mmol of palladium chloride (PdC12) and 3 mmol of ferric chloride (FeC13, fine 20) were placed in a glass container on a table with a reaction temperature of 6,000 and oxygen pressure of 860.
The mixture was reacted with Hg for 2 hours.

その結果12.2mmolの酸素が吸収され、シクロヘ
キセン転化率15.6%、シクロヘキサノン収率10.
5%、同選択率67.3%の値が得られた。実施例 2
〜10 実施例1でエチルアルコールを炭素数3〜8の脂肪族ア
ルコールに変えて、実施例1と同様な方法で2時間反応
させた。
As a result, 12.2 mmol of oxygen was absorbed, cyclohexene conversion was 15.6%, and cyclohexanone yield was 10.
A value of 5% and a selectivity of 67.3% were obtained. Example 2
~10 The ethyl alcohol in Example 1 was changed to an aliphatic alcohol having 3 to 8 carbon atoms, and the reaction was carried out in the same manner as in Example 1 for 2 hours.

その結果を表1に示す。表 1アルコール シクロヘ
キセ シクロヘキサ シクロヘキサ(20の多)
ン転化率(%) ノン収率(%) ノン選択率(%
)実施例 2 n−ブロピルアルコール 16.1
10.8 67.2実施例 3
n−ブチルアルコール 17.7 9
.9 55.6実施例 4 n−ベンチルア
ルコール 17.8 9.5
53.2〃 5 n−へキシルアルコール 1
8.7 7.5 40.0〃
6 n−オクチルアルコール 13.4
6.2 46.37 2−メチル−
1−プロピ 18.8 8.5
45.1ノレアノレコーノレ〃 8 インブ
ロピルアルコール 12.0 4.8
40.0〃 9 2−プチルアルコー
ル 10.8 4.2 3
9.0′′ 10 t −ブチルアルコール
11.1 5.0
45.0実施例 11実施例1で塩化第二鉄(FeC1
3・細20)3mmolの代りに塩化第二銅(CuC1
2・2も○)3mmolを用いて、実施例1と同様な方
法で2時間反応させた。
The results are shown in Table 1. Table 1 Alcohol Cyclohexe Cyclohexa Cyclohexa (Poly of 20)
Conversion rate (%) Non-yield (%) Non-selectivity (%)
) Example 2 n-bropyl alcohol 16.1
10.8 67.2 Example 3
n-Butyl alcohol 17.7 9
.. 9 55.6 Example 4 n-bentyl alcohol 17.8 9.5
53.2 5 n-hexyl alcohol 1
8.7 7.5 40.0〃
6 n-octyl alcohol 13.4
6.2 46.37 2-methyl-
1-Propy 18.8 8.5
45.1 Noreanorekonore〃 8 Imbropyl alcohol 12.0 4.8
40.0 9 2-butyl alcohol 10.8 4.2 3
9.0'' 10 t-butyl alcohol
11.1 5.0
45.0 Example 11 In Example 1, ferric chloride (FeC1
3. Thin 20) Cupric chloride (CuC1) instead of 3 mmol
2.2 was also ○) Using 3 mmol, the reaction was carried out in the same manner as in Example 1 for 2 hours.

その結果8.5のmolの酸素が吸収されシクロヘキセ
ン転化率13.9%、シクロヘキサノン収率10.8%
、同選択率77.8%の値が得られた。実施例 12〜
20実施例11でエチルアルコールを炭素数3〜8の脂
肪族アルコールに変えて、実施例11と同様な方法で2
時間反応させた。
As a result, 8.5 mol of oxygen was absorbed, cyclohexene conversion rate was 13.9%, and cyclohexanone yield was 10.8%.
, a selectivity value of 77.8% was obtained. Example 12~
20 In Example 11, ethyl alcohol was changed to an aliphatic alcohol having 3 to 8 carbon atoms, and 2 was prepared in the same manner as in Example 11.
Allowed time to react.

その結果を表2に示す。表 2アルコール シクロ
ヘキセ シクロヘキサ シクロヘキサ(20秘)
ン転化率(%) ノン収率(%) ノン選択率(%
)実施例12 n−プロピルアルコール 19.1
11.0 57.5〃 13
n−ブチルアルコール 20.4
10.0 49.0〃 14 n−ベン
チルアルコール 17.4 7.1
40.7〃 15 n−へキシルアルコール
11.9 4.5 38.
0〃 16 n「オクチルアルコール 12.4
4.1 33.0〃 17
2−メチル−1−プロピ 7.0
4.9 69.4ノレアノレコーノレ〃
18 インプロピルアルコール 5.6
2.9 51.3〃 19 2
−ブチルアルコール 4.3 1
.5 35.5〃 20 t−ブチルア
ルコール 7.1 2.6
36.8実施例 21実施例1で塩化第二鉄(F
eC13・細20)3のmolの代りに、硝酸第二鉄(
Fe(N03)3・畑20)3mmolを用いて、実施
例1と同様な方法で2時間反応させた。
The results are shown in Table 2. Table 2 Alcohol Cyclohexe Cyclohexa Cyclohexa (20 secrets)
Conversion rate (%) Non-yield (%) Non-selectivity (%)
) Example 12 n-propyl alcohol 19.1
11.0 57.5〃 13
n-butyl alcohol 20.4
10.0 49.0〃 14 n-bentyl alcohol 17.4 7.1
40.7 15 n-hexyl alcohol 11.9 4.5 38.
0〃 16 n"Octyl alcohol 12.4
4.1 33.0〃 17
2-methyl-1-propy 7.0
4.9 69.4 Noreanorekonore〃
18 Inpropyl alcohol 5.6
2.9 51.3〃 19 2
-Butyl alcohol 4.3 1
.. 5 35.5〃 20 t-Butyl alcohol 7.1 2.6
36.8 Example 21 In Example 1, ferric chloride (F
In place of the mol of eC13/Hori20)3, use ferric nitrate (
A reaction was carried out for 2 hours in the same manner as in Example 1 using 3 mmol of Fe(N03)3.Hata20).

その結果4.1のmolの酸素が吸収されシクロヘキセ
ン転化率9.3%シクロヘキサノン収率2.9%、同選
択率31.3%の値が得られた。実施例 22 実施例11で塩化第二銅(Cに12が20)3のmol
の代りに臭化第二銅3mmolを用いて実施例11と同
様な方法で2時間反応させた。
As a result, 4.1 mol of oxygen was absorbed, resulting in a cyclohexene conversion of 9.3%, a cyclohexanone yield of 2.9%, and a selectivity of 31.3%. Example 22 In Example 11, mol of cupric chloride (C has 20 12)
The reaction was carried out in the same manner as in Example 11 for 2 hours using 3 mmol of cupric bromide instead of the above.

その結果2.7mmolの酸素が吸収され、シクロヘキ
セン転化率5.5%シクロヘキサノン収率2.5%同選
択率46.0%の値が偽られた。比較例 1 実施例1でエチルアルコール20の【の代りにメチルア
ルコール20の‘を用い実施例1と同様な方法で2時間
反応させたが酸素の吸収は全く認められずシクロヘキサ
ノンも生成しなかった。
As a result, 2.7 mmol of oxygen was absorbed, falsifying the values of cyclohexene conversion of 5.5%, cyclohexanone yield of 2.5%, and selectivity of 46.0%. Comparative Example 1 In Example 1, 20% of methyl alcohol was used in place of 20% of ethyl alcohol, and the reaction was carried out for 2 hours in the same manner as in Example 1, but no oxygen absorption was observed and cyclohexanone was not produced. .

比較例 2 実施例1で塩化第二鉄3mmolの代りに塩化ニッケル
(NC12・班20)3肌molを用い、実施例1と同
様な方法で2時間反応させた。
Comparative Example 2 In Example 1, instead of 3 mmol of ferric chloride, 3 moles of nickel chloride (NC12/Grade 20) were used, and the reaction was carried out in the same manner as in Example 1 for 2 hours.

Claims (1)

【特許請求の範囲】[Claims] 1 シクロヘキセンを分子状酸素で酸化してシクロヘキ
サノンを製造するに際し、液相で炭素数2〜10の脂肪
族アルコールの共存下、触媒として(1)パラジウム化
合物と(2)銅化合物と鉄化合物から選ばれる少なくと
も1種の化合物とを含む複合系触媒を用いることを特徴
とするシクロヘキサノンの製造法。
1 When cyclohexene is oxidized with molecular oxygen to produce cyclohexanone, in the presence of an aliphatic alcohol having 2 to 10 carbon atoms in the liquid phase, a catalyst selected from (1) palladium compounds, (2) copper compounds and iron compounds is used. 1. A method for producing cyclohexanone, the method comprising using a composite catalyst comprising at least one compound containing cyclohexanone.
JP4338481A 1981-03-20 1981-03-24 Manufacturing method of cyclohexanone Expired JPS60332B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP4338481A JPS60332B2 (en) 1981-03-24 1981-03-24 Manufacturing method of cyclohexanone
DE19823203286 DE3203286A1 (en) 1981-03-20 1982-02-01 Process for the preparation of cyclohexanone

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4338481A JPS60332B2 (en) 1981-03-24 1981-03-24 Manufacturing method of cyclohexanone

Publications (2)

Publication Number Publication Date
JPS57156429A JPS57156429A (en) 1982-09-27
JPS60332B2 true JPS60332B2 (en) 1985-01-07

Family

ID=12662313

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4338481A Expired JPS60332B2 (en) 1981-03-20 1981-03-24 Manufacturing method of cyclohexanone

Country Status (1)

Country Link
JP (1) JPS60332B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0629208B2 (en) * 1987-03-30 1994-04-20 出光興産株式会社 Method for producing cycloalkanone
CN107051562B (en) * 2016-12-28 2019-07-16 中南大学 A kind of preparation method of the graphene-based carbonic acid Co catalysts for cyclohexene oxide

Also Published As

Publication number Publication date
JPS57156429A (en) 1982-09-27

Similar Documents

Publication Publication Date Title
KR930010405B1 (en) Alpha-(3-1-phenylethenyl) phenyl propionic aldehyde
US3932518A (en) Methylation of cyclohexanone with simultaneous dehydrogenation
US6680385B2 (en) Catalytic preparation of aryl methyl ketones using a molecular oxygen-containing gas as the oxidant
US4482758A (en) Process for the orthomethylation of phenolic compounds
JPS60331B2 (en) Method for producing cyclohexanone
JPS60332B2 (en) Manufacturing method of cyclohexanone
KR950014219B1 (en) (phenylethenyl)phenylopropionic acid and its ester, and metho for producing (benzoylphenyl)-propionic acid or its ester
CN109134538B (en) Iodophosphine oxide ligands, method for the production thereof, complexes, catalyst systems comprising the complexes and use thereof
CN109092372B (en) Catalyst and method for selectively oxidizing primary alcohol
US3968162A (en) Preparation of acetophenone
JPS6327445A (en) Method for synthesizing ethylene glycol from methanol
JPS60330B2 (en) Method for producing cyclopentanone
JPS61172851A (en) Method of dimerization of orthophthalic ester through oxidation and dehydrogenation
JPS62255456A (en) Production of diethylformamide
KR960015621B1 (en) Process for the preparation of cyclohexanone and cyclohexanol by part oxidation cyclohexane
JPS6092234A (en) Production of cyclopentanone
US4481374A (en) Process for the preparation of hydroxybenzaldehydes
JPS6137753A (en) Method of oxidizing cinnamic aldehyde
JPH03190837A (en) Production of tertiary-butylbenzaldehyde isomer mixture
JPS63168404A (en) Selective oxidative carbonyzation of conjugated diene
JPH0742247B2 (en) Method for producing [(1-phenylethenyl) phenyl] propionic acid and / or ester thereof
JPS6118530B2 (en)
JPH0421653B2 (en)
JPH08283186A (en) Production of alcohols
JP2600858B2 (en) Method for producing aromatic acetyl compound