JPS6091892A - Drive circuit of brushless motor - Google Patents

Drive circuit of brushless motor

Info

Publication number
JPS6091892A
JPS6091892A JP58197198A JP19719883A JPS6091892A JP S6091892 A JPS6091892 A JP S6091892A JP 58197198 A JP58197198 A JP 58197198A JP 19719883 A JP19719883 A JP 19719883A JP S6091892 A JPS6091892 A JP S6091892A
Authority
JP
Japan
Prior art keywords
rotor magnet
hall elements
phase
sum
voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58197198A
Other languages
Japanese (ja)
Inventor
Seishi Miyazaki
清史 宮崎
Jinichi Ito
仁一 伊藤
Hayato Naito
速人 内藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nidec Instruments Corp
Original Assignee
Sankyo Seiki Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sankyo Seiki Manufacturing Co Ltd filed Critical Sankyo Seiki Manufacturing Co Ltd
Priority to JP58197198A priority Critical patent/JPS6091892A/en
Publication of JPS6091892A publication Critical patent/JPS6091892A/en
Pending legal-status Critical Current

Links

Landscapes

  • Control Of Motors That Do Not Use Commutators (AREA)

Abstract

PURPOSE:To reduce the torque ripple of a brushless motor by accumulating the output voltage of a position detector by an accumulation calculator, controlling the position detector so that the sum voltage becomes constant, and setting the power number of the accumulation calculator so that the sum voltage becomes constant. CONSTITUTION:The outputs u, v, w of Hall elements Hu, Hv, Hw are amplified by coil drive amplifiers 12-14, and applied to drive coils 6-8. The outputs u, v, w of Hall elements Hu, Hv, Hw are squared by square calculators 15-17, respectively, added by an adder 18, and compared by an amplifier 19 with the reference voltage of a reference voltage source 20. The error voltage is fed back to Hall elements Hu, Hv, Hw, and the current (x) commonly flowed to the Hall elements Hu, Hv, Hw is controlled so that the sum of the squared values of the outputs of the elements Hu, Hv, Hw become equal to the reference voltage of the reference voltage source 20 by the feedback loop.

Description

【発明の詳細な説明】 本発明はブランレスモータの駆動回路1/C関する。[Detailed description of the invention] The present invention relates to a drive circuit 1/C for a branless motor.

従来、ブラフレス・モータの駆動回路は6相スイッチ/
グ駆即、方式か多く使われている。しかしこの方式はコ
イルリップルか例えは12U0スイノチノグ方式の場合
約13%発生し、ヌコイルのスイノチノグ駆動による騒
音の発生、電気ノイズの発生かあり、その対策に大ぎな
コ/テノサ等が必をで効率か悪くなったり外付部品が多
く+Jいたりするため小型化、コストの膚で不利である
Conventionally, the drive circuit for brushless motors uses a 6-phase switch/
This method is often used. However, this method generates coil ripple, for example, about 13% in the case of the 12U0 Suinochinog method, and generates noise and electrical noise due to the Suinochinog drive of the Nucoil. It is disadvantageous in terms of miniaturization and cost because it becomes fragile and requires many external parts.

そこでこの様な欠廣な無くずために回転fXIti桓出
川ホール用子の出力電圧なその−jt増幅してコイルを
駆動するアナログ駆動方式か考えられている。この方式
は】・1図、矛2図に示すものや特開昭53−6471
1号公報記載のもの等がある。4・1図、男・2図に示
1ものにおいて位動検出器を棺裁するホール素子Hu 
、Hv、Hwは1ii1,2から抵抗3.4を通して電
流が供給され、ロータマグネット5の磁束を検出するこ
とによってその回転位嘗を検出する。ロータマグネット
5は2n(nは1以上の整数)極に着磁されていて6相
の駆動コイル6〜8により回転付勢され、ロータマグネ
ット5の着磁分布か正弦波(或いは略正弦阪)となって
いることによってホール素子Hu、Hv。
Therefore, in order to eliminate such defects, an analog drive system has been considered in which the output voltage of the rotating fXIti Kanadegawa Hall connector is amplified by -jt to drive the coil. This method is shown in Figure 1 and Figure 2, and the one shown in JP-A-53-6471.
There are those described in Publication No. 1, etc. 4. Hall element Hu that detects the position detector in Figures 1 and 2.
, Hv, Hw are supplied with current from 1ii1, 2 through the resistor 3.4, and the rotational position of the rotor magnet 5 is detected by detecting the magnetic flux of the rotor magnet 5. The rotor magnet 5 is magnetized to 2n (n is an integer of 1 or more) poles and is urged to rotate by the 6-phase drive coils 6 to 8, and the magnetization distribution of the rotor magnet 5 is a sine wave (or approximately a sine wave). As a result, the Hall elements Hu, Hv.

Hw の出力電圧か正弦波となる。ここにホール素子H
u、Hv、Hwはロータマグネット5の周囲にして記動
されている。ホール素子Hu、Hv、Hwの出力電圧は
そのまま増幅器9〜11で増幅されて駆動コイル6〜8
な駆動し、その駆動電流Iu。
The output voltage of Hw becomes a sine wave. Hall element H here
u, Hv, and Hw are written around the rotor magnet 5. The output voltages of the Hall elements Hu, Hv, and Hw are amplified as they are by amplifiers 9 to 11 and driven by the drive coils 6 to 8.
drive current Iu.

Iv、Iwは矛6図に示すような波形となる。Iv and Iw have waveforms as shown in Figure 6.

今、駆動コイル6〜8の駆動電流Iu、Iv、’Iwと
、このプラ/レスモークの亀v+シ・トルク変換関数K
u、Kv、 Kw f Iu = sinθ、Iv= Sin (U−一π)1
Iw = sin’(θ −一π ) ICu = s’in θ、Kv = sin (θ 
−一π )IKw = sin (θ −−π ) とすると、このモータのトルクTm はTm=工u管K
u+Iv−Kv+Iw番Kwとなり、理論的にはホール
素子Hu 、、Hv 、Hw の出力か正弦成形で逆起
電圧か正弦成形でル)つてU。
Now, the drive currents Iu, Iv, 'Iw of the drive coils 6 to 8, and the torque conversion function K of this plastic/resmoke
u, Kv, Kw f Iu = sinθ, Iv= Sin (U-1π)1
Iw = sin'(θ-1π) ICu = s'in θ, Kv = sin(θ
−1π) IKw = sin (θ −−π), then the torque Tm of this motor is Tm=work u pipe K
The number u+Iv-Kv+Iw becomes Kw, and theoretically the output of the Hall elements Hu, Hv, Hw is sine-shaped and the back electromotive force is sine-shaped.

v、w相の位相、振幅が理想的である場合モータトルク
のリップルは矛6図に示すよ5K[Jになる。
If the phases and amplitudes of the v and w phases are ideal, the motor torque ripple will be 5K[J, as shown in Figure 6.

しかし実際にはモータトルクのリップルは種々の要因で
大きくなってしまい、又温度等によりモータ特性が変化
ずろ。モータトルクのリップルを悪化させる因子として
は位相因子、振幅因子、オフセント因子、全因子等があ
り、つまり矛4図(A)に示すようにホール素子Hv 
の位置ズレによりV相がJたけ位相ズレを生する等の位
相因子、ホール素子Hv の感度のバラツキにより矛4
図(B)等の振幅因子、ホール素子不平衡電圧及び増幅
器オフセットにより474図(C)K示すようVcv相
タマグネノトリル磁状態やロータマグネットとホール素
子とのエアキャノグにより1・4図(D)K示すよ5v
c、歪を生する等の全因子、ホール素子と駆動コイルと
の位置関係のスレにより4・4図(E)K示すようにH
たけ位相スレを生する等の位相因子などかある。
However, in reality, the motor torque ripple increases due to various factors, and the motor characteristics change due to temperature and other factors. Factors that worsen motor torque ripple include phase factor, amplitude factor, offset factor, total factor, etc. In other words, as shown in Figure 4 (A), Hall element Hv
Due to the phase factor such as the V phase having a phase shift of J amount due to the position shift of the
Due to the amplitude factor in Figure (B), Hall element unbalanced voltage, and amplifier offset, 474 Figure (C)K shows the Vcv phase magnetonotrile magnetic state, and the air canog between the rotor magnet and Hall element shows Figures 1 and 4 (D)K. Yo5v
c, due to all factors such as distortion, and the positional relationship between the Hall element and the drive coil, H as shown in Figures 4 and 4 (E)K
There are also phase factors that create thick phase threads.

次に上1〔アナログ駆動方式においてホール振子出力波
形のバラツキによるトルフリノブへの影響を説明する。
Next, we will explain the effect on the Trufflin knob due to the variation in the Hall pendulum output waveform in the above 1 [analog drive system].

モータ各相の逆起電力波形が電流・トルク変換関数Ku
、’Kv、Kwであり、この関数Ku、、Kv、 KW
を Ku = t sin O=−・・・・(11Kv’=
 t sin (θ−−x + pv ) −−−・・
(216 Kw = t sin (θ −−π 十 P ) −
−・−・1316 と表わす。ここにtu、tv、twはトルク定数最大値
、Pv、Pwは各相の理想位相からのすれである。しか
し一般的にモータのtu、tV、two)差、Pv、P
wはそれほど大きくないので、正規化してに’ = s
in O=−・・・・(41に’、 = sin (θ
−−π) ・−−(firに−=sin(θ−−π)・
・−・−・・(tl)とする。ホール素子Hu、Hv、
Hwの出力成形を増幅したコイル駆動N〜電圧波形Eu
、Ev、EwE、 = eusj、n (θ+pu) 
+ 職=・・・・ (7)2 E、=evsin(θ−−π+pv)+L、・−−−(
8)Ew = e w sin (θ −π + pw
 ) 7 Lw ゛ = (9)さ で表わされる。ここにe u + e v + e w
は振幅1■、pu、pv、p、、は位相ズレ角、Lu、
LV、L、、はオフセットである。コイル6〜80騙動
亀び1(起動電流分布)2.、■ヮ、Iwは各コイル6
〜8の抵抗iRu、RV、Rwとすると、 I、 = Eu/ Ru−・・・−αOI、、 = E
V/ RV−・”・IJUI、 = EW/ Rw ・
・・・−・・ (ロ)となる。今 Ru= Rv= RW u−ew Lu = Lw Pu’= Pw= Q としてV相のみ各パラメータが変化した時のトルクムラ
をみる。OQα1)(2)式を正規化してI’ = s
inθ ・−・・・ 似 坊= K sin (θ−−π+P ) + L ・・
−−04)楡=sin(θ−−π) ・・・・・・ Q
υとすると、モータのトルクTm は Tm ”” K’u I ’u ” K’v I ’v
 ” Kw I w ” −’ −” (ILI’とな
る。α4)式のに、P、Lを変化させた時のTmの渡化
を第5図(1A)11B)(i、c)(ID)に示す。
The back electromotive force waveform of each phase of the motor is the current/torque conversion function Ku
, 'Kv, Kw, and this function Ku, ,Kv, KW
Ku=t sin O=-...(11Kv'=
t sin (θ--x + pv) ---...
(216 Kw = t sin (θ −−π 10 P ) −
It is expressed as −・−・1316. Here, tu, tv, and tw are the maximum values of the torque constants, and Pv and Pw are the deviations of each phase from the ideal phase. However, in general, the motor's tu, tV, two) difference, Pv, P
Since w is not that large, normalize it and get ' = s
in O=-...(41', = sin (θ
−−π) ・−−(fir −=sin(θ−−π)・
・−・−・・(tl). Hall elements Hu, Hv,
Coil drive N ~ voltage waveform Eu that amplifies the output shaping of Hw
, Ev, EwE, = eusj, n (θ+pu)
+ Job=・・・(7)2 E,=evsin(θ−−π+pv)+L,・−−−(
8) Ew = e w sin (θ −π + pw
) 7 Lw ゛ = (9) It is expressed as. Here e u + e v + e w
is the amplitude 1■, pu, pv, p, , is the phase shift angle, Lu,
LV, L, is an offset. Coil 6-80 deception 1 (starting current distribution) 2. , ■ヮ, Iw are each coil 6
~8 resistances iRu, RV, Rw, I, = Eu/Ru-...-αOI,, = E
V/ RV-・”・IJUI, = EW/Rw・
・・・−・・(b) becomes. Now let us look at the torque unevenness when each parameter changes only in the V phase, with Ru = Rv = RW u-ew Lu = Lw Pu' = Pw = Q. OQα1) Normalize equation (2) to obtain I' = s
inθ ・−・ Similarity = K sin (θ−−π+P ) + L ・・
−−04) Elm=sin(θ−−π) ・・・・・・Q
If υ, then the motor torque Tm is Tm ``” K'u I 'u ''K'v I 'v
``Kw I w ''-'-''(ILI'. α4) Expression of Tm when P and L are changed is shown in Figure 5 (1A) 11B) (i, c) (ID ).

矛5図(1人)は位相ズレp=fJ、振幅ズレ\=0.
オフセノ)L=Dの場合でドルクリノズルはUとなる。
Figure 5 (one person) shows phase shift p=fJ, amplitude shift\=0.
(Offseno) When L=D, the Dorkuri nozzle becomes U.

同(1B)はに−−3[J% の場合でトルクリップル
は22.2% となる。lE:1(1C)はr、 = 
20%の場合でトルクリップルは26.7%となる。同
(1D)はP−15°の場合でドルクリノズルは17.
6%となる。このようにトルクリップルには各エラーの
影響が出てくるし、出力電圧の差3例えは牙5図(1B
)の場合平均トルク値も変化する。
In the same case (1B), the torque ripple is 22.2% in the case of -3 [J%. lE:1(1C) is r, =
In the case of 20%, the torque ripple is 26.7%. The same (1D) is for P-15° and the Dorkuri nozzle is 17.
It becomes 6%. In this way, torque ripple is affected by each error, and the difference in output voltage is shown in Figure 5 (1B).
), the average torque value also changes.

本発明は位詣検出器出力の位相ズレ、振幅ズレや、増幅
器のオフセット等があってもトルクリップルを減少させ
ることができるブランレスモータの駆動回路を提供する
ことを目的と′する、以下図面な参照しながら本発明に
ついて16を例・1(・ をあけて説明する。
The object of the present invention is to provide a drive circuit for a branless motor that can reduce torque ripple even if there is a phase shift or amplitude shift in the output of a position detector, an amplifier offset, etc. The present invention will be explained with reference to Example 1 (*1).

ツ・6図は本発明の一例を示す。Figures 2 and 6 show an example of the present invention.

この例ではl1li 81:ブランレスモータにおいて
ホール素子H1,11HV I HWの出力u、v、w
はコイル駆動用増幅器17〜14で増幅されて駆動コイ
ル6〜8に加えられ、且つホール素子Hu、Hv、HW
Q)几力u、v、w/+)2乗演算器15〜17で各々
2乗されてu2. v2. W2となる。このu2.v
2゜W2 は加算器18で加算されて増幅器19で基準
1、圧源200基準電圧Eと比較され、その誤差電圧が
ホール素子Hu、Hv、Hwに帰還される。従りてこの
帰還ループによりu、V 、W の和がEK晦しくなる
様に、ホール素子H,,Hv、HwK共通に流れろ電流
Xが制御される。
In this example, l1li 81: Hall element H1, 11HV I HW output u, v, w in a branless motor
is amplified by coil drive amplifiers 17 to 14 and applied to drive coils 6 to 8, and Hall elements Hu, Hv, HW
Q) Power u, v, w/+) Squared by square calculators 15 to 17, respectively, and u2. v2. It becomes W2. This u2. v
2°W2 is added by an adder 18 and compared with the reference 1 and the reference voltage E of the pressure source 200 in the amplifier 19, and the error voltage is fed back to the Hall elements Hu, Hv, and Hw. Therefore, this feedback loop controls the current X flowing through the Hall elements H, Hv, and HwK so that the sum of u, V, and W becomes equal to EK.

次にこの例についてトルクリノフな説明する。Next, this example will be explained in terms of Torkulinov.

ロータマグネット5から各ホール素子Hu、 HvIH
wvc入る磁束をA、B、Cとしホール素子Hu。
From the rotor magnet 5 to each Hall element Hu, HvIH
Let the magnetic fluxes entering wvc be A, B, and C, and use the Hall element Hu.

HV、Hwの出力u、v+ wY u = xA = x sin (/ −−・・・・ 
α力v=xB=x (Ksin (θ−−π+P)+L
+ ・・−・・・・ [相] w=xC=x sin (t) −−π ) ・・−・
−−(141として前記アナログ駆動方式の場合と同k
vc’w相ズレP、オフセットL、振幅ズレKによるト
ルクリップルへの影響をみる。この例ではu 十v +
w2=Eとなる様に帰還がかかつているのて゛、その条
件を満たすXをめると、 1 となる、そこで各相のコイル駆11i1+電圧波形は、
−一−−−−−”°゛°−°゛ (ハ)AIA−1−、
B+C となる。R,= Rv= Rwとし、名コイル駆動電流
を正規化してu == I’、、■=坊、w = I鋳
 とし、(4)(51(61式からトルクTm をめる
と、T ==uXK’ 十 vXK’ +wXKw’ 
+++++++ ’:A’m u ■ ° となる。位相スレP=’Ll、振幅スレ\=(J、
オフセットL = C10′)場合、t−5図(2A)
に示1よ5にトルクリップルは口となる。シ・5図(2
B)K示すようVCK = −30%の場合トルクリッ
プルは1.58係と小さい。】・5図(2C)に示すよ
うKL−2D%の場合トルクリップルは1.00% と
小さい。
HV, Hw output u, v+ wY u = xA = x sin (/ --...
α force v=xB=x (Ksin (θ−−π+P)+L
+ ・・−・・ [Phase] w=xC=x sin (t) −−π ) ・・−・
--(141 is the same k as in the case of the analog drive method)
Let's look at the effects of vc'w phase shift P, offset L, and amplitude shift K on torque ripple. In this example, u ten v +
Feedback is applied so that w2=E, so if we find X that satisfies that condition, it becomes 1.Then, the coil drive 11i1+ voltage waveform of each phase is
−1−−−−−”°゛°−°゛ (c) AIA-1−,
It becomes B+C. Let R, = Rv = Rw, normalize the coil drive current and set u = = I',, ■ = Bo, w = I casting, (4) (51 (If you add torque Tm from formula 61, T ==uXK' 10 vXK'+wXKw'
+++++++++ ': A'mu ■ °. Phase thread P='Ll, amplitude thread \=(J,
If offset L = C10'), t-5 diagram (2A)
The torque ripple becomes the mouth in 1 to 5 shown in . Figure 5 (2
B) As shown in K, when VCK = -30%, the torque ripple is as small as 1.58. ]・As shown in Figure 5 (2C), in the case of KL-2D%, the torque ripple is as small as 1.00%.

到・5図(2D)K示1ようにp=150の場合でもト
ルクリソグルは2.5係と小さい。トルクの平均値は上
記各場合とも約1.2で同じである。これは牙5図(2
B)の場合の様に振幅が変化してもトルク値が固定され
ることを意味し、ホール素子の温度特性や固々のケイン
のノくラツキによる影響をあまり受けない。
As shown in Figure 5 (2D) K1, even when p=150, the torque torque is as small as 2.5 coefficient. The average torque value is approximately 1.2 and the same in each of the above cases. This is Fang 5 (2
This means that the torque value is fixed even if the amplitude changes as in case B), and it is not affected much by the temperature characteristics of the Hall element or the irregularities of the solid Cain.

がとという一定値になることを第1」用してホール累子
の各出力の2乗の和が一定値になる様Vξホール素子の
入力に帰還をかけたものであるか、 I11相の正弦波
をそれぞれy乗したものの和Sはにニ1用 となり、m、y、sの関係は】・7図に示1ようになる
。従ってm相分の駆動コイル及び位置検出M]ホール素
子を持つm相のブランレスモーフにおい”(m個のホー
ル素子の各出力電圧なm個の累乗演算器でそれぞれy乗
して加算し、その和か一定値になる様にホール素子の入
力に帰庫をかけるようにしても上述の例と同様にトルク
リップルを減少させることかできる。但し矛7図から鴫
らかなようにyは上記和がゼロでない一定f■になるよ
うに設定する必要かあるために偶数に制限される。ま坩
・8図及び矛9図は本発明の一実症例;を示1゜ホール
素子Hu* Hy + Hwの出力は鼠算増幅器21〜
26.町変抵抗24〜ン9.抵抗60〜41よりなる増
幅器を介して2乗演算器15〜17及び増幅器12〜2
4に加えられる。増幅器12〜14は演算増幅器4ン〜
44.トラ/ジスタ45〜56.抵抗57〜68.コノ
テンサ69〜71よりなり、入力U。
Is it that feedback is applied to the input of the Vξ Hall element so that the sum of the squares of the outputs of the Hall transponder becomes a constant value, or The sum S of the sine waves raised to the y power is equal to 2, and the relationship among m, y, and s is as shown in Figure 7. Therefore, m-phase drive coils and position detection M] An m-phase Branless morph with a Hall element (each output voltage of the m Hall elements is raised to the y power by m power calculators, Torque ripple can be reduced in the same way as in the above example by applying return to the input of the Hall element so that the sum becomes a constant value.However, as shown in Figure 7, y is It is limited to an even number because it is necessary to set the sum so that it is a constant f■ that is not zero. Figure 8 and Figure 9 show an example of the present invention; 1° Hall element Hu* Hy + Hw output is from mouse amplifier 21~
26. Town change resistance 24~n9. Square calculators 15 to 17 and amplifiers 12 to 2 are connected via amplifiers made up of resistors 60 to 41.
Added to 4. Amplifiers 12-14 are operational amplifiers 4-
44. Tora/Jista 45-56. Resistance 57-68. Input U consists of cono tensa 69 to 71.

v、wを増幅して駆動コイル6〜8に加える。2乗演算
器15〜17はそれぞれ演舞増幅器72〜74゜電流源
75〜77及びトランジスタ78〜81よりなる市販の
集積回路を用いて構成され、両入力の掛算を行う。この
集積回路15〜17は電θILモードで動作するもので
、電圧モードで使用判るために抵抗82〜108.可変
抵抗1[J9〜111.演算増幅器112〜114か外
部KJIM例けられ、かつオフセット調整な行うために
可変抵抗115〜123及び抵抗124〜15(Jか設
けられている。演算増幅器112〜114の出力電圧u
、2 、v2 、W2は抵抗151〜155゜可変抵抗
156. 157及び鼠算増幅器158よりなる加算回
路で加算され、この加算回路から抵抗159゜16[j
を通してホール素子Hu、Hv、HWVC電流か供給さ
れることによりこの宿’OI[はu2+V2+w2−か
一定値と1fるよ5 K mll @lされる。
v, w are amplified and applied to drive coils 6-8. The squaring units 15-17 are constructed using commercially available integrated circuits consisting of performance amplifiers 72-74.degree. current sources 75-77 and transistors 78-81, respectively, and perform multiplication of both inputs. These integrated circuits 15 to 17 operate in electric θIL mode, and in order to be used in voltage mode, resistors 82 to 108. Variable resistance 1 [J9-111. The operational amplifiers 112 to 114 are equipped with an external KJIM, and variable resistors 115 to 123 and resistors 124 to 15 (J) are provided to perform offset adjustment.The output voltage u of the operational amplifiers 112 to 114 is
, 2, v2, and W2 are resistors 151 to 155° and variable resistors 156. 157 and an adder circuit consisting of a mouse amplifier 158. From this adder circuit, a resistor 159°16[j
By supplying currents to the Hall elements Hu, Hv, and HWVC through the hall elements, the current value of OI is set to u2+V2+w2- or a constant value of 1f to 5K mll@l.

矛10図は本発明の他の例を示す。この例は90゜位相
の2相ブランレヌモータにおける2相アナログ駆動方式
の例であり、位す検出器な構成するホール素子Ha、H
bはロータマグネットから入る90°位相差の磁束fi
、、Bを検出する。増幅器161゜162はホール素子
Ha、Hbの出力を増幅して2相の駆動コイル163.
 164を駆動しロータマグネットを回転させる。、ま
たホール素子Ha、、Hbの出力電圧a−,bは2乗演
算器165. 166で各々2乗されて加算器167で
加算され、増幅器168で基準昂圧源169の基準電圧
と比較されてその誤差電圧かホール素子Ha、Hbに帰
還される。従ってこの帰還によりa2.b2の和か基準
電圧に等しくなる様にホール素子Ha、HDの電流が制
御される。
Figure 10 shows another example of the invention. This example is an example of a two-phase analog drive system for a two-phase Braunrenu motor with a 90° phase, and the Hall elements Ha and H that make up the position detector are
b is the magnetic flux fi with a 90° phase difference entering from the rotor magnet
, ,B is detected. Amplifiers 161 and 162 amplify the outputs of the Hall elements Ha and Hb to drive two-phase drive coils 163.
164 to rotate the rotor magnet. , and the output voltages a-, b of the Hall elements Ha, , Hb are calculated by the square calculator 165 . They are each squared in step 166 and added in adder 167, and compared with the reference voltage of reference pressure source 169 in amplifier 168, and the error voltage thereof is fed back to Hall elements Ha and Hb. Therefore, due to this return, a2. The currents of the Hall elements Ha and HD are controlled so that the sum of b2 becomes equal to the reference voltage.

この例、ではホール素子Ha、Hbの人力A、Bと。In this example, Hall elements Ha and Hb are manually operated A and B.

電流・トルク変換関数に′A I K’BをA ”’ 
Sinθ B=KsinO(θ−−+P)+L ”A = sin Ij K’s = cos O とすると、5in2θ+c’os2θ=1 であるから
となり、モータトルクTIT] は Tm=に′Aa+に′Bb となる。上記帰煽がなくてホール素子1−]a、HbK
一定の電流か流れる場合矛11図(IA)K示寸ようV
C振幅ズレに=−3[1% のときにトルクリッフルが
65% Kなり、刈・11図(1B)に示1ようにオフ
セットL=20% のときにトルクリップルか4[J 
% ICす’)、 、;J’11図(I C) VC7
r:’!’ヨ5IC位相ズレp=150のとぎにトルク
リッフルか27% であった。しかし矛10図の例では
矛11図(2p、 ) Vc示1ようににニー3%でド
ルクリ・ノズルか16%になり、1・11図(2B)に
示すように5220%でトルクリップルが2%になり、
矛11[4%1(2c)に示1ようにP−15°でドル
クリノズルが6.5%になり、ドルクリノズルが大幅に
小さくなった。
'A I K'B to A ''' to the current/torque conversion function
Sinθ B=KsinO(θ--+P)+L''A=sin Ij K's=cos O Since 5in2θ+c'os2θ=1, the motor torque TIT becomes Tm='Aa+'Bb .Without the above-mentioned return, Hall element 1-]a, HbK
When a constant current flows, Figure 11 (IA) K shows V
When the C amplitude deviation = -3 [1%, the torque ripple becomes 65% K, and as shown in Fig. 11 (1B), when the offset L = 20%, the torque ripple becomes 4 [J].
% IC'), ;J'11 Figure (IC) VC7
r:'! The torque riffle was 27% after the IC phase shift p=150. However, in the example shown in Figure 10, the torque ripple becomes 16% at knee 3% as shown in Figure 11 (2p, It becomes 2%,
As shown in 1 (2c), the Dorkuri nozzle became 6.5% at P-15°, and the Dorkuri nozzle became significantly smaller.

900位相差の2相の正弦波なそれぞれy乗したものの
和S′は で表わされる。従って9110位相差の2相ブラソレス
モークにおいて各位餉検出用ホール素子の出力電圧なそ
れぞれy乗して加算し、その和か一定価になる様にホー
ル素子の入力に帰還をかけるようにしても牙10図の9
jlと同様にトルクリップルを減少させることかできる
。但し、yは上S[“和か一定値になるように選定する
必要かある。
The sum S' of two-phase sine waves with a phase difference of 900 times raised to the y power is expressed as follows. Therefore, in a two-phase Brasore smoke with a 9110 phase difference, the output voltages of the Hall elements for detecting each phase are added to the y power, and feedback is applied to the input of the Hall elements so that the sum becomes a constant value. fang 10 figure 9
Similarly to jl, torque ripple can be reduced. However, y needs to be selected so that it becomes the sum or a constant value.

なお上記位り←小器は感度を制御できるものであれはホ
ール素子以外のものでもよい。
Note that the small device mentioned above may be other than a Hall element as long as the sensitivity can be controlled.

以上のように本発明によれは位郁検出器の出力−圧に応
じて駆動コイルを駆動するブランレスモーフの駆動回路
において11ψ出器の出力量°圧な累乗演算器により各
々累乗して加算しその和電圧か一定値になる似に位謳わ
小器を市1」岬し、上61和電圧が一定値になるように
上記累乗演算器のべき数を設定するので、位砲扶小器出
力の位相ズレ。
As described above, according to the present invention, in the drive circuit of the Branless Morph that drives the drive coil according to the output voltage of the position detector, the output amount of the 11ψ output is multiplied by the exponentiation calculator and summed. The sum of the voltages is set to a constant value, and the power of the exponentiation calculator is set so that the sum of the voltages becomes a constant value. Output phase shift.

振幅ズレや増幅器のオフセット智かあってもトルクリッ
プルを蟲少きせることかできる。
Even if there is an amplitude deviation or amplifier offset, the torque ripple can be reduced to a minimum.

【図面の簡単な説明】[Brief explanation of drawings]

矛1図及o<−y+・2図は従来のブランレスモーフ及
びその駆動回路の一例を示す平…)図及υ・フロック線
図、矛6図は陶駆動回路の各部の波形及びトルクリッフ
ルを示す波形図、牙4図は同駆動回跡によるトルクリッ
フルしの悪化因子を説明判るための波形図、牙5図は同
駆動回路友O・本発明の一汐11によるトルクリンゲル
の実験結果を説明するための波ノし図、176図は本発
明の一例1な示ずブo 、7り線図、矛7図は本発明を
説明するだめの図、矛8図及び矛9図は本発明の一実癩
例を示す1!l!l路図、矛10 図は本発明の他の例
を示すプ0.7り線図、矛11 図は゛同flII及び
従来例によるトルクリッフルの実験結果を説明するだめ
の波形図である。 15〜17.165. 166 ・・・2乗演算器、1
8゜167・・・加算器。
Figure 1 and figure 2 show an example of a conventional branless morph and its drive circuit, and Figure 6 shows the waveform and torque riffle of each part of the drive circuit. The waveform diagram shown in Fig. 4 is a waveform diagram for explaining and understanding the aggravating factor of torque riffle due to the same drive circuit, and Fig. 5 is a waveform diagram to explain the test results of the torque ringer according to the same drive circuit friend O and Ichisho 11 of the present invention. Figure 176 is an example of the present invention. Figure 176 is an example of the present invention. Figure 176 is an example of the present invention. 1 showing an example of leprosy! l! Fig. 10 is a line diagram showing another example of the present invention, and Fig. 11 is a waveform diagram for explaining the experimental results of torque riffle according to flII and the conventional example. 15-17.165. 166...Square calculator, 1
8゜167...adder.

Claims (1)

【特許請求の範囲】 i、2n(nは1以上の整数)極に着磁されたロータマ
グネットと、このロータマグネットを回転付熱するm相
(mは2以上の整数)の駆動コイルと、上記ロータマグ
ネットの回転位置を検出するm個の位置検出器と、この
11個の位愉棟出器の出力電圧に応じて前aピ駆動コイ
ルを駆動する増幅器とを備えたブランレスモータにおい
て、前記位〜検出器の出力電圧をm個の累乗演算器によ
り各々累乗して加算し、この加算した和電圧が一定値と
なるように前記m個1の位置・検出器を制御する制一手
段な備え、Aft記m個の累乗演算器のべき数は前記和
電圧か一定値となる偶数に設定することを特許とするブ
ランレスモータの駆動回路。 2.2n 極に浩伍したロータマグネットのla伍分布
な略正弦波とし、このロータマグネットの回転位置を検
出した位置検出器の出力電圧を略正弦波として累乗演算
器に加えて累乗する特許請求の範囲牙1功記載のプラン
レスモータの駆動回路。
[Claims] A rotor magnet magnetized to i, 2n (n is an integer of 1 or more) poles, an m-phase drive coil (m is an integer of 2 or more) that rotates and heats the rotor magnet, In a branless motor equipped with m position detectors that detect the rotational position of the rotor magnet, and an amplifier that drives the front a pin drive coil according to the output voltage of the 11 positioning devices, A controlling means for controlling the m position/detectors such that the output voltages of the above-mentioned position detectors are respectively raised to powers by m power calculators and added, and the added sum voltage becomes a constant value. In addition, the drive circuit for a branless motor is patented in that the exponent of the m number of exponentiation calculators Aft is set to an even number that is equal to the sum voltage or a constant value. 2.2n A patent claim in which the output voltage of a position detector that detects the rotational position of the rotor magnet is made into a substantially sine wave with a la 5 distribution of a rotor magnet that is close to the 2n pole, and the output voltage is added to a power calculator as a substantially sine wave. The drive circuit for the planless motor described in the range of Fang 1 Gong.
JP58197198A 1983-10-21 1983-10-21 Drive circuit of brushless motor Pending JPS6091892A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58197198A JPS6091892A (en) 1983-10-21 1983-10-21 Drive circuit of brushless motor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58197198A JPS6091892A (en) 1983-10-21 1983-10-21 Drive circuit of brushless motor

Publications (1)

Publication Number Publication Date
JPS6091892A true JPS6091892A (en) 1985-05-23

Family

ID=16370440

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58197198A Pending JPS6091892A (en) 1983-10-21 1983-10-21 Drive circuit of brushless motor

Country Status (1)

Country Link
JP (1) JPS6091892A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4780651A (en) * 1986-05-14 1988-10-25 Matsushita Electric Industrial Co., Ltd. Speed control apparatus for a motor
JPH01136588A (en) * 1987-11-20 1989-05-29 Sankyo Seiki Mfg Co Ltd Driving and controlling circuit for brushless motor
JP2006525778A (en) * 2003-05-07 2006-11-09 ヴァレオ エキプマン エレクトリク モトゥール Method for controlling a reversible multiphase rotating electrical machine for an automobile having a heat engine
US7154238B2 (en) 2003-06-20 2006-12-26 Matsushita Electric Industrial Co., Ltd. Semiconductor integrated circuit including a motor driving control apparatus having an amplitude regulation circuit
JP2007255701A (en) * 2006-02-24 2007-10-04 Lube Corp Lubricating oil supply device

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5826583A (en) * 1981-08-07 1983-02-17 Secoh Giken Inc Torque ripples remover for dc motor

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5826583A (en) * 1981-08-07 1983-02-17 Secoh Giken Inc Torque ripples remover for dc motor

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4780651A (en) * 1986-05-14 1988-10-25 Matsushita Electric Industrial Co., Ltd. Speed control apparatus for a motor
JPH01136588A (en) * 1987-11-20 1989-05-29 Sankyo Seiki Mfg Co Ltd Driving and controlling circuit for brushless motor
JP2006525778A (en) * 2003-05-07 2006-11-09 ヴァレオ エキプマン エレクトリク モトゥール Method for controlling a reversible multiphase rotating electrical machine for an automobile having a heat engine
US7154238B2 (en) 2003-06-20 2006-12-26 Matsushita Electric Industrial Co., Ltd. Semiconductor integrated circuit including a motor driving control apparatus having an amplitude regulation circuit
JP2007255701A (en) * 2006-02-24 2007-10-04 Lube Corp Lubricating oil supply device

Similar Documents

Publication Publication Date Title
US6969988B2 (en) Angle determining apparatus and angle determining system
JP6583000B2 (en) Control device for rotating electrical machine
JPS6096191A (en) Drive circuit of brushless motor
JP2002360000A (en) Drive unit for synchronous motor
US20070164698A1 (en) Method and device for controlling motors
JPH0440959B2 (en)
JPS6350959B2 (en)
JPH03135392A (en) Circuit for driving brushless motor
JPS6091892A (en) Drive circuit of brushless motor
CN101102090A (en) Brushless DC motor
JPH10290593A (en) Drive circuit for sensorless brushless motor
EP0765026B1 (en) Brushless motor
GB2070354A (en) Electronically commutating motor
JPS60180493A (en) Driving device of multilayer brushless motor
WO1986000766A1 (en) Method of and apparatus for controlling a synchronous motor
JPS6333395B2 (en)
JP3309828B2 (en) Motor drive control device
JPH01136588A (en) Driving and controlling circuit for brushless motor
JP3302865B2 (en) Motor speed detector
US5874814A (en) Brushless motor driven by applying varying driving signals
TW591884B (en) Commutation detection device of non-sensor brushless DC motor and its method
WO2004077656A1 (en) Device for measuring speed of brushless motor
JPH01231679A (en) Drive control circuit for brushless motor
JP2022085226A5 (en)
JPH0574312B2 (en)