JPS6090843A - Manufacture of glass base material for optical fiber - Google Patents

Manufacture of glass base material for optical fiber

Info

Publication number
JPS6090843A
JPS6090843A JP19521083A JP19521083A JPS6090843A JP S6090843 A JPS6090843 A JP S6090843A JP 19521083 A JP19521083 A JP 19521083A JP 19521083 A JP19521083 A JP 19521083A JP S6090843 A JPS6090843 A JP S6090843A
Authority
JP
Japan
Prior art keywords
base material
fluorine
heat treatment
glass
atmosphere
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP19521083A
Other languages
Japanese (ja)
Inventor
Tsunehisa Kyodo
倫久 京藤
Gotaro Tanaka
豪太郎 田中
Minoru Watanabe
稔 渡辺
Naoki Yoshioka
直樹 吉岡
Hiroshi Shinba
榛葉 弘
Nobuo Inagaki
稲垣 伸夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Sumitomo Electric Industries Ltd
Original Assignee
Nippon Telegraph and Telephone Corp
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp, Sumitomo Electric Industries Ltd filed Critical Nippon Telegraph and Telephone Corp
Priority to JP19521083A priority Critical patent/JPS6090843A/en
Priority to US06/661,451 priority patent/US4586943A/en
Priority to DK497184A priority patent/DK158940C/en
Priority to CA000465912A priority patent/CA1248416A/en
Priority to EP84307222A priority patent/EP0139532B1/en
Priority to AT84307222T priority patent/ATE38823T1/en
Priority to DE8484307222T priority patent/DE3475294D1/en
Publication of JPS6090843A publication Critical patent/JPS6090843A/en
Priority to HK799/89A priority patent/HK79989A/en
Pending legal-status Critical Current

Links

Landscapes

  • Manufacture, Treatment Of Glass Fibers (AREA)

Abstract

PURPOSE:To obtain a glass base material for an optical fiber having high transmission characteristics by heating an aggregate of fine silicon oxide particles to remove impurities, heating it in an atmosphere of a gas contg. fluorine, and converting it into transparent glass by heating in a specified atmosphere. CONSTITUTION:An aggregate of fine quartz glass particles is put in the core tube of a furnace made of Al, and it is sintered. At this time, the 1st-step heat treatment mainly for dehydrating the aggregate and removing impurities is carried out at 800-1,200 deg.C, and the 2nd-step heat treatment mainly for adding fluorine is carried out at 1,100-1,400 deg.C in an atmosphere of gaseous fluorine or an inert gas contg. a fluorine compound. The 3rd-step heat treatment mainly for converting the aggregate into transparent glass is then carried out at >=1,400 deg.C for >=1hr in an atmosphere of gaseous He or under reduced pressure.

Description

【発明の詳細な説明】 本発明はドーパントの混入に伴シネ都合を最小限に抑え
、高い伝送特性を得ることのできる光フアイバ用ガラス
母材の製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing a glass preform for optical fibers, which can minimize the cine problems caused by the incorporation of dopants and obtain high transmission characteristics.

光フアイバ用ガラス母材はコア部とクラッド部とがらな
っており、コア部は中心部に位置し、光音伝送する都合
上クラッド部よシ屈折率を高くする必要がある。
The glass base material for optical fiber has a core part and a cladding part, and the core part is located in the center and needs to have a higher refractive index than the cladding part in order to transmit light and sound.

例えば第1図に示す屈折率差分布曲線において、シリカ
S iQ2を基準としコア部AのMFr率をクラッド部
Bよシ高める方法と心7は、通常GeQ2゜Alt O
n 、 TiO2など屈折率を高めるドーパントを石英
ガラス中に添加することが行なわれる。
For example, in the refractive index difference distribution curve shown in FIG.
A dopant that increases the refractive index, such as n, TiO2, is added to quartz glass.

ところが上記ドーパントの添加に伴い次の問題がある。However, the following problems arise with the addition of the above-mentioned dopant.

(イ) ドーパント量を増すとドーパント添加に由来す
る光散乱(レイリー散乱)を生じさせ、この散乱の大き
さはドーパント蓋に比例する。
(a) Increasing the amount of dopant causes light scattering (Rayleigh scattering) originating from dopant addition, and the magnitude of this scattering is proportional to the dopant lid.

かかる光散乱は光阪送上好ましくない。Such light scattering is undesirable for optical transmission.

(ロ) ドーパントを多量に添加するとガラス母材中に
気泡や結晶相を生じさせる。例えばGe0tはGeOガ
ス発生による気泡を生じ、A420mはhllxo3結
晶のクラスターが発生し易いOかかる気泡や結晶相の存
在は光伝送上の損失原因となり好ましくない0 以上のことからコア部とクラッド部との屈折率差を大き
く保ちながら、かつコア部のト°−ノくント量を出来る
だけ少なくすることがめられる。
(b) When a large amount of dopant is added, bubbles and crystal phases are generated in the glass base material. For example, Ge0t generates bubbles due to GeO gas generation, and A420m tends to generate clusters of hllxo3 crystals.The presence of such bubbles and crystal phases causes loss in optical transmission and is undesirable. It is desirable to keep the difference in refractive index large while reducing the amount of tunnel in the core as much as possible.

このため屈折率t(8めるフッ素全利用した製造方法が
考えられている。この方法はコア部にGeO2等のドー
パントを添加して予め屈折率を高め、クラッド部との間
に所定の屈折率差を形成した後に、フッ素を添加し、コ
ア部とクラッド部との屈折率差を維持したまま全体の屈
折率を下げ、シリカ5insの屈折重金基準として見掛
は上コア部のドーパント量を減少させて上記不都合を回
避するものである。しかしながら、このような製造方法
においてもフッ素の添加方法について種々の問題を残し
ている。例えば特公昭55−15682号に開示される
ようにガラス微粒子を生成する火炎加水分解時にフッ素
を添加する場合には、添加されるフッ素の絶対量が少な
く、また製造時間も長い。これは火炎中に存在する水分
とフッ素ガスとが例えば次式のように反応しゴガスを生
ずるためであると考えられる。
For this reason, a manufacturing method that fully utilizes fluorine with a refractive index of t (8) has been considered.In this method, a dopant such as GeO2 is added to the core to increase the refractive index in advance, and a predetermined refractive index is created between the core and the cladding. After forming the index difference, fluorine is added to lower the overall refractive index while maintaining the refractive index difference between the core part and the cladding part, and the apparent dopant amount in the upper core part is used as a refractive heavy metal standard for silica 5ins. However, even in such a manufacturing method, various problems remain regarding the method of adding fluorine.For example, as disclosed in Japanese Patent Publication No. 55-15682, glass fine particles are When fluorine is added during flame hydrolysis, the absolute amount of fluorine added is small and the production time is also long.This is because water present in the flame and fluorine gas react as shown in the following equation. This is thought to be due to the production of slag gas.

SFa + aHt O→sos + 6)IF (1
)この■゛ガス安定であり、高温下では水分のある限シ
殆んどのフッ素系ガスはこの征ガスに変換され、僅かに
残されたフッ素系ガスのみがドーパント原物として利用
されることになる。
SFa + aHt O→sos + 6) IF (1
) This ■゛ gas is stable, and at high temperatures, as long as there is moisture, most of the fluorine-based gas is converted to this gas, and only the remaining fluorine-based gas is used as the original dopant. Become.

更にこの■゛はガラス特に石英を侵食する作用がIC1
火炎中に生成したシリカ微粒子と容易に反応する。この
反応は下記に示す(2) 、 (3)式が考えられ、こ
の反応で生成微粒子が消耗される。
Furthermore, this ■゛ has the effect of corroding glass, especially quartz, and is known as IC1.
Easily reacts with silica particles generated in the flame. Equations (2) and (3) shown below can be considered for this reaction, and the generated fine particles are consumed by this reaction.

尚式中(S)は固体、(mlはガスを示す08i02(
S) + 2HF(g)→S iOF2(g) ” H
20(ω (2)SiOt(s) + 4]日r(g)
−+SiFt(g)+2HzOCg) (3)このため
シリカ微粒子の堆積を抑える作用が働き、フッ素系ガス
の添加量を増やすとともにシリカ微粒子の堆積速Kが低
下し、最終的には全く堆積しない状態となる。
In the formula, (S) is solid, (ml is gas 08i02(
S) + 2HF(g) → S iOF2(g) ”H
20(ω (2)SiOt(s) + 4] day r(g)
-+SiFt(g)+2HzOCg) (3) Therefore, the effect of suppressing the deposition of silica fine particles works, and as the amount of fluorine-based gas added increases, the deposition rate K of silica fine particles decreases, and eventually a state where no deposition occurs at all occurs. Become.

次に特開昭55−67533号にはガラス微粒子集合体
を製造後、その焼結をフッ素雰囲気中で行い、フッ素を
ドープする方法が開示されている。ところがこの方法に
おいてもフッ素の添加速度が遅く、更にCu、 Feの
混入を招く不都合が時としてみられる。また1400℃
以上に焼結する際、ガラス母材の表面が著しくエツチン
グされ、表面の平滑なガラス母材を得ることができない
という問題もある。更にかかるエツチングの結果、炉心
管中の不純物がガラス微粒子体中に侵入し易くなるとい
う不都合もある。
Next, JP-A No. 55-67533 discloses a method in which a glass particle aggregate is produced and then sintered in a fluorine atmosphere to dope it with fluorine. However, even in this method, the rate of addition of fluorine is slow, and there are sometimes disadvantages in which Cu and Fe are mixed in. Also 1400℃
When sintering as described above, there is a problem that the surface of the glass base material is markedly etched, making it impossible to obtain a glass base material with a smooth surface. Furthermore, as a result of such etching, there is the disadvantage that impurities in the furnace tube tend to penetrate into the glass particles.

本発明は上記従来の製造法にみられる不都合を解消し、
高い伝送特性を得ることのできる光フアイバ用ガラス母
材の製造方法を提供するものであって、その構成は、酸
化珪素を主成分とするガラス微粒子集合体を加熱処理し
て光7アイバ用透明ガラス母材を製造する方法において
−1上記ガラス微粒子集合体全脱水し、不純物を除去す
るための第一熱処理を施し、次いで少なくともフッ素な
いしフッ素化合物を含むガス雰囲気中でフッ素全添加す
るための第二熱処理を施し、最後に透明ガラス化のため
の第三熱処理をヘリウムガス雰囲気若しくは減圧状態下
で施すことを特徴とする。
The present invention eliminates the disadvantages found in the above conventional manufacturing methods,
The present invention provides a method for manufacturing a glass base material for optical fibers that can obtain high transmission characteristics, and the structure is such that a transparent glass base material for optical fibers is produced by heat-treating a glass particle aggregate containing silicon oxide as a main component. In the method for producing a glass base material-1, the above-mentioned glass fine particle aggregate is completely dehydrated, subjected to a first heat treatment to remove impurities, and then subjected to a first heat treatment to completely add fluorine in a gas atmosphere containing at least fluorine or a fluorine compound. It is characterized by performing two heat treatments, and finally performing a third heat treatment for transparent vitrification in a helium gas atmosphere or under reduced pressure.

以下に本発明を実施例と共に詳細に説明する。The present invention will be explained in detail below along with examples.

本発明はガラス微粒子集合体(スート母材)を形成後、
その焼結時にフッ素を添加するものであシ、この焼結を
独自の方法に上り行うものである。
In the present invention, after forming a glass particle aggregate (soot base material),
Fluorine is added during sintering, and this sintering is performed using a unique method.

まず石英ガラスの微粒子集合体即ちスート母材は、これ
まで常用されている徨々の方法によって得られるものを
広く用いることができる。
First, as the quartz glass fine particle aggregate, that is, the soot base material, those obtained by various methods that have been commonly used can be widely used.

この−例を第2図<a) (b)に示す。第2図(aJ
はVAD法、第2図(b)は外付法によるノM合を示す
。図中1は燃焼用バーナであり、2.3.4.5は原料
ガスの供給口、6は出発部材、7は石英ガラスの微粒子
集合体である。これら各製造法によって得られるスート
母材はコア部にGe0z等が添加され、例えば第3図に
示す屈折率分布を有している。
An example of this is shown in FIGS. Figure 2 (aJ
shows the M combination by the VAD method, and FIG. 2(b) shows the M combination by the external method. In the figure, 1 is a combustion burner, 2, 3, 4, 5 is a supply port for raw material gas, 6 is a starting member, and 7 is an aggregate of fine particles of quartz glass. The soot base material obtained by each of these manufacturing methods has a core portion doped with Ge0z, etc., and has a refractive index distribution as shown in FIG. 3, for example.

次に上記スート母材を純石英からなる炉心管又はアルミ
サ製の炉心管に装入し、焼結する。この場合、まず上記
スート母材の脱水、不純物除去を主眼とした第一段階の
加熱処理を行う。この第一段階の加熱処理は800℃〜
1200℃の温度範囲が好ましい。800℃以下では不
純物を除去することができず、かつ、脱水にも時間がか
かる。1200℃以上にするとスート母材の収縮が起シ
始め、第二段階の加熱処理においてフッ素全スート母材
に添加するのが困難になる。加熱時間は通常約2〜4時
間でよい。
Next, the soot base material is charged into a furnace tube made of pure quartz or a furnace tube made of Aluminum and sintered. In this case, first, a first-stage heat treatment is performed that focuses on dehydrating the soot base material and removing impurities. This first stage heat treatment is at 800℃~
A temperature range of 1200°C is preferred. At temperatures below 800°C, impurities cannot be removed and dehydration takes time. When the temperature exceeds 1200° C., the soot base material begins to shrink, making it difficult to add fluorine to the all-soot base material in the second stage heat treatment. Heating time may generally be about 2 to 4 hours.

更に焼結雰囲気としては高純度な不活性ガス雲囲気中で
行うとよく、又、不活性ガス3囲気に塩素系ガスを添加
しても効果的な脱水不純物の除去全行うことができる。
Furthermore, the sintering atmosphere is preferably carried out in a high-purity inert gas cloud, and even if a chlorine-based gas is added to three inert gas atmospheres, effective dehydration and impurity removal can be achieved.

因に塩素系ガスとしてはCA2 、5OCA2. CO
Cl2. CC6,等を用いることができる。
Incidentally, chlorine-based gases include CA2, 5OCA2. C.O.
Cl2. CC6, etc. can be used.

尚、フッ素ガスによるエツチングを効果的に防止するた
めには、不活性ガスの濃度を80容量−以上にするのが
好ましいが、Otsでも大きな支障はない。又、塩素系
ガスの濃度は約10容量−程度で充分である。
In order to effectively prevent etching due to fluorine gas, it is preferable that the concentration of the inert gas be 80 vol. or more, but Ots may also be used without any major problem. Further, a concentration of chlorine gas of about 10 volumes is sufficient.

上記第一段階の加熱処理に引き続いて、フッ素の添加を
主眼とした第二段階の加熱処理を行う。この場合の温度
は1100℃〜1400℃の範囲が好ましい。焼結雰囲
気としてはフッ素ガスないしフッ素化合物ガスを添加し
た不活性ガス雰囲気中で行う。上記フッ素化合物として
i、ICF、。
Following the first stage heat treatment described above, a second stage heat treatment is performed which focuses on the addition of fluorine. The temperature in this case is preferably in the range of 1100°C to 1400°C. The sintering atmosphere is an inert gas atmosphere containing fluorine gas or fluorine compound gas. i, ICF, as the above fluorine compound;

SFa 、 5IF4 、CoFt等會用いることがで
きる@また不活性ガスとしてはN2 * Ar * O
x等を用いることができる。尚、昇温に際し、2〜b分
の割合で加熱した。第4図に昇温速度とスート母材への
フッ素添加量との関係を示す。図から明らかなように昇
温速度が遅い程フッ素の添加量が多いことが判る。
SFa, 5IF4, CoFt, etc. can be used. Also, as an inert gas, N2 * Ar * O
x etc. can be used. In addition, when raising the temperature, it was heated at a rate of 2 to b minutes. FIG. 4 shows the relationship between the temperature increase rate and the amount of fluorine added to the soot base material. As is clear from the figure, the slower the temperature increase rate, the greater the amount of fluorine added.

第5図にフッ素系ガス添加雰囲気の処理温度とフッ素添
加量に対応する屈折率差Δnの関係を示す。尚この場合
、焼結雰囲気は塩素ガス1moAチr SFe 10m
oA!チを含むHeガス雰囲気であり、図示する各温度
vi−3時間保持したものの屈折率差Δnt−示す。図
から明らかなように1100℃〜1400°0の温度範
囲において屈折率差Δnが大きいフッ素を添加すること
からこの範囲が加熱処理の温度として好適であることが
判る。
FIG. 5 shows the relationship between the refractive index difference Δn corresponding to the processing temperature in the fluorine-based gas-added atmosphere and the amount of fluorine added. In this case, the sintering atmosphere is 1 moA of chlorine gas and 10 m of SFe.
oA! The refractive index difference Δnt- is shown for each temperature vi-held for 3 hours. As is clear from the figure, since fluorine is added which has a large refractive index difference Δn in the temperature range of 1100° C. to 1400° C., it can be seen that this range is suitable as the temperature for the heat treatment.

尚、加熱処理温度が1400℃以上の場合にはスート母
材の収給が早く、フッ素が効果的に添加されない。又、
フッ素系ガスの添加濃度としては20 mol fbま
でが好ましい。これは訃程度ではないが添加濃度が多過
ぎるとフッ素ガスによるエツチングが若干生じ易くなる
ためである。
Note that when the heat treatment temperature is 1400° C. or higher, the soot base material is recovered quickly and fluorine is not effectively added. or,
The concentration of the fluorine gas added is preferably up to 20 mol fb. Although this is not a serious problem, etching due to fluorine gas becomes a little more likely to occur if the concentration of addition is too high.

上記加熱処理に引き続き、透明ガラス化全主眼とする第
三段階の加熱処理を施す。加熱温度は1400°0以上
、少なくとも・1時間保持するとよい。1400℃以下
ではガラス微粒子が残留し焼結が不充分となる。更に好
ましくは1600℃以上と一+2士ぶ ?1八> 小惧
春嬉幼招私凰品f刈九比較的短時間で透明ガラス化する
ことができる。
Following the above-mentioned heat treatment, a third stage of heat treatment is performed, the main purpose of which is to produce transparent vitrification. The heating temperature is preferably 1400° or higher and maintained for at least 1 hour. If the temperature is below 1400°C, glass particles remain and sintering becomes insufficient. More preferably 1600℃ or higher and 1+2? 18> It can be made into transparent glass in a relatively short time.

又、上記第三段階の加熱処理をHeガス雰囲気若しくは
減圧状態下で行う。一般に透明ガラス化のための焼結は
Arガス、N2カス雰囲スで行なわれるが、ガラス微粒
子の粒径分布が広く、即ち微粒子の粒径がバラツキの大
きい場合には通常の焼結雰囲気ではスート母材の焼結収
縮時に気泡が残留し易く、好適な透明化を達成すること
ができない。
Further, the heat treatment in the third stage is performed in a He gas atmosphere or under reduced pressure. Generally, sintering for transparent vitrification is performed in an Ar gas or N2 gas atmosphere, but if the particle size distribution of the glass particles is wide, that is, the particle size of the particles has a large variation, the normal sintering atmosphere is not suitable. Bubbles tend to remain during sintering and shrinkage of the soot base material, making it impossible to achieve suitable transparency.

一方、気泡の発生頻度は、Nt >Ar > I4eの
順に従う。このためHeガス雰囲気で焼結するとArN
2に比べ脱泡作用が大きいため残留気泡の大幅に少ない
焼結体を得ることができる。又、減圧によっても脱泡効
果全促進することができる。
On the other hand, the frequency of bubble generation follows the order of Nt > Ar > I4e. Therefore, when sintered in a He gas atmosphere, ArN
Since the defoaming effect is greater than that of No. 2, a sintered body with significantly fewer residual air bubbles can be obtained. Further, the defoaming effect can be fully promoted by reducing the pressure.

上記加熱処理の一例を第7図に模式図として示す。又、
この加熱処理の結果書られるガラス母材の屈折率分布の
一例を第6図に示す。スート母材形成時には第3図に示
す屈折率分布であったものが、本発明の加熱処理の結果
第6図に示すrりにコア部の中rfs fiクラッド郁
J−Hilnチの屈折率差Δnf維持しながら母材全体
としては約0.2 %屈折率が低下している。
An example of the above heat treatment is shown schematically in FIG. or,
An example of the refractive index distribution of the glass base material drawn as a result of this heat treatment is shown in FIG. When the soot base material was formed, the refractive index distribution was as shown in Fig. 3, but as a result of the heat treatment of the present invention, the refractive index difference in the core part was changed to that shown in Fig. 6. While maintaining Δnf, the refractive index of the base material as a whole decreases by about 0.2%.

以上説明したように本発明においては第一段階の加熱処
理によりスート母材の脱水、不純物の除去を行うため該
スート母材を用いた光ファイバでは不純物に起因する伝
送損失を大幅に解消することができる。即ち、スート母
材を脱水する結果、フッ素ガスを添加した際、フッ酸部
の生成が抑えられる。この度は多量に存在すると炉心管
全侵蝕し、壁内の不純物を露出させ、スート母材への不
純物混入の要因となる。更に不純物が系外へ除去される
ためスート母材への混入が防止される。例えば雰囲気中
にCuOが存在しても、800℃以上の加熱雰囲気にお
いては、2CuO(s) d Cu20(g) 十”/
2oz のようにCu、0ガスとなシ系外へ除去される
。この反応は高温になる程cu2oガスの生成が進み、
1000℃以上で非常に効果的である。更に塩素ガスを
添加した場合、次の反応式に従い系内の Cu0(s) + C1*→CuCA’t (g) ”
 340t(g)不純物CuOはCuCJ、ガスとなり
W易に系外へ排出される。Fe?203の不純物も同様
である。
As explained above, in the present invention, the first stage of heat treatment dehydrates the soot base material and removes impurities, so that transmission loss caused by impurities can be largely eliminated in optical fibers using the soot base material. Can be done. That is, as a result of dehydrating the soot base material, the generation of hydrofluoric acid moieties is suppressed when fluorine gas is added. If present in large quantities, it will corrode the entire furnace tube, exposing impurities in the wall, and causing impurities to be mixed into the soot base material. Furthermore, since impurities are removed from the system, contamination with the soot base material is prevented. For example, even if CuO exists in the atmosphere, in a heated atmosphere of 800°C or higher, 2CuO(s) d Cu20(g) 10”/
As with 2oz, Cu and 0 gas are removed from the system. In this reaction, the higher the temperature, the more Cu2O gas is produced.
Very effective at temperatures above 1000°C. When chlorine gas is further added, Cu0(s) + C1*→CuCA't(g) in the system according to the following reaction formula.
340t (g) The impurity CuO becomes CuCJ and gas and is easily discharged from the system. Fe? The same applies to impurity 203.

また、スート母材を脱水し、フッ酸■1の生成を抑える
ことから、ガラス母材のエツチングが防止され表面の平
滑なガラス母材ヲ得ることができると共に炉心管などの
腐食をも防止することができる。
In addition, since the soot base material is dehydrated and the generation of hydrofluoric acid (1) is suppressed, etching of the glass base material is prevented, making it possible to obtain a glass base material with a smooth surface, and also preventing corrosion of the furnace core tube, etc. be able to.

次に本発明の実施例全示す。Next, all examples of the present invention will be shown.

実施例1.第3図に示す屈折率分布を有するスート母材
を加熱炉に装入し、純Heガスヲ10身分の割合で炉内
部に供給し、600℃の加熱温度で3時間保持した。引
き続き、10分後に1100℃まで昇温し、次いで11
00℃の温度下でHeガス中にSFa t−100CC
−/分の割合で供給すると共に3.3゛0/分の昇温速
度で1400°Cまで昇温した。1400゛0の温度を
1時間保った後Heガス’1lOl/分の割合で炉内に
供給すると共に炉内を1500”0に加熱し、透明ガラ
ス化した。得られたガラス母材は第6図に示す屈折率分
布を有しており、伝送損失特性は1.30μmで1.2
dB/km 、 OH量は0.01ppmであった。
Example 1. A soot base material having the refractive index distribution shown in FIG. 3 was charged into a heating furnace, and pure He gas was supplied into the furnace at a ratio of 10 parts, and the heating temperature was maintained at 600° C. for 3 hours. Subsequently, the temperature was raised to 1100°C after 10 minutes, and then the temperature was increased to 1100°C.
SFa t-100CC in He gas at a temperature of 00℃
-/min, and the temperature was raised to 1400°C at a heating rate of 3.30/min. After keeping the temperature at 1400'0 for 1 hour, He gas was supplied into the furnace at a rate of 1 lOl/min, and the inside of the furnace was heated to 1500'0 to produce transparent vitrification.The obtained glass base material was It has the refractive index distribution shown in the figure, and the transmission loss characteristic is 1.2 at 1.30 μm.
dB/km, and the OH amount was 0.01 ppm.

尚、本実施例において第一段階の加熱温度を800℃と
したところ得られたファイバの不純物による伝送損失は
1.30 ttmで0.8 da/km であシ、大幅
に伝送損失が改善された。
In this example, when the heating temperature in the first stage was set to 800°C, the transmission loss due to impurities in the obtained fiber was 0.8 da/km at 1.30 ttm, and the transmission loss was significantly improved. Ta.

同様に第一段階の加熱温度t−1100℃としたところ
得られたファイバの不純物による伝送損失は1.30μ
mで0.6 d B/kmであシ伝送損失の改善効果が
著しかった。
Similarly, when the first stage heating temperature was set to t-1100℃, the transmission loss due to impurities in the fiber obtained was 1.30μ.
The improvement effect on transmission loss was remarkable at 0.6 dB/km.

実施例2.上記実施例1と同様の製造例において、第一
段階の加熱処理の際、純Heガス雰囲気中K O,5〜
5 mol ToのCIJ、ガスを供給した。更に第一
段階の加熱温度t−1100℃としたところ、これを1
0分程度保持した場合にも得られたファイバ中に不純物
の痕跡がないことが得られたファイバの伝送損失特性か
ら確認された。
Example 2. In a manufacturing example similar to Example 1 above, during the first stage heat treatment, K O, 5 ~
5 mol To of CIJ, gas was supplied. Furthermore, when the heating temperature of the first stage was set to t-1100℃, this was changed to 1
It was confirmed from the transmission loss characteristics of the obtained fiber that there was no trace of impurities in the obtained fiber even when the fiber was held for about 0 minutes.

尚、本実施例において、SF、を含む雰囲気にCA2ガ
スヲ0.5〜5mo/*添加したところ得られたファイ
バ中には不純物の痕跡が全く認められなかった。
In this example, when 0.5 to 5 mo/* of CA2 gas was added to an atmosphere containing SF, no trace of impurities was observed in the fiber obtained.

実施例3. コア部のカサ密Kを0.4.li’/m、
クラッド部のカサ密度f O,2fl / cm”とな
るように調整した多孔質母材を作製し、前記スート母材
t0.5〜5 malt−〇J、を添加したHeガス雰
囲気中で、800’O〜1200℃まで昇温し、次イテ
12o。
Example 3. The bulk density K of the core part is 0.4. li'/m,
A porous base material was prepared so that the bulk density of the cladding part was fO, 2 fl/cm'', and the soot base material was heated at 800 mA in a He gas atmosphere to which the soot base material t0.5 to 5 malt-〇J was added. ' Raise the temperature to 1200℃ and then heat at 12o.

℃で1時間保持した。その後2〜5 moA!%のフッ
素ガスをさらに添加し1400℃まで昇温した。
It was kept at ℃ for 1 hour. Then 2-5 moA! % of fluorine gas was further added and the temperature was raised to 1400°C.

このようにして得られた前記母材を最高温度が1650
℃の減圧されたHeガス雰囲気下にあるゾーン加熱炉内
へ3〜4 nm7分の下降速度で挿入し透明ガラス化し
た。得られた母材はコア部は殆んど純シリカに対応する
屈折率ヲ有し、クラッド部はフッ素が添加された屈折率
であった。これをファイバー化したところ伝送損失特性
は1.30μmで0.4 dB/kmであった。
The maximum temperature of the base material thus obtained was 1650°C.
The sample was inserted into a zone heating furnace under a reduced pressure He gas atmosphere at a temperature of 3 to 4 nm at a descending speed of 7 minutes to form transparent vitrification. The core portion of the obtained base material had a refractive index almost corresponding to pure silica, and the cladding portion had a refractive index doped with fluorine. When this was made into a fiber, the transmission loss characteristics were 0.4 dB/km at 1.30 μm.

実施例4. VAD法を用いて十分に脱水した外径51
11の純5iOJ(H出発コア用材料とし、この外表面
上に、5iCIlt−火炎加水分解し、純S iQ1微
粒子を合成し、このS io2微粒子を前記純5iOt
ll上に堆積させた。堆積後の外径を約100snとし
、この母材全1100’o、3時間脱水処理を行った。
Example 4. External diameter 51 sufficiently dehydrated using the VAD method
11 pure 5iOJ (H) was used as the starting core material, and on the outer surface of this, pure SiQ1 fine particles were synthesized by 5iCIlt-flame hydrolysis, and the Sio2 fine particles were synthesized with the pure 5iOt
Deposited on ll. The outer diameter after deposition was set to about 100 sn, and the base material was dehydrated for 3 hours at a total temperature of 1100'.

雰囲気としては、Cj2全1全1チルチ含有He雰囲気
を用いた。この後、C12の流量をOとし、SF、を5
モルチ流し、3.3°0/分の昇温速度で1400℃ま
で昇温した。その後、さらにHeガス供給下で1500
°0まで加熱し透明ガラス化した。得られたガラス母材
は、クラッド・コアの比率が10倍であり、クラッド部
の屈折率値としては、石英に比べ0.4%低い構造を有
していた。この母材を外径20隨に引伸し、外径32.
5龍×内径22m11の石英ガラス管内にセットして線
引し、外径12541.1のファイバとした。得られた
7アイパは1゜3μm波長において伝送損失は1 dP
y’km以下であった。又1.39μm波長のt+hピ
ークは5d胎m以下であった。
As the atmosphere, a He atmosphere containing Cj2 all 1 all 1 tilt was used. After this, the flow rate of C12 is set to O, and SF is set to 5.
The mixture was poured with mortar and heated to 1400° C. at a heating rate of 3.3°/min. After that, 1500
It was heated to 0°C and turned into transparent glass. The obtained glass base material had a structure in which the cladding/core ratio was 10 times higher and the refractive index value of the cladding portion was 0.4% lower than that of quartz. This base material was enlarged to an outer diameter of 20 mm, and an outer diameter of 32 mm.
The fiber was set in a quartz glass tube measuring 5 x 22 m in inner diameter and drawn to obtain a fiber with an outer diameter of 12541.1 mm. The resulting 7-eyeper has a transmission loss of 1 dP at a wavelength of 1°3 μm.
It was less than y'km. Furthermore, the t+h peak at a wavelength of 1.39 μm was less than 5 days long.

【図面の簡単な説明】[Brief explanation of drawings]

第1図(a) (b)は光ファイバの屈折率分布図、第
2図(a) (b)はスート母材の製造を示す説明図、
第3図は本発明の実施例に係るスート母材の屈折率分布
図、第4図は本発明における屈折率差と昇温速度との関
係、を示すグラフ、第5図は本発明における処理温度と
屈折率差との関係を示すグラフ、第6図は本発明の実施
例における加熱処理後のガラス母材の屈折率分布図、第
7図は本発明の加熱処理の一例を示す模式図。図中、1
・・・バーす、2,3,4.5・・・ガス供給口、6・
・・出発部材、7・・・スート母材である。 特許出願人 住友電気工業株式会社 日本電信電話公社 代理人 弁上 光石士部(他1名) 第1図 第2図 (a) (a) ノ1 〜2 3 (4 ′−5 (b) (b) 第3図 第6図 第4図 2 4 6 8 10 臂渭速度(’Cm1n) o C101mo?/。 SF65mo−?/。 X C105moe’/。 SF65moe’/。 ΔCL21 moe’i。 SF620motO/。 第5図 Boo 1000120014ω1600別】ヨ里−線
 (@C)
Figure 1 (a) (b) is a refractive index distribution diagram of an optical fiber, Figure 2 (a) (b) is an explanatory diagram showing the production of a soot base material,
Fig. 3 is a refractive index distribution diagram of the soot base material according to the embodiment of the present invention, Fig. 4 is a graph showing the relationship between the refractive index difference and the temperature increase rate in the present invention, and Fig. 5 is the treatment in the present invention. A graph showing the relationship between temperature and refractive index difference, FIG. 6 is a refractive index distribution diagram of a glass base material after heat treatment in an example of the present invention, and FIG. 7 is a schematic diagram showing an example of heat treatment of the present invention. . In the figure, 1
... Bars, 2, 3, 4.5... Gas supply port, 6.
... Starting member, 7... Soot base material. Patent Applicant: Sumitomo Electric Industries, Ltd. Nippon Telegraph and Telephone Public Corporation Agent: Shibe Mitsuishi (and one other person) Figure 1 Figure 2 (a) (a) Nos. 1 to 2 3 (4'-5 (b) b) Figure 3 Figure 6 Figure 4 2 4 6 8 10 Arm speed ('Cm1n) o C101mo?/. SF65mo-?/. Figure 5 Boo 1000120014ω1600] Yori-line (@C)

Claims (1)

【特許請求の範囲】 (1) 酸化珪素を主成分とするガラス微粒子集合体を
加熱処理して光ファイバ用透明ガラス母材ヲ製造する方
法において、上記ガラス微粒子集合体を脱水し、不純物
を除去するための第−熱処理音節し、次いで少なくとも
フッ素ないしフッ素化合物を含むガス雰囲気中でフッ素
を添加するための第二熱処理を施し、最後に透明ガラス
化のための第三−処理をヘリウムガス雰囲気若しくは減
圧状態下で施すことを特徴とする光フアイバ用ガラス母
材の製造方法。 (り 特許請求の範囲第1項において、第一熱処理が8
00〜1200℃、第二熱処理が1100℃〜1400
°C1第三熱処理が1600℃以上の温度範囲であるこ
と全特徴とする光フアイバ用ガラス母材の製造方法。 (3)特許請求の範囲第1項において、パイプ状ロンド
状のガラス微粒子集合体を用いることを特徴とする光フ
アイバ用ガラス母材の製造方法。
[Claims] (1) A method for producing a transparent glass base material for an optical fiber by heat-treating a glass particle aggregate containing silicon oxide as a main component, in which the glass particle aggregate is dehydrated to remove impurities. A second heat treatment is carried out to add fluorine in a gas atmosphere containing at least fluorine or a fluorine compound, and finally a third heat treatment is carried out to obtain transparent vitrification in a helium gas atmosphere or a helium gas atmosphere. A method for producing a glass base material for optical fiber, characterized in that the process is performed under reduced pressure. (In claim 1, the first heat treatment is
00~1200℃, second heat treatment 1100℃~1400℃
A method for producing a glass base material for optical fiber, characterized in that the third heat treatment is performed in a temperature range of 1600°C or higher. (3) A method for producing a glass preform for optical fiber according to claim 1, characterized in that a pipe-like, rond-like glass fine particle aggregate is used.
JP19521083A 1983-10-20 1983-10-20 Manufacture of glass base material for optical fiber Pending JPS6090843A (en)

Priority Applications (8)

Application Number Priority Date Filing Date Title
JP19521083A JPS6090843A (en) 1983-10-20 1983-10-20 Manufacture of glass base material for optical fiber
US06/661,451 US4586943A (en) 1983-10-20 1984-10-16 Method for the production of glass preform for optical fibers
DK497184A DK158940C (en) 1983-10-20 1984-10-17 PROCEDURE FOR MANUFACTURING FRAME FOR OPTICAL FIBERS
CA000465912A CA1248416A (en) 1983-10-20 1984-10-19 Method for the production of glass preform for optical fibers
EP84307222A EP0139532B1 (en) 1983-10-20 1984-10-19 Method for the production of glass preform for optical fibers
AT84307222T ATE38823T1 (en) 1983-10-20 1984-10-19 PROCESS FOR MAKING A PREFORM IN GLASS FOR OPTICAL FIBER.
DE8484307222T DE3475294D1 (en) 1983-10-20 1984-10-19 Method for the production of glass preform for optical fibers
HK799/89A HK79989A (en) 1983-10-20 1989-10-05 Method for the production of glass preform for optical fibers

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19521083A JPS6090843A (en) 1983-10-20 1983-10-20 Manufacture of glass base material for optical fiber

Publications (1)

Publication Number Publication Date
JPS6090843A true JPS6090843A (en) 1985-05-22

Family

ID=16337283

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19521083A Pending JPS6090843A (en) 1983-10-20 1983-10-20 Manufacture of glass base material for optical fiber

Country Status (1)

Country Link
JP (1) JPS6090843A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6291439A (en) * 1985-10-18 1987-04-25 Sumitomo Electric Ind Ltd Production of fluorine-added transparent quartz glass body
JPS62148334A (en) * 1985-12-23 1987-07-02 Sumitomo Electric Ind Ltd Preparation of parent glass material for optical fiber
JPS62153130A (en) * 1985-12-27 1987-07-08 Sumitomo Electric Ind Ltd Production of parent material for optical fiber glass
JPS63176325A (en) * 1987-01-12 1988-07-20 Sumitomo Electric Ind Ltd Production of glass preform for optical fiber
CN101955318A (en) * 2009-07-15 2011-01-26 住友电气工业株式会社 The gas preform manufacture method
WO2015107931A1 (en) * 2014-01-16 2015-07-23 古河電気工業株式会社 Method for producing optical fiber preform and method for producing optical fiber

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5424919A (en) * 1977-07-27 1979-02-24 Sumitomo Electric Industries Method of making glass member
JPS5734034A (en) * 1980-08-05 1982-02-24 Nippon Telegr & Teleph Corp <Ntt> Dehydration treatment of porous preform for optical fiber
JPS5844619A (en) * 1981-09-09 1983-03-15 東京プレス工業株式会社 Capacity key switch
JPS6238292A (en) * 1985-08-09 1987-02-19 Hitachi Ltd Method and apparatus for forming calcium ion water

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5424919A (en) * 1977-07-27 1979-02-24 Sumitomo Electric Industries Method of making glass member
JPS5734034A (en) * 1980-08-05 1982-02-24 Nippon Telegr & Teleph Corp <Ntt> Dehydration treatment of porous preform for optical fiber
JPS5844619A (en) * 1981-09-09 1983-03-15 東京プレス工業株式会社 Capacity key switch
JPS6238292A (en) * 1985-08-09 1987-02-19 Hitachi Ltd Method and apparatus for forming calcium ion water

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6291439A (en) * 1985-10-18 1987-04-25 Sumitomo Electric Ind Ltd Production of fluorine-added transparent quartz glass body
JPS62148334A (en) * 1985-12-23 1987-07-02 Sumitomo Electric Ind Ltd Preparation of parent glass material for optical fiber
JPS62153130A (en) * 1985-12-27 1987-07-08 Sumitomo Electric Ind Ltd Production of parent material for optical fiber glass
JPS63176325A (en) * 1987-01-12 1988-07-20 Sumitomo Electric Ind Ltd Production of glass preform for optical fiber
CN101955318A (en) * 2009-07-15 2011-01-26 住友电气工业株式会社 The gas preform manufacture method
WO2015107931A1 (en) * 2014-01-16 2015-07-23 古河電気工業株式会社 Method for producing optical fiber preform and method for producing optical fiber
JP5916966B2 (en) * 2014-01-16 2016-05-11 古河電気工業株式会社 Optical fiber preform manufacturing method and optical fiber manufacturing method

Similar Documents

Publication Publication Date Title
EP0139532B1 (en) Method for the production of glass preform for optical fibers
KR900008503B1 (en) Manufacture of preform for glass fibres
EP0140651B1 (en) Method for production of glass preform for optical fibers
JPS61247633A (en) Production of glass base material for optical fiber
JPS6090843A (en) Manufacture of glass base material for optical fiber
KR870001290B1 (en) Method for preparation of optical glass preform
JP2931026B2 (en) Method for producing rare earth element doped glass
JPH0324415B2 (en)
JPH03279238A (en) Quartz glass for light transmission and production thereof
JPH089487B2 (en) Method for producing glass base material for optical fiber
JPS63139028A (en) Production of optical fiber glass base material
JPH0776092B2 (en) Glass manufacturing method
JP3475109B2 (en) Rare earth element doped glass
KR870001738B1 (en) The method and making of optical fiber preform
JPS6289B2 (en)
JP2002274876A (en) Method of manufacturing glass article
JPS632902B2 (en)
JP2881930B2 (en) Manufacturing method of quartz glass for optical transmission
JPS60239339A (en) Preparation of parent material for optical fiber
JP2620275B2 (en) Glass manufacturing method
JPH0818843B2 (en) Method for manufacturing preform for optical fiber
JPS6144823B2 (en)
JP3187130B2 (en) Method for producing rare earth element doped quartz glass
JPS6086044A (en) Manufacture of preform for light-transmission glass
JPS60176944A (en) Fiber for optical transmission