JPS63176325A - Production of glass preform for optical fiber - Google Patents

Production of glass preform for optical fiber

Info

Publication number
JPS63176325A
JPS63176325A JP329487A JP329487A JPS63176325A JP S63176325 A JPS63176325 A JP S63176325A JP 329487 A JP329487 A JP 329487A JP 329487 A JP329487 A JP 329487A JP S63176325 A JPS63176325 A JP S63176325A
Authority
JP
Japan
Prior art keywords
preform
fluorine
atmosphere
gas
sif4
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP329487A
Other languages
Japanese (ja)
Other versions
JPH089487B2 (en
Inventor
Akira Urano
章 浦野
Tsunehisa Kyodo
倫久 京藤
Yoichi Ishiguro
洋一 石黒
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP62003294A priority Critical patent/JPH089487B2/en
Publication of JPS63176325A publication Critical patent/JPS63176325A/en
Publication of JPH089487B2 publication Critical patent/JPH089487B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • C03B37/014Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD]
    • C03B37/01446Thermal after-treatment of preforms, e.g. dehydrating, consolidating, sintering
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2201/00Type of glass produced
    • C03B2201/06Doped silica-based glasses
    • C03B2201/08Doped silica-based glasses doped with boron or fluorine or other refractive index decreasing dopant
    • C03B2201/12Doped silica-based glasses doped with boron or fluorine or other refractive index decreasing dopant doped with fluorine

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • General Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Thermal Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Manufacture, Treatment Of Glass Fibers (AREA)

Abstract

PURPOSE:To make it possible to produce preform having improved fluorine amount added, free from residue foam, by heating quartz glass fine particles in an atmosphere comprising SiF4 at >1atm. before a transparent glass making process for the quartz glass fine particles. CONSTITUTION:Porous preform having piled glass fine particles is heat-treated in a SiF4 atmosphere at >1atm. Consequently, a large amount of fluorine can be added to the porous preform, simultaneously bulk density of the porous preform is raised and can be regulated in a fixed range. Successively the preform is further heat-treated in a SiF4 atmosphere at <=1atm. at an elevated temperature and made transparent.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、多孔質母材を用いた光ファイバーの母材の製
造方法に関するもので、特にフッ素(ト)を添加剤とし
て多量かつ高速で添加する光フアイバー母材の製造方法
に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a method for manufacturing an optical fiber base material using a porous base material, and in particular, the present invention relates to a method for manufacturing an optical fiber base material using a porous base material, and in particular, a method for manufacturing an optical fiber base material using a porous base material. The present invention relates to a method of manufacturing an optical fiber base material.

〔従来の技術〕[Conventional technology]

従来、光ファイバはMAD法、ovpo法など様々力製
法で製造されているが、生産性・品質などの点で注目さ
れている。これらの方法は、まず火炎加水分解反応によ
シ、ガラス微粒子を生成し、回転する出発材上に次々と
堆積させ、棒状の多孔質プリフォームを作る。次にプリ
フォームを様々なガス雰囲気中で加熱処理し、脱水・溶
融ガラス化し、光フアイバ母材を得る。
Conventionally, optical fibers have been manufactured using various methods such as the MAD method and the OVPO method, but these methods have attracted attention in terms of productivity and quality. These methods first generate glass particles through a flame hydrolysis reaction, and deposit them one after another on a rotating starting material to create a rod-shaped porous preform. Next, the preform is heat-treated in various gas atmospheres to dehydrate and melt it into vitrification to obtain an optical fiber base material.

さらにこの母材を紡糸して光ファイバを得るという方法
である。
This method further involves spinning this base material to obtain an optical fiber.

光ファイバは、主として光の伝搬されるコア部と、その
周囲のクラッド部から構成されておシ、コア部の屈折率
をnl 、クラッド部の屈折率をn2とすると、N、A
 (開口数)はN 、A 、=m(nl>nz)で定義
される(ntwn+は平均値)。
An optical fiber mainly consists of a core through which light propagates and a cladding around it.If the refractive index of the core is nl and the refractive index of the cladding is n2, then N, A
(Numerical aperture) is defined as N , A , = m (nl>nz) (ntwn+ is the average value).

シリカ(sio、)をベースとすると光ファイバでは、
(1)コアに屈折率を上げる添加剤を添加する方式、(
11)クラッドに屈折率を下げる添加剤を添加する方式
、(Ht) (1)と(11)の方式の合体方式、のい
ずれかの方式が用いられる。言うまでもなく、(1)で
はクラッド部が(11)ではコア部がシリカである。
In optical fibers based on silica (SIO),
(1) A method of adding an additive to the core to increase the refractive index, (
11) Either a method of adding an additive that lowers the refractive index to the cladding, or a method of combining methods (1) and (11) (Ht) is used. Needless to say, in (1), the cladding part is made of silica, and in (11), the core part is made of silica.

通常よく用いられる添加剤としては、C)e02tP2
0. 、 kt、02.TiO2(以上屈折率上昇用)
、またB2O3,F(以上屈折率下降用)等が挙げられ
る。第3図に波長IIL59μmにおける石英系ガラス
の屈折率を示す。横軸はシリカ中の酸化物重量%を、縦
軸は屈折率(nα)および屈折率1m%をあられす。[
出典:熊九、黒崎:”光伝送用材料1工業材料27(1
979)、P39]これらの添加剤のうち、フッ素は最
近になって注目されだした添加剤であって、VAD法や
他の製法においても添加する方法が検討、開発されてい
る。
Commonly used additives include C) e02tP2
0. , kt, 02. TiO2 (for increasing refractive index)
, B2O3, F (for lowering the refractive index), and the like. FIG. 3 shows the refractive index of silica glass at a wavelength IIL of 59 μm. The horizontal axis shows the weight percent of oxide in the silica, and the vertical axis shows the refractive index (nα) and the refractive index 1 m%. [
Source: Kumaku, Kurosaki: “Light transmission materials 1 Industrial materials 27 (1)
979), P39] Among these additives, fluorine is an additive that has recently begun to attract attention, and methods for adding it to the VAD method and other manufacturing methods are being studied and developed.

コア・クラッド間で同じ屈折率差を得たい場合に、一般
的にクラッドで屈折率を下げた、前述の(n) Thよ
び(110の方式は、コア部に添加する添加剤量が全く
無いか、あるいは(1)の方式によるよシも少なくてす
む、という利点を有している。
When it is desired to obtain the same refractive index difference between the core and cladding, the above-mentioned methods (n) Th and (110), in which the refractive index is generally lowered in the cladding, do not require any additive to be added to the core. Alternatively, the method (1) has the advantage of requiring less trouble.

このことは、高NA光ファイバにとって、コア部の添加
剤による吸収損失が低減されるという意味で有利である
。また、放射線照射下での伝送損失に優れた純シリカコ
ア光ファイバは(11)の方式でしか作成できない。
This is advantageous for high NA optical fibers in the sense that absorption losses due to additives in the core are reduced. Furthermore, a pure silica core optical fiber with excellent transmission loss under radiation irradiation can only be produced by the method (11).

このように、クラッド部の屈折率を下げる方式は有利な
特性をもつ。
As described above, the method of lowering the refractive index of the cladding portion has advantageous characteristics.

特に、VAD法の焼結工程において、フッ素を添加する
方法は、 ■ 均一に添加できて、平担な屈折率分布を与えること
ができる。
In particular, the method of adding fluorine in the sintering step of the VAD method is as follows: (1) It can be added uniformly and a flat refractive index distribution can be provided.

■ 処理速度が速い。すなわち数100〜1kg程度の
多孔質プリフォームを数時間以内で処理・ガラス化でき
る。
■ Fast processing speed. That is, a porous preform weighing several hundred to one kilogram can be processed and vitrified within several hours.

の2点において、特に他方式よりすぐれている。It is particularly superior to other methods in two respects.

しかしながら、従来技術においては、常圧下フッ素系ガ
ス100チ雰囲気で多孔質プリフォームを加熱処理して
も、屈折率差で最大−Q、75チ程度しか添加されなか
った。また、他の製法、例えばプラズマ外付法と呼ばれ
る方法では、熱プラズマによる火炎を用いてガラス原料
を出発棒上に吹き付けて堆積させ、これを直接ガラス化
させるが、この際に同時にフッ素系ガスを添加して、フ
ッ素を添加しようとしても、屈折率差−1チを与える量
のフッ素系ガスを含有させた場合、その堆積速度はせい
ぜい0.19/分であシ、かつ、添加量を増加させると
堆積速度が下がることが、知られている。
However, in the prior art, even if a porous preform is heat-treated in an atmosphere of 100 fluorine-based gas under normal pressure, the maximum difference in refractive index is -Q, and only about 75 nitrides are added. In addition, in other manufacturing methods, such as the method called external plasma deposition method, glass raw materials are sprayed and deposited onto the starting rod using a flame generated by thermal plasma, and this is directly vitrified, but at the same time, fluorine-based gas is Even if an attempt is made to add fluorine by adding fluorine, if the fluorine-based gas is contained in an amount that gives a refractive index difference of -1 inch, the deposition rate is at most 0.19/min, and the addition amount is It is known that increasing the amount reduces the deposition rate.

加えて、VAD法においてもプラズマ法においてもフッ
素を屈折率差で−(L5%以上添加しようとした場合、
得られたガラス母材中に気泡を残存せしめ、フッ素の添
加量を多くすればするほどこの傾向は大きくなるという
問題があった。
In addition, in both the VAD method and the plasma method, when trying to add fluorine by -(L5% or more) due to the difference in refractive index,
There was a problem in that bubbles were allowed to remain in the obtained glass base material, and this tendency became more pronounced as the amount of fluorine added increased.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

本発明は、上述の従来技術の欠点を解消すること、すな
わち、フッ素を添加した光フアイバ母材を得る方法にお
いて、気泡を残すことなくフッ素の添加量を向上するこ
と、またフッ素添加を高速で行えるようにすることを目
的とするものである。
The present invention solves the above-mentioned drawbacks of the prior art, namely, to increase the amount of fluorine added without leaving bubbles in a method for obtaining a fluorine-doped optical fiber matrix, and to perform fluorine addition at high speed. The purpose is to make it possible.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は石英を主成分とするガラス微粒子体の透明ガラ
ス化工程までに、該微粒子体を少なくとも一時期、実質
的にSiF4 ガスからなる1気圧を越えるガス雰囲気
中で加熱処理する工程を有しており、これに続いて実質
的にSiF4からなる1気圧以下のガス雰囲気中でさら
に高温に加熱して透明化を行うことを特徴とする光フア
イバ用ガラス母材の製造方法である。
The present invention includes a step of heat-treating the glass particles containing quartz as a main component in a gas atmosphere of over 1 atm consisting essentially of SiF4 gas for at least a period of time before the step of making the glass particles transparent vitrification. This is followed by further heating to a high temperature in a gas atmosphere of 1 atm or less consisting essentially of SiF4 to make it transparent.

以下に本発明の基本となった知見及び本発明に到達した
経緯を詳細に述べる。
Below, the findings that form the basis of the present invention and the circumstances that led to the present invention will be described in detail.

ガラス微粒子の多孔質プリフォームを熱処理する工程に
おいて、加圧ガス下で処理することで、反応効率を高め
うろことは容易に類推可能である。しかし、単に密閉し
た圧力容器を用い、内部にプリフォームとフッ素系ガス
を導入した加圧状態で熱処理を施しても良好なガラス体
を得ることば困難である。その理由は、1つは圧力容器
(炉心管)からの重金属汚染であシ、もう1つは雰囲気
ガス自体の熱分解による反応効率の低下である。
It can be easily inferred that in the process of heat treating a porous preform of glass particles, the reaction efficiency is increased by treating it under pressurized gas. However, it is difficult to obtain a good glass body even if the preform and fluorine gas are introduced into the sealed pressure vessel and the heat treatment is performed under pressure. One reason is heavy metal contamination from the pressure vessel (furnace tube), and the other is a decrease in reaction efficiency due to thermal decomposition of the atmospheric gas itself.

さらにはフッ素系ガス中のフッ素以外の成分、例えばC
F4中のC’、SF6中のSがガラス中に残り、気泡の
原因となることである。この点については、本発明を得
る過程において、CF4を使用してガラス中にフッ素を
添加せしめた場合、発生した気泡中の成分がCO□、 
Coからなっていた事実を確認できた。
Furthermore, components other than fluorine in the fluorine-based gas, such as C
C' in F4 and S in SF6 remain in the glass and cause bubbles. Regarding this point, in the process of obtaining the present invention, when fluorine is added to the glass using CF4, the components in the generated bubbles are CO□,
We were able to confirm the fact that it was made of Co.

本発明者らはこのような知見に基き、本発明ではフッ素
化のためにSiF4  を用いる。このとき、石英ガラ
スとの反応は下記(1)の反応式3式%() ただし S:固体 g:気体 のとおりであって、従来のCF4や02F、を用いる場
合とは異なり、C02,CO等の余分なガスを発生しな
い。
Based on this knowledge, the present inventors use SiF4 for fluorination in the present invention. At this time, the reaction with quartz glass is as shown in the following reaction formula (1), formula 3% () where S: solid g: gas, and unlike the conventional case of using CF4 or 02F, CO2, CO Do not generate excess gas such as

さらにSiF4  を加圧下で吹き流すことにより、発
熱炉からの汚染物質がプリフォームに達することなく運
び去られるので、プリフォームの清浄を保ち得ることも
見出した。
Furthermore, it has been found that by blowing SiF4 under pressure, contaminants from the exothermic furnace are carried away without reaching the preform, thereby keeping the preform clean.

またこのように吹き流すことで常に新鮮なガスを供給す
ることによシ、最高の反応効率が維持できることが判明
した。これは下記(2)の反応式 %式%(2) で表される解離反応を抑える効果があるためと考えられ
る。
It has also been found that the highest reaction efficiency can be maintained by constantly supplying fresh gas by blowing in this way. This is thought to be due to the effect of suppressing the dissociation reaction expressed by the reaction formula (2) below.

上述の如く、SiF4 を加圧下で吹き流すことは、常
に最高の反応効率を維持するうえでは最も重要な技術の
うちの一つであるが、反面しばしば焼結体中に気泡が残
るという現象が、依然として見られた。これは、常に最
高の反応効率を維持するために余剰のSiF4が供給さ
れているので、未反応のガスが気泡として残るためと考
えられた。一般に、雰囲気ガスの圧力が高い程、焼結後
のガラス体中に気泡が残留しやすくなることが知られて
いるので、気泡の残留を防ぐには、雰囲気ガスの圧力を
下げれば良いわけであるが、そうすると本発明の目的の
一方である、高濃度にフッ素を添加することが困難にな
ると予想された。
As mentioned above, blowing SiF4 under pressure is one of the most important techniques to always maintain the highest reaction efficiency, but on the other hand, it often leaves bubbles in the sintered body. , was still seen. This was thought to be because unreacted gas remained as bubbles because excess SiF4 was always supplied to maintain the highest reaction efficiency. Generally, it is known that the higher the pressure of the atmospheric gas, the more likely bubbles remain in the glass body after sintering, so in order to prevent bubbles from remaining, it is sufficient to lower the pressure of the atmospheric gas. However, it was expected that this would make it difficult to add fluorine at a high concentration, which is one of the objectives of the present invention.

このようなジレンマを解決して、気泡残留をなくし、か
つフッ素添加量を向上できる方法について、本発明者ら
は鋭意検討した。その結果、まずガラス微粒子を堆積し
た多孔質プリフォームを加圧したSiF4雰囲気中、好
ましくは1気圧を越えるSiF4雰囲気中にて加熱処理
することによシ、該多孔質プリフォーム中にフッ素を多
量に添加できると同時に、該多孔質プリフォームの嵩密
度を高めて一定範囲に調整することができて、これを続
いて1気圧以下に圧力を下げたSiF4 雰囲気中にて
更に温度を上昇させて加熱し透明化するという本発明の
方法によって、残留気泡の無い、高濃度にフッ素が添加
された石英ガラスを得ることができることを見出したの
である。
The present inventors have conducted extensive studies on a method that can solve this dilemma, eliminate residual bubbles, and increase the amount of fluorine added. As a result, by first heating a porous preform on which glass fine particles have been deposited in a pressurized SiF4 atmosphere, preferably in a SiF4 atmosphere exceeding 1 atm, a large amount of fluorine is introduced into the porous preform. At the same time, the bulk density of the porous preform can be increased and adjusted within a certain range, and then the temperature is further increased in an SiF4 atmosphere with the pressure lowered to 1 atm or less. It has been discovered that by the method of the present invention, which involves heating and making transparent, it is possible to obtain quartz glass with no residual bubbles and to which fluorine is added at a high concentration.

また、上記の透明化以前の熱処理によって、多孔質プリ
フォームが収縮するが、その嵩密度が大きくなシすぎる
と、透明化後のガラス体に気泡が残り易く、一方嵩密度
が小さすぎると、−たん多孔質プリフォーム中に添加さ
れたフッ素が続く透明化の過程にて揮散して、得られた
透明ガラス体中のフッ素濃度が十分ではなくなってしま
う。そこで、透明化以前の熱処理工程を終えた多孔質プ
リフォームの嵩密度はQ、32〜1.709/cm”の
範囲であれば気泡残留もなく、フッ素の揮散もないので
好ましい。α50〜1、1097cm3に調整すること
が特に好ましい。
In addition, the porous preform shrinks due to the above-mentioned heat treatment before transparentization, but if the bulk density is too large, air bubbles tend to remain in the glass body after transparentization, while if the bulk density is too small, -Fluorine added to the porous preform volatilizes during the subsequent transparentization process, resulting in an insufficient fluorine concentration in the resulting transparent glass body. Therefore, it is preferable that the bulk density of the porous preform that has undergone the heat treatment process prior to transparentization be in the range Q of 32 to 1.709/cm, since there will be no residual air bubbles and no volatilization of fluorine. α50 to 1 , 1097 cm3 is particularly preferable.

WAD法で得られた多孔質プリフォームの加熱処理雰囲
気(処理温度1200℃、時間3時間)におけるSiF
4 ガスの分圧Pと、得られたガフス母材のシリカに対
する屈折率差△nの関係を、第4図に示す。これにより
、加圧雰囲気下ではフッ素はより効果的、多量にドープ
され、屈折率を下げることが判る。
SiF in a heat treatment atmosphere (processing temperature 1200°C, time 3 hours) of a porous preform obtained by the WAD method
4. The relationship between the gas partial pressure P and the refractive index difference Δn of the obtained gaff base material with respect to silica is shown in FIG. This shows that under a pressurized atmosphere, fluorine is more effectively doped in a large amount and lowers the refractive index.

また、第5図に同プロセスの処理温度T(6)と屈折率
差△nの関係を示す。SiF4の圧力Pが高く、処理温
度が高温であればあるほどフッ素添加量は増え屈折率差
は大きくなる。但し、実際問題としては、圧力が20気
圧を越えるか、処理温度が1400℃を越えると透明化
後のガラス体に気泡が残りやすい。また、温度が低すぎ
ると反応が100チ起こらず非効率的なので、処理温度
としては800℃以上が好ましい。
Further, FIG. 5 shows the relationship between the treatment temperature T(6) and the refractive index difference Δn in the same process. The higher the pressure P of SiF4 and the higher the processing temperature, the greater the amount of fluorine added and the greater the difference in refractive index. However, as a practical matter, if the pressure exceeds 20 atmospheres or the treatment temperature exceeds 1400° C., bubbles tend to remain in the glass body after it has been made transparent. Furthermore, if the temperature is too low, 100 reactions will not occur and it will be inefficient, so the treatment temperature is preferably 800° C. or higher.

以上から5iF49圧は1気圧を越えることが好ましく
、処理温度は800℃以上で1400℃以下にて処理し
て、多孔質プリフォームの嵩密度がcL52〜1.70
9/m’の範囲、特に好ましくは0.5 [1〜1.1
0 fl/cm”の範囲になるように調整する。
From the above, it is preferable that the 5iF49 pressure exceeds 1 atm, and the processing temperature is 800°C or higher and 1400°C or lower, so that the bulk density of the porous preform is cL52 to 1.70.
9/m', particularly preferably 0.5 [1 to 1.1
Adjust so that it is within the range of 0 fl/cm.

また前記のように透明化の際の雰囲気ガス圧力が高いほ
ど得られたガラス体中に気泡が残シやすいので、透明化
の際の圧力は低いほうが気泡残留の点では好ましいが、
実用上は1気圧以下の圧力において透明化すれば好結果
が得られるとわかった。この時の温度は1500℃以上
が好ましく、特に好ましくは1400℃以上である。
In addition, as mentioned above, the higher the atmospheric gas pressure during transparentization, the more likely air bubbles will remain in the obtained glass body.
In practice, it has been found that good results can be obtained if the material is made transparent at a pressure of 1 atmosphere or less. The temperature at this time is preferably 1500°C or higher, particularly preferably 1400°C or higher.

本発明方法に用いる加熱処理装置の例を第1図および第
2図に示す。第1図および第2図において、1は支持棒
、2は多孔質プリフォーム、3は圧力容器、4は加熱部
、5および7は加熱装置、6は7−μ、8はガス配管を
示し、第2図の構成ではさらに9の圧力計、10のガス
配管(流出部)、11のパルプを備えている。これらは
あくまでも例示にすぎず、この構成に限定されるもので
はない。
An example of a heat treatment apparatus used in the method of the present invention is shown in FIGS. 1 and 2. In Figures 1 and 2, 1 is a support rod, 2 is a porous preform, 3 is a pressure vessel, 4 is a heating section, 5 and 7 are heating devices, 6 is 7-μ, and 8 is a gas pipe. The configuration shown in FIG. 2 further includes 9 pressure gauges, 10 gas pipes (outflow sections), and 11 pulps. These are merely examples, and the configuration is not limited to this.

〔実施例〕〔Example〕

実施例1 第1図に示すような熱処理装置で純シリカ・プリフォー
ムをSiF4 ガス100チ雰囲気でガラス化した。S
iF′、  ガスは五5気圧、温度は1150℃で2時
間保持されたあと、嵩密度CL 38 fl/cm3の
多孔質体を1400℃、5iF4100チ1気圧雰囲気
中で溶融・ガラス化した。
Example 1 A pure silica preform was vitrified in an atmosphere of 100 g of SiF4 gas using a heat treatment apparatus as shown in FIG. S
After the iF' gas was maintained at 55 atm and the temperature at 1150°C for 2 hours, the porous body with a bulk density CL 38 fl/cm3 was melted and vitrified in an atmosphere of 5iF4100 and 1 atm at 1400°C.

得られた負の屈折率は一1%であった。このガラスに石
英管をジャケットし、線引し光ファイバとしたところ、
不純物の混ムの少ない、低損失のファイバが得られた。
The negative refractive index obtained was -1%. When this glass was jacketed with a quartz tube and drawn into an optical fiber,
A fiber with less impurities and low loss was obtained.

損失値は2 dB/km(波長0.85μmにおいて)
であった。
Loss value is 2 dB/km (at wavelength 0.85 μm)
Met.

実施例2 第2図に示すような熱処理装置を用いて、シリカ・ガラ
ス周囲にシリカ多孔質部を付着させたプリフォームを処
理した。温度は1100℃、圧力2気圧を維持し、Si
F4 ガスを217分の率で1時間流したところ、多孔
質体の嵩密度は[L 359/cm3となり得られた母
材のコア・クラッド間屈折率差は0.9%であった。母
材の透明ガラス化は1450℃以上の1気圧SiF4雰
囲気中で行なった。この母材から得たファイバは損失値
が1. s dB/crn(波長085μmにおいて)
と高品質なものであった。
Example 2 A preform in which a porous silica portion was attached around silica glass was treated using a heat treatment apparatus as shown in FIG. The temperature was maintained at 1100°C and the pressure was maintained at 2 atm.
When F4 gas was flowed at a rate of 217 minutes for 1 hour, the bulk density of the porous body was [L 359/cm3, and the difference in refractive index between the core and cladding of the obtained base material was 0.9%. Transparent vitrification of the base material was performed in a 1 atm SiF4 atmosphere at 1450°C or higher. The fiber obtained from this base material has a loss value of 1. s dB/crn (at wavelength 085 μm)
It was of high quality.

実施例3 第1図に示す熱処理装置を用いて、Δn=2チのGeO
2を添加された高NAガラスの周囲にシリカ多孔質部を
付着させたプリフォームを処理した。温度1200℃、
圧力5気圧を維持してSiF4  をs Occ/分の
流量で1時間保持し、嵩密度を0.4 a fi/副3
とした。次いで1300℃のSiF4ガス雰囲気(1気
圧)下で透明化し、クラッド部でΔn=−1,2%を持
った、△n:五2チの高NA母材を得た。この母材から
得たファイバの損失値は2. q aB/km  (波
長α85μmにおいて)であった。
Example 3 Using the heat treatment apparatus shown in FIG.
A preform in which a porous silica portion was attached around a high NA glass doped with 2 was processed. Temperature 1200℃,
The pressure was maintained at 5 atm and SiF4 was maintained at a flow rate of s Occ/min for 1 hour, and the bulk density was 0.4 a fi/sub3.
And so. Next, it was made transparent under a SiF4 gas atmosphere (1 atm) at 1300°C to obtain a high NA base material with Δn=-1.2% in the cladding part and Δn:52. The loss value of the fiber obtained from this base material is 2. q aB/km (at wavelength α85 μm).

〔発明の効果〕〔Effect of the invention〕

本発明は下記のような効果を奏する。 The present invention has the following effects.

1)  SiF4ガス雰囲気で、かつ1気圧を越える加
圧下で熱処理して、多孔質体の嵩密度をQ、 529/
ω3〜1.70 fjlα3の範囲にすることにより、
シリカに比し1△n1)1%の負の屈折率のガラスを得
ることが可能となった。
1) Heat treated in a SiF4 gas atmosphere and under pressure exceeding 1 atm to reduce the bulk density of the porous body to Q, 529/
By setting it in the range of ω3 to 1.70 fjlα3,
It became possible to obtain a glass with a negative refractive index of 1Δn1)1% compared to silica.

2)高速でフッ素添加が可能となった。2) Fluorine addition is now possible at high speed.

3)  SiF4  ガスを加圧下で流しながら熱処理
す、ることによシ、フッ素の反応効率を落すことなく添
加することが可能となった。
3) By performing heat treatment while flowing SiF4 gas under pressure, it has become possible to add fluorine without reducing reaction efficiency.

4)クラッドの△nを低くした形の、高NA光フアイバ
ー用母材、純シリカコア光フアイバー用母材の作成が容
易になった。
4) It has become easier to create a base material for a high NA optical fiber and a base material for a pure silica core optical fiber with a low Δn of the cladding.

5)透明化処理を1気圧以下のSiF4雰囲気で行うこ
とにより、ガラス母材中に気泡を残すことなく、大量の
フッ素を添加することが可能になった。
5) By performing the transparentization treatment in a SiF4 atmosphere of 1 atmosphere or less, it became possible to add a large amount of fluorine without leaving any bubbles in the glass base material.

さらに従来技術におけると同様、MAD法の焼結工程で
フッ素を添加する利点、すなわち平担な屈折率分布およ
び処理速度における利点を有することは、言うまでもな
い。
Furthermore, as in the prior art, it goes without saying that there are advantages of adding fluorine in the sintering step of the MAD method, that is, advantages in flat refractive index distribution and processing speed.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図および第2図は本発明に用いる加熱処理装置を説
明する図、第3図は石英系ガラスにおける、シリカ中酸
化物(重量%)と屈折率(nα)および屈折率差(△n
)の関係を示すグラフ、第4図はSiF4 ガス分圧と
屈折率差1△n1の関係を示すグラフ、第5図は屈折率
差Δnの処理温度依存性を示すグラフである。
Figures 1 and 2 are diagrams explaining the heat treatment apparatus used in the present invention, and Figure 3 is silica-based oxide (wt%), refractive index (nα), and refractive index difference (△n
), FIG. 4 is a graph showing the relationship between the SiF4 gas partial pressure and the refractive index difference 1Δn1, and FIG. 5 is a graph showing the processing temperature dependence of the refractive index difference Δn.

Claims (2)

【特許請求の範囲】[Claims] (1)石英を主成分とするガラス微粒子体の透明ガラス
化工程までに、該微粒子体を少なくとも一時期、実質的
にSiF_4ガスからなる1気圧を越えるガス雰囲気中
で加熱処理する工程を有しており、これに続いて実質的
にSiF_4からなる1気圧以下のガス雰囲気中でさら
に高温に加熱して透明化を行うことを特徴とする光フア
イバ用ガラス母材の製造方法。
(1) Before the transparent vitrification process of the glass fine particles mainly composed of quartz, the fine particles are heat-treated for at least one period in a gas atmosphere of more than 1 atmosphere consisting essentially of SiF_4 gas. A method for producing a glass preform for an optical fiber, which is then further heated to a high temperature in a gas atmosphere of 1 atm or less consisting essentially of SiF_4 to make it transparent.
(2)実質的にSiF_4ガスからなる1気圧を越える
ガス雰囲気中でガラス微粒子体を加熱処理することによ
り、該ガラス微粒子体の嵩密度を0.32g/cm^3
〜1.70g/cm^3の範囲とする特許請求の範囲第
(1)項記載の光フアイバー用ガラス母材の製造方法。
(2) By heating the glass particulate body in a gas atmosphere exceeding 1 atm consisting essentially of SiF_4 gas, the bulk density of the glass particulate body is reduced to 0.32 g/cm^3
A method for producing a glass preform for optical fiber according to claim (1), wherein the preform is in a range of 1.70 g/cm^3.
JP62003294A 1987-01-12 1987-01-12 Method for producing glass base material for optical fiber Expired - Lifetime JPH089487B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62003294A JPH089487B2 (en) 1987-01-12 1987-01-12 Method for producing glass base material for optical fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62003294A JPH089487B2 (en) 1987-01-12 1987-01-12 Method for producing glass base material for optical fiber

Publications (2)

Publication Number Publication Date
JPS63176325A true JPS63176325A (en) 1988-07-20
JPH089487B2 JPH089487B2 (en) 1996-01-31

Family

ID=11553362

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62003294A Expired - Lifetime JPH089487B2 (en) 1987-01-12 1987-01-12 Method for producing glass base material for optical fiber

Country Status (1)

Country Link
JP (1) JPH089487B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006199517A (en) * 2005-01-18 2006-08-03 Furukawa Electric Co Ltd:The Method of manufacturing optical fiber preform
JP2012246157A (en) * 2011-05-26 2012-12-13 Ohara Inc Method for producing synthetic silica glass and the synthetic silica glass

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
PT105474A (en) 2011-01-10 2012-11-27 Univ Lisboa UNDERWATER SOUND GENERATOR

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6090843A (en) * 1983-10-20 1985-05-22 Sumitomo Electric Ind Ltd Manufacture of glass base material for optical fiber
JPS60239337A (en) * 1984-05-15 1985-11-28 Sumitomo Electric Ind Ltd Preparation of parent glass material for optical fiber
JPS60255638A (en) * 1984-05-31 1985-12-17 Sumitomo Electric Ind Ltd Production of parent material for optical fiber

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6090843A (en) * 1983-10-20 1985-05-22 Sumitomo Electric Ind Ltd Manufacture of glass base material for optical fiber
JPS60239337A (en) * 1984-05-15 1985-11-28 Sumitomo Electric Ind Ltd Preparation of parent glass material for optical fiber
JPS60255638A (en) * 1984-05-31 1985-12-17 Sumitomo Electric Ind Ltd Production of parent material for optical fiber

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006199517A (en) * 2005-01-18 2006-08-03 Furukawa Electric Co Ltd:The Method of manufacturing optical fiber preform
JP2012246157A (en) * 2011-05-26 2012-12-13 Ohara Inc Method for producing synthetic silica glass and the synthetic silica glass

Also Published As

Publication number Publication date
JPH089487B2 (en) 1996-01-31

Similar Documents

Publication Publication Date Title
JPS61247633A (en) Production of glass base material for optical fiber
JP3845906B2 (en) Method for producing synthetic silica glass
US3933454A (en) Method of making optical waveguides
DK158940B (en) PROCEDURE FOR MANUFACTURING FRAME FOR OPTICAL FIBERS
JPH0372583B2 (en)
KR940011118B1 (en) Method of producing glass preform for optical fiber
JPH0478568B2 (en)
KR890001123B1 (en) Method for crystalization of glass preform
JPS63176325A (en) Production of glass preform for optical fiber
KR890001124B1 (en) Method for producing glass preform
JPWO2002102725A1 (en) Manufacturing method of glass base material and glass base material
JP2785430B2 (en) Quartz glass for optical transmission
JPS5842136B2 (en) Manufacturing method of optical fiber base material
JPH0776092B2 (en) Glass manufacturing method
JPS6090843A (en) Manufacture of glass base material for optical fiber
JPH05294658A (en) Production of quartz-based glass
JPH0419173B2 (en)
JPH0639335B2 (en) Method for manufacturing glass base material for optical fiber
JP2620275B2 (en) Glass manufacturing method
JPS6081038A (en) Manufacture of optical glass fiber containing tio2
JPS632900B2 (en)
JPS6289B2 (en)
JPS6183639A (en) Production of quartz pipe of high purity
JP4230073B2 (en) Method for producing aluminum-added glass base material
JPH0660029B2 (en) Method for manufacturing base material for optical fiber

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term