JPS6082267A - Joint structure between ceramic shaft and metallic shaft - Google Patents

Joint structure between ceramic shaft and metallic shaft

Info

Publication number
JPS6082267A
JPS6082267A JP18597783A JP18597783A JPS6082267A JP S6082267 A JPS6082267 A JP S6082267A JP 18597783 A JP18597783 A JP 18597783A JP 18597783 A JP18597783 A JP 18597783A JP S6082267 A JPS6082267 A JP S6082267A
Authority
JP
Japan
Prior art keywords
shaft
ceramic
metal
diameter
grinding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP18597783A
Other languages
Japanese (ja)
Inventor
Sumio Hirao
平尾 純雄
Hirohiko Date
伊達 洋彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP18597783A priority Critical patent/JPS6082267A/en
Publication of JPS6082267A publication Critical patent/JPS6082267A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K1/00Soldering, e.g. brazing, or unsoldering
    • B23K1/19Soldering, e.g. brazing, or unsoldering taking account of the properties of the materials to be soldered

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Ceramic Products (AREA)

Abstract

PURPOSE:To prevent deterioration in quality such as cracking or the like by forming the butt contact parts between a ceramic shaft and a metallic shaft to the diameter smaller than the finish diameter of the ceramic shaft thereby preventing thermal cracking of the ceramic shaft and eliminating oscillation in finishing by grinding. CONSTITUTION:The butt contact parts d2 and d4 between a ceramic shaft 27 and a metallic shaft 21 are made to the diameter smaller than the finish diameter d1 of the ceramic and are subjected to brazing 29 by heating. The generation of thermal stress cracking of the ceramics owing to a difference in the coefft. of expansion between both shafts is prevented. The much better result is obtd. if the end of the ceramics 27 is preliminarily chamfered in this stage. Since the ceramics 7 is a hardly machineable material, the margin for finish grinding is made as small as possible but even if the brazing material 29 has a wetting and oozing part 30 in the stage of grinding, said part does not contact with a grindstone and therefore the ceramic is finished without grinding oscillation and a crack, etc. are not induced. The deterioration in quality is thus obviated.

Description

【発明の詳細な説明】 (産業上の利用分野) この発明は、セラミックス軸と金属軸との接合構造に関
し、例えば、化学装置の攪拌器における金属製モータ軸
と攪拌具を保持するセラミックス軸との接合や、ターボ
チャージャやガスタービン等における金属製インペラ軸
とセラミックス製タービンロータ軸との接合などに適用
されるセラミックス軸と金属軸との接合構造に関するも
のである。
Detailed Description of the Invention (Field of Industrial Application) The present invention relates to a joint structure between a ceramic shaft and a metal shaft, for example, a metal motor shaft in a stirrer of a chemical device and a ceramic shaft that holds a stirring tool. The present invention relates to a joining structure between a ceramic shaft and a metal shaft, which is applied to joining a metal impeller shaft and a ceramic turbine rotor shaft in a turbocharger, gas turbine, etc.

(従来技術) 従来、セラミックス軸と金属軸とを接合したものとして
は、例えば第1図に示す構造のものがある。すなわち、
第1図はターボチャージャ(タービン式過給a)用のイ
ンペラおよびタービン組立体を示す断面図であって、金
属軸1の一端におねじ部1aを形成すると共に他端に鍔
部1bを形成し、鍔部1b側にスラスト軸受用カラー2
を挿し込んだのち、金属製インペラ3と金属軸1とを嵌
合し、金属軸1のおねじ部1aにワッシャ4を介してナ
ラi・5を締め(=Jけて金属製インペラ3と金属軸1
とを結合し、この金属軸1の接合端と、セラミックス製
タービンロータ6に一体成形したセラミックス軸7の接
合端とを突き合わせてろう材2によりろうイ・J接合し
た構成を有するものである。なお、11はインペラ側軸
受、12はロータ側軸受である。
(Prior Art) Conventionally, as a structure in which a ceramic shaft and a metal shaft are joined, there is a structure shown in FIG. 1, for example. That is,
FIG. 1 is a sectional view showing an impeller and turbine assembly for a turbocharger (turbine supercharging a), in which a threaded portion 1a is formed at one end of a metal shaft 1, and a flange portion 1b is formed at the other end. and a thrust bearing collar 2 on the flange 1b side.
After inserting, fit the metal impeller 3 and the metal shaft 1, and tighten the nuts i and 5 to the male threaded part 1a of the metal shaft 1 through the washer 4 (= J and then the metal impeller 3 and metal shaft 1
The joint end of the metal shaft 1 and the joint end of the ceramic shaft 7 integrally molded with the ceramic turbine rotor 6 are butted against each other and are welded using a brazing filler metal 2. Note that 11 is an impeller side bearing, and 12 is a rotor side bearing.

このような金属軸1とセラミックス軸7との接合におい
て、セラミックス軸7は金属軸1よりも研削加工性が良
くないため、EnZ図に示すように、金属軸1の直径を
セラミックス軸7の直径よりもその後の仕上研摩加工で
補正できる程度に若干大きくした状態でろう材2により
ろう付接合し、高い接合強度を得るためにろう材2をは
み出すようにして、その後、金属軸1側をより多く研削
することによって、セラミックス軸7と金属軸1との同
軸度を正確に出すようにし、仕上研摩後はセラミックス
軸7と金属軸1とろう材2の部分とが同径となるように
していた。
In such joining of the metal shaft 1 and the ceramic shaft 7, the grindability of the ceramic shaft 7 is not as good as that of the metal shaft 1, so as shown in the EnZ diagram, the diameter of the metal shaft 1 is the diameter of the ceramic shaft 7. The brazing metal 2 is brazed to the metal shaft 2 in a state in which the metal shaft 1 is made slightly larger to the extent that it can be corrected in the subsequent finishing polishing process, and the brazing metal 2 is made to protrude to obtain high joint strength. By grinding a lot, the coaxiality of the ceramic shaft 7 and the metal shaft 1 can be achieved accurately, and after the final polishing, the diameter of the ceramic shaft 7, the metal shaft 1, and the brazing material 2 is made to be the same. Ta.

しかしながら、このような従来のセラミックス軸7と金
属軸1との接合構造では、金属軸1の直径をセラミック
ス軸7の直径よりも若干大きくし、ろう材2が接合部分
で両軸1,7の外周部分にはみ出す位にしたのち、金属
軸1゜ろう材2およびセラミックス軸7の部分を同一径
に研il仕上げするようにしていたため、および工学図
書株式会社発行の「ろう4=Jマニユアル」284頁の
図に見られるように、接合部分の近傍にろう材がはみ出
すように接合するのが一般であったため、砥石を用いた
仕上加工において、砥石がろう材を含む金属の部分とセ
ラミックスの部分とを同時に研削する場合が生じ、この
とき金属部分とセラミックス部分とでは砥石との間で生
じる研削抵抗が大きく異なり、そのため振動が発生して
セラミックスの部分が亀裂を生じたり割れをきたしたり
するという問題点があった。また、接合部分ではみ出し
たろう材2がセラミックス軸7の外周部分に流れ、この
ろう材2が凝固収縮する際にセラミックス軸7の外周部
分をその軸方向に強く引張るカが作用し、接合部近傍の
セラミックス軸7に半径方向の割れが入りやすいという
問題点もあった。このような割れの発生は、とくに高速
回転するタービンロータ・インペラ組立体にとってはな
はだ好ましくないものである。
However, in such a conventional joining structure between the ceramic shaft 7 and the metal shaft 1, the diameter of the metal shaft 1 is made slightly larger than the diameter of the ceramic shaft 7, and the brazing material 2 is used to connect both shafts 1 and 7 at the joining part. After making it so that it protruded from the outer periphery, the parts of the metal shaft 1, brazing material 2 and ceramic shaft 7 were polished to the same diameter, and "Rou 4 = J Manual" 284 published by Kogaku Tosho Co., Ltd. As shown in the figure on page 1, it was common practice to join so that the brazing material protruded near the joint, so when finishing using a grindstone, the grinding wheel separates the metal part containing the brazing material and the ceramic part. There are cases where the metal part and the ceramic part are ground at the same time, and at this time, the grinding resistance generated between the metal part and the ceramic part is greatly different, and this causes vibrations that can cause the ceramic part to crack or crack. There was a problem. In addition, the brazing filler metal 2 protruding from the joint flows to the outer circumference of the ceramic shaft 7, and when this brazing filler metal 2 solidifies and shrinks, a force that strongly pulls the outer circumference of the ceramic shaft 7 in the axial direction acts, causing the vicinity of the joint to There was also a problem in that the ceramic shaft 7 was susceptible to cracks in the radial direction. The occurrence of such cracks is particularly undesirable for turbine rotor/impeller assemblies that rotate at high speeds.

(発明の目的) この発明は、上述したような従来の問題点に着目してな
されたもので、十分な接合強度が得られると共にろう材
を用いた接合およびろう付接合後の砥石による研削仕上
加工を行ったときでもセラミックス軸に亀裂や割れなど
の不具合が発生せず、強度および品質のすぐれた継手を
得ることができるセラミックス軸と金属軸との接合構造
を提供することを目的としている。
(Purpose of the Invention) This invention has been made by focusing on the conventional problems as described above, and it is possible to obtain sufficient bonding strength and to improve bonding using brazing metal and grinding with a grindstone after brazing bonding. The purpose of the present invention is to provide a joining structure between a ceramic shaft and a metal shaft, which does not cause defects such as cracks or cracks in the ceramic shaft even when processed, and allows a joint with excellent strength and quality to be obtained.

(発明の構成) この発明は、セラミックス軸と金属軸とを突き合わせて
ろう付する接合構造において、少なくとも前記セラミッ
クス軸または金属軸、もしくはセラミックス軸と金属軸
の両方の接合端部を当該セラミックス軸の仕上軸直径よ
りも小径に形成してろう材たまり部を設け、前記ろう材
たまり部内のろう材を前記セラミックス軸の仕上軸直径
よりも内径側に留めたことを特徴とするものである。
(Structure of the Invention) The present invention provides a joining structure in which a ceramic shaft and a metal shaft are butted and brazed, in which at least the joint end of the ceramic shaft or the metal shaft, or both the ceramic shaft and the metal shaft is connected to the ceramic shaft. The ceramic shaft is characterized in that it is formed to have a smaller diameter than the finished shaft diameter and is provided with a brazing material reservoir, and the brazing material in the brazing material reservoir is kept on the inner diameter side of the finished shaft diameter of the ceramic shaft.

この発明におけるセラミックス軸を構成するセラミック
スとしては、SiC,Si3N4゜S i3 N4 A
J1203 r Al2O’3 、 Z ro、。
The ceramics constituting the ceramic shaft in this invention include SiC, Si3N4°S i3 N4 A
J1203 r Al2O'3, Z ro,.

等々の種種のセラミックス材料が使用され、セラミック
スと金属とを混合したサーメット材料や、セラミックス
系複合材料なども使用され、必ずしもセラミックス単体
に限定されるものではない。
Various types of ceramic materials are used, such as cermet materials that are a mixture of ceramics and metals, ceramic composite materials, etc., and are not necessarily limited to single ceramic materials.

また、金属軸を構成する金属としては、A見。Also, as for the metal that makes up the metal shaft, see A.

Mg、Fe、Cu等の単体や合金、あるいはセラミック
ス等を添加した複合材料なども使用され、必ずしも金属
単体に限定されるものではない。
Elements or alloys of Mg, Fe, Cu, etc., or composite materials to which ceramics and the like are added are also used, and the material is not necessarily limited to single metals.

そして、前記セラミックス軸および金属軸のうち、少な
くともセラミックス軸または金属軸、もしくはセラミッ
クス軸と金属軸の両方の接合端部を当該セラミックス軸
の仕上軸直径よりも小径に形成してろう材たまり部を設
けるが、この実施態様としては、例えば、第3図に示す
ように、セラミックス軸27の接合端部を当該セラミッ
クス軸27の仕上軸直径d、よりも小径d2に形成して
ろう材22を収めるろう材たまり部30を設ける態様や
、第4図に示すように、金属軸21の接合端部を当該金
属軸21の仕上軸直径d3 (図示例の場合はd3=d
+’)よりも小径d4に形成してろう材22を収めるろ
う材たまり部30を設ける態様や、ft55図に示すよ
うに、金属軸21およびセラミックス軸27の両方の接
合端部を各々当該金属軸21およびセラミックス軸27
の仕上軸直径d+、d3 (図示例の場合はd+=d3
)よりも小径d2+d4に各々形成してろう材22を収
めるろう材たまり部30を設ける態様などがある。
Of the ceramic shaft and the metal shaft, at least the joining end of the ceramic shaft or the metal shaft, or both the ceramic shaft and the metal shaft, is formed to have a smaller diameter than the finished shaft diameter of the ceramic shaft to form a brazing material pool. However, in this embodiment, for example, as shown in FIG. 3, the joining end of the ceramic shaft 27 is formed to have a smaller diameter d2 than the finished shaft diameter d of the ceramic shaft 27 to accommodate the brazing material 22. Depending on the manner in which the brazing material reservoir 30 is provided, or as shown in FIG.
In some embodiments, the brazing material pool 30 is formed to have a smaller diameter d4 than the diameter d4 of the brazing material 22, and as shown in FIG. Shaft 21 and ceramic shaft 27
Finished shaft diameter d+, d3 (d+=d3 in the example shown)
) There is a mode in which a brazing filler metal reservoir 30 is provided which is formed to have a smaller diameter d2+d4 than the brazing filler metal 22 therein.

そして、いずれの態様においても、前記ろう材たまり部
30内のろう材22を前記セラミックス軸27の仕上軸
直径d1よりも内径側に留めるようにするが、金属軸2
1側では仕上軸直径d3よりも外径側にろう材22がは
み出していても良い、このとき、ろう材29をとくにセ
ラミックス軸27の仕上軸直径d、よりも内径側に留め
るようにするには、ろう付の際の加熱条件、セラミック
スのぬれ性、ろう材の供給量などを考慮するのがよく、
例えば加熱温度はろう材融点の30〜100°C高めと
し、昇温速度はできるだけ遅くすることによってろう材
の均一な温度分布が得られるようにし、ろう接時におけ
るろう材の流れが均一となるようにする。さらに、ろう
材のぬれ性を高めるためにセラミックス軸27に適宜の
ぬれ性改善処理例えば活性金属処理を施したり、反対に
ろう材浸透防止剤を用いたりしてろう付けの際のろう材
22の流れをコントロールするようになすこともよく、
このようにしてろう材たまり部3゜内のろう材22を前
記セラミックス軸27の仕上軸直径d、よりも内径側に
留めるようにする。
In either embodiment, the brazing material 22 in the brazing material reservoir 30 is kept on the inner diameter side of the finished shaft diameter d1 of the ceramic shaft 27.
On the 1 side, the brazing filler metal 22 may protrude to the outer diameter side of the finished shaft diameter d3. In this case, the brazing filler metal 29 should be particularly kept on the inner diameter side of the finished shaft diameter d of the ceramic shaft 27. It is best to consider the heating conditions during brazing, the wettability of ceramics, the amount of brazing filler metal supplied, etc.
For example, the heating temperature should be 30 to 100°C higher than the melting point of the brazing material, and the heating rate should be as slow as possible to obtain a uniform temperature distribution of the brazing material, which will ensure a uniform flow of the brazing material during soldering. do it like this. Furthermore, in order to improve the wettability of the brazing filler metal, the ceramic shaft 27 may be subjected to an appropriate wettability improving treatment, such as an active metal treatment, or, conversely, a brazing filler metal penetration preventive agent may be used to prevent the brazing filler metal 22 during brazing. It is often done to control the flow,
In this way, the brazing material 22 within the brazing material reservoir 3° is kept on the inner diameter side of the finished shaft diameter d of the ceramic shaft 27.

このようにしてセラミックス軸27と金属軸21とをろ
う材2・2により接合したのち、仕上軸直径d、、d3
となるように砥石を用いてセラミックス軸27および/
または金属軸21に対する研削仕上加工を行う、このと
き、セラミックス軸27の直径d1からなる研削仕上面
はその接合端部側においてろう材22と速比しておらず
、研削仕上面よりも内径側にろう材22の先端があるた
め、砥石がろう材22の部分すなわち金属の部分どセラ
ミックスの部分とを同時に研削するという事態を回避す
ることができ、セラミックス軸27側を研摩する際にろ
う材2りを研摩することはなく、金属部分とセラミック
ス部分に対する砥石の研削抵抗の相違による振動の発生
を回避し、セラミックス軸27に亀裂や割れなどの不具
合が生じるのを防ぐことができるようになり、金属部分
およびセラミックス部分に各々対応した研削条件で仕上
研摩を行えば良い、なお、ろう材22が金属軸21の研
削仕上面より外径側にまで流れたとしても、仕上研削時
には金属同士が濃化した研削面となるため、砥石に振動
を発生することはなく、良好に研削仕上が可能となる。
After joining the ceramic shaft 27 and the metal shaft 21 with the brazing material 2.2 in this way, the finished shaft diameter d, d3
Using a grindstone, grind the ceramic shaft 27 and/or
Alternatively, the metal shaft 21 is finished by grinding. At this time, the ground surface of the ceramic shaft 27 having the diameter d1 is not in a speed ratio with the brazing material 22 on the joint end side, and is on the inner diameter side than the ground surface. Because of the tip of the brazing filler metal 22, it is possible to avoid the situation where the grindstone grinds the brazing filler metal 22 part, that is, the metal part and the ceramic part at the same time. This eliminates the need to polish the shaft 27, thereby avoiding vibrations caused by the difference in grinding resistance of the grinding wheel between the metal part and the ceramic part, and preventing defects such as cracks and fractures from occurring in the ceramic shaft 27. It is sufficient to perform finish polishing under grinding conditions that correspond to the metal part and the ceramic part respectively. Furthermore, even if the brazing filler metal 22 flows to the outer diameter side of the finished surface of the metal shaft 21, the metals will not touch each other during finish grinding. Since the grinding surface is concentrated, no vibration is generated in the grindstone, and a good grinding finish is possible.

上記第3図ないし第5図に示す場合には、ろう付後にセ
ラミックス軸27および金属軸21の両方に対して仕上
研摩を行う様子を示しているが、この発明では必ずしも
両方に対して仕上研削を行うものに限定されない、そし
て、セラミックス軸27に対する仕上研摩を行う必要が
ない場合には、突き合わせ接合部分から流れ出たろう材
22がとくにセラミックス軸27偏においてろう材たま
り部30内に留まり、セラミックス軸27の外周面に流
れ出ないようにすることで、この発明の効果が°得られ
、金属軸21側を仕上研摩して両軸21.27の同軸度
を出すようにすることも可能であり、この発明はこのよ
うな場合をも含むものである。
In the cases shown in FIGS. 3 to 5 above, finish grinding is performed on both the ceramic shaft 27 and the metal shaft 21 after brazing, but in this invention, finish grinding is not necessarily performed on both. However, if the ceramic shaft 27 does not need to be finished polished, the brazing filler metal 22 flowing out from the butt-joint portion remains in the brazing filler metal pool 30 particularly at the ceramic shaft 27, and the ceramic shaft 27 The effect of the present invention can be obtained by preventing the metal from flowing out onto the outer circumferential surface of the metal shaft 21, and it is also possible to finish polishing the metal shaft 21 side to achieve coaxiality between the two shafts 21 and 27. This invention also includes such cases.

(実施例1) 第6図はこの発明の実施例1を示す図であって、ターボ
チャージャ用のインペラおよびタービン組立体を示す断
面図である0図において、21は金属軸、22は金属軸
21の鍔部21b側に挿し込んだスラスト軸受用カラー
、23は金属軸21に嵌合した金属製インペラ、24は
ワッシャ、25は金属軸21のおねじ部21aにねじ込
んだナツト、26はセラミックス製タービンロータ、2
7はタービンロータ26に一体成形したセラミックス軸
、22はセラミックス軸27と金属軸21とをろうイ1
接合するろう材、31はインペラ側軸受、32はa−夕
側軸受であって、第1図に示したインペラおよびタービ
ン組立体とほとんど同じ4”h造である。
(Embodiment 1) FIG. 6 is a diagram showing Embodiment 1 of the present invention, and in FIG. 21 is a thrust bearing collar inserted into the flange 21b side, 23 is a metal impeller fitted to the metal shaft 21, 24 is a washer, 25 is a nut screwed into the male thread 21a of the metal shaft 21, and 26 is a ceramic. manufactured turbine rotor, 2
7 is a ceramic shaft integrally molded with the turbine rotor 26; 22 is a ceramic shaft 27 and a metal shaft 21 formed by a brazing wire 1;
The brazing materials to be joined, 31, an impeller side bearing, and 32, an a-side bearing, are of 4"h construction, almost the same as the impeller and turbine assembly shown in FIG.

そして、この場合におけるセラミックス軸27と金Ji
ff軸21との接合は、第7図にも示すように、セラミ
ックス軸27および金属軸21の両方の接合端部を各々
当該セラミックス軸27および金属軸21の仕上軸直径
d5よりも小径の直径d6に形成してろう材たまり部3
0を設け、セラミックス軸27と金属軸21とをろう材
22を介して接合した後の状態においてろう材たまり部
30内のろう材22を前記セラミックス軸27の仕上軸
直径d sよりも内径側に留めるようにし、その後、砥
石を用いてセラミックス軸27を仕上軸直径d5に仕上
げると共に、金属軸21および場合によってはろう材2
2を同じく仕上軸直径d5に仕上げ・る。
In this case, the ceramic shaft 27 and gold Ji
For joining with the ff shaft 21, as shown in FIG. 7, the joining ends of both the ceramic shaft 27 and the metal shaft 21 are connected to a diameter smaller than the finished shaft diameter d5 of the ceramic shaft 27 and the metal shaft 21, respectively. d6 to form a brazing filler metal accumulation part 3
0, and after the ceramic shaft 27 and the metal shaft 21 are joined via the brazing material 22, the brazing material 22 in the brazing material reservoir 30 is placed on the inner diameter side of the finished shaft diameter ds of the ceramic shaft 27. Then, use a grindstone to finish the ceramic shaft 27 to a finished shaft diameter d5, and also remove the metal shaft 21 and, in some cases, the brazing material 2.
2 to the finished shaft diameter d5.

この研削仕上げにおいて、ろう材22はセラミックス軸
27の研削仕上面よりも内径側に留まっているため、セ
ラミックス軸27を研削仕上するときにろう材22を同
時に研削することはなく、セラミックス軸27側に流れ
たろう材22は未加工のままとなる。他方、金属軸21
側に流れたろう材22は金属軸21の研削仕上面より内
径側に留まっそいる必要はなく、たとえ研削仕上面より
も外径側にまで流れたとしても金属に対する砥石の研削
条件は類似していてセラミ−2クスとの間はど大きな隔
たりはないため、金属軸21の研削と同時にろう材22
の研削をも著しく良好に行うことができる。また、ろう
材22は金属軸21およびセラミックス軸27の表面に
治って流れるため、ろう材22の表面はくぼんだ状態と
なって凝固している。
In this grinding and finishing, the brazing filler metal 22 remains on the inner diameter side of the ground finish surface of the ceramic shaft 27, so when finishing the grinding of the ceramic shaft 27, the brazing filler metal 22 is not ground at the same time, and the brazing filler metal 22 is not ground at the same time, but on the side of the ceramic shaft 27. The brazing filler metal 22 that has flowed remains unprocessed. On the other hand, the metal shaft 21
The brazing filler metal 22 flowing to the side does not need to stay on the inner diameter side of the ground surface of the metal shaft 21, and even if it flows to the outer diameter side of the ground surface, the grinding conditions of the grinding wheel for metal are similar. Since there is no large gap between the metal shaft 21 and the ceramic 2x, the brazing material 22 is ground at the same time as the metal shaft 21 is ground.
Grinding can also be carried out extremely well. Moreover, since the brazing material 22 cures and flows on the surfaces of the metal shaft 21 and the ceramic shaft 27, the surface of the brazing material 22 is solidified in a concave state.

なお、この実施例1の場合には、セラミックス軸27の
全体を研削仕」二げしているが、軸受31.32の部分
のみを研削仕上げし、軸受31と32との間および軸受
32とタービンロータ26との間の部分は未研摩の状態
としておいても良い。
In the case of Example 1, the entire ceramic shaft 27 is ground and finished, but only the bearings 31 and 32 are ground and finished, and the parts between the bearings 31 and 32 and between the bearings 32 and 32 are finished by grinding. The portion between it and the turbine rotor 26 may be left unpolished.

(実施例2) 第8図はこの発明の実施例2を示す図であって、この場
合もターボチャージャ川のインペラおよびタービン組立
体を示す断面図であり、第6図と対応する部分に同一符
号をイ・jしである。第8図に示す場合には、接合強度
の向」二をはかるために、接合位置を軸受31,32と
の嵌合に拘束されない個所、すなわちロータ側軸受32
とタービンロータ26との間に設け、突き合わせ接合部
の面積を拡大するようにした場合を示している。そして
、この場合にも、第7図に示したと同様に、第9図に示
すように、セラミックス軸27および金属軸21のフラ
ンジ部21bの両方の接合端部を各々当該セラミックス
軸27および金属軸フランジ部21bの仕上軸直径d7
よりも小径の直径d8に形成してろう材たまり部30を
設け、セラミックス軸27と金属軸フランジ部21aと
をろう材2夕を介して接合した後の状態においてろう材
たまり部50内のろう材22を前記セラミックス軸27
の仕上軸直径d7よりも内径側に留めるようにし、その
後砥石を用いて仕上軸直径d7に仕上げるようにしてい
る。
(Embodiment 2) FIG. 8 is a diagram showing Embodiment 2 of the present invention, and in this case also is a sectional view showing the impeller and turbine assembly of the turbocharger, and the parts corresponding to FIG. 6 are the same. The signs are i and j. In the case shown in FIG. 8, in order to improve the joint strength, the joint position is not restricted to the fitting between the bearings 31 and 32, that is, the rotor side bearing 32
This figure shows a case in which the butt joint is provided between the turbine rotor 26 and the butt joint 26 to enlarge the area of the butt joint. In this case as well, as shown in FIG. 7, as shown in FIG. Finished shaft diameter d7 of flange portion 21b
The brazing material reservoir 30 is formed to have a smaller diameter d8 than the diameter d8, and the solder in the brazing material reservoir 50 is formed after the ceramic shaft 27 and the metal shaft flange 21a are joined via the brazing material 2. The material 22 is attached to the ceramic shaft 27.
The finished shaft diameter d7 is kept on the inner diameter side, and then a grindstone is used to finish the finished shaft diameter d7.

このようにしたときでも、セラミックス軸27を研削仕
上するときに、ろう材22は研削仕上面より内径側に留
まっているため、このろう材22を同時−に研削するこ
とがなく、セラミックス軸27側に流れているろう材2
2は未加工のままとなり、研削時に砥石に異常な振動が
生じてセラミックス軸27に亀裂や割れ等の不具合をひ
きおこすおそれが全くなくなる。また、この実施例の場
合には金属軸21の部分が長くなるため、タービン・イ
ンペラ組立体の軸部は靭性にすぐれた金属から構成され
ることとなるので、高速回転時の振動等に対しては性能
が向」−シ、軸径を小さくすることも可能となる利点が
ある。
Even when doing this, when finishing the ceramic shaft 27 by grinding, the brazing filler metal 22 remains on the inner diameter side of the ground surface, so the brazing filler metal 22 is not ground at the same time, and the ceramic shaft 27 Brazing filler metal 2 flowing to the side
2 remains unprocessed, and there is no possibility that abnormal vibrations will occur in the grinding wheel during grinding, causing defects such as cracks and cracks in the ceramic shaft 27. In addition, in this embodiment, since the metal shaft 21 is long, the shaft of the turbine/impeller assembly is made of a metal with excellent toughness, so it is resistant to vibrations etc. during high-speed rotation. This has the advantage of improving performance and making it possible to reduce the shaft diameter.

なお、接合部分は金属軸21およびセラミックス軸27
に対するろう材29のぬれ性に応じて流れることにより
四部に形成されるので、この四部を遠心力によって軸受
fljl滑油をはじ〈IRとして利用することも可能と
なり、セラミックス軸に別個に溝を設ける加工を省略す
ることができる。
Note that the joint part is the metal shaft 21 and the ceramic shaft 27.
The four parts are formed by flowing according to the wettability of the brazing filler metal 29, so that the four parts can be used as an IR when the bearing lubricating oil is repelled by centrifugal force.Separate grooves are provided on the ceramic shaft. Processing can be omitted.

(発明の効果) 以上説明してきたように、この発明によれば、セラミッ
クス611と金属軸とを突き合わせてろう付する接合構
造において、少なくとも前記セラミックス軸または金属
軸の接合端部を当該セラミックス軸の仕上軸直径よりも
小径に形成してろう材たまり部を設け、前記ろう材たま
り部内のろう材を前記セラミックス軸の仕上軸直径より
も内径側に留めるようにしたから、セラミックス軸と金
属軸との接合を十分に高い強度でなすことが可能であり
、ろう材たまり部内のろう材はとくにセラミックス軸側
において当該セラミ・ンクス軸の仕上軸直径よりも内径
側に留めであるため、従来のようにろう材がセラミック
ス軸の外周面で凝固して、この凝固の際に生ずる収縮に
よってセラミックス軸に亀裂や割れ等の不具合を発生さ
せることもなくなり、ろう材を用いてセラミックス軸と
金属軸とを接合して接合後に当該接合部分を必要に応じ
て研削仕上加工するときでも、ろう材を含む金属部分と
セラミックス部分とが連続していないため、それぞれ金
属部分および/またはセラミックス部分に対する最適の
研削条件を選んで別々に研削仕上することが可能となり
、したがって従来のように金属部分とセラミックス部分
とを同時に研削する場合が生ずることによって砥石に異
常な振動が発生することもなく、したがってセラミック
ス軸に亀裂や割れなどの不具合が発生することもないと
いう著しく優れた効果を有し。
(Effects of the Invention) As described above, according to the present invention, in the joining structure in which the ceramic 611 and the metal shaft are butted and brazed, at least the joining end of the ceramic shaft or the metal shaft is connected to the ceramic shaft. The diameter of the ceramic shaft is smaller than that of the finished shaft, and the brazing material pool is provided, and the brazing material in the soldering material pool is kept on the inner diameter side of the finished shaft diameter of the ceramic shaft. The solder metal in the filler metal pool is fixed on the inner diameter side of the ceramic shaft, especially on the ceramic shaft side, compared to the finished shaft diameter of the ceramic shaft. The brazing filler metal solidifies on the outer circumferential surface of the ceramic shaft, and the shrinkage that occurs during solidification no longer causes problems such as cracks and cracks in the ceramic shaft. Even when grinding and finishing the joint part as necessary after joining, the metal part containing the brazing material and the ceramic part are not continuous, so the optimal grinding conditions for the metal part and/or the ceramic part, respectively. This makes it possible to grind and finish the metal part and the ceramic part separately, which eliminates the occurrence of abnormal vibrations in the grinding wheel that would occur in the case of grinding the metal part and the ceramic part at the same time, which was the case in the past. It has an extremely excellent effect in that it does not cause defects such as cracking or cracking.

セラミックス軸と金属軸との接合をきわめて良好に行う
ことが可能である。
It is possible to bond the ceramic shaft and the metal shaft extremely well.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来のセラミックス軸と金属軸との接合構造を
有するターボチャージャ用タービンロータ・インペラ組
立体の縦断面図、第2図は第1図の接合部分の拡大説明
図、第3図ないし第5図はこの発明の実施態様を示す各
々セラミックス軸と金属軸との接合部分の拡大説明図、
第6図はこの発明の実施例1によるセラミックス軸と金
属軸との接合構造を採用したターボチャージャ用タービ
ロータ・インペラ組立体の縦断面図、第7図は第6図の
接合部分の拡大説明図、第8図はこの発明の実施例2に
よるセラミックス軸と金属軸との接合構造を採用したタ
ーボチャージャ用タービンロータ・インペラ組立体の縦
断面図、第9図は第8図の接合部分の拡大説明図である
。 21・・・金属軸、 27・・・セラミックス軸、 22・・・ろう材、 30・・・ろう材たまり部。 代理人弁理士 小 IM 間 第1図 第2図 29 11611 第7F!J
Fig. 1 is a vertical cross-sectional view of a turbine rotor/impeller assembly for a turbocharger having a conventional joining structure of a ceramic shaft and a metal shaft, Fig. 2 is an enlarged explanatory view of the joining part in Fig. 1, and Figs. FIG. 5 is an enlarged explanatory view of a joint portion between a ceramic shaft and a metal shaft, showing an embodiment of the present invention;
FIG. 6 is a longitudinal cross-sectional view of a turbo rotor/impeller assembly for a turbocharger employing a joining structure of a ceramic shaft and a metal shaft according to Embodiment 1 of the present invention, and FIG. 7 is an enlarged explanatory view of the joining portion in FIG. 6. , FIG. 8 is a longitudinal cross-sectional view of a turbine rotor/impeller assembly for a turbocharger that employs a joining structure of a ceramic shaft and a metal shaft according to a second embodiment of the present invention, and FIG. 9 is an enlarged view of the joining portion of FIG. 8. It is an explanatory diagram. 21... Metal shaft, 27... Ceramic shaft, 22... Brazing metal, 30... Brazing metal accumulation part. Representative Patent Attorney Ko IM Figure 1 Figure 2 29 11611 7F! J

Claims (1)

【特許請求の範囲】[Claims] (1)セラミックス軸と金属軸とを突き合わせてろう付
する接合構造において、少なくとも前記セラミックス軸
または金属軸の接合端部を当該セラミックス軸の仕上軸
直径よりも小径に形成してろう材たまり部を設け、前記
ろう材たまり部内のろう材を前記セラミックス軸の仕上
軸直径よりも内径側に留めたことを特徴とするセラミッ
クス軸と金属軸との接合構造。
(1) In a joining structure in which a ceramic shaft and a metal shaft are butted and brazed, at least the joining end of the ceramic shaft or the metal shaft is formed to have a smaller diameter than the finished shaft diameter of the ceramic shaft to prevent a brazing material pool. A joining structure for a ceramic shaft and a metal shaft, characterized in that the brazing material in the brazing material reservoir is kept on the inner diameter side of the finished shaft diameter of the ceramic shaft.
JP18597783A 1983-10-06 1983-10-06 Joint structure between ceramic shaft and metallic shaft Pending JPS6082267A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18597783A JPS6082267A (en) 1983-10-06 1983-10-06 Joint structure between ceramic shaft and metallic shaft

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18597783A JPS6082267A (en) 1983-10-06 1983-10-06 Joint structure between ceramic shaft and metallic shaft

Publications (1)

Publication Number Publication Date
JPS6082267A true JPS6082267A (en) 1985-05-10

Family

ID=16180186

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18597783A Pending JPS6082267A (en) 1983-10-06 1983-10-06 Joint structure between ceramic shaft and metallic shaft

Country Status (1)

Country Link
JP (1) JPS6082267A (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6278168A (en) * 1985-09-30 1987-04-10 日本特殊陶業株式会社 Composite structure of ceramic to metal
JPS63139077A (en) * 1986-12-02 1988-06-10 工業技術院長 Method of joining different kind materials of different thermal expansion coefficient
US4798320A (en) * 1985-09-20 1989-01-17 Allied-Signal Inc. Ceramic-metal brazed joint for turbochargers
EP0311428A1 (en) * 1987-10-07 1989-04-12 Norton Company Thermally stable joints between materials with different thermal expansion coefficients
US4959258A (en) * 1987-12-28 1990-09-25 Ngk Insulators, Ltd. Joined metal-ceramic assembly method of preparing the same
US4988034A (en) * 1987-12-25 1991-01-29 Ngk Spark Plug Co., Ltd. Mechanical part having ceramic and metal sections soldered together and method of producing same
US5076484A (en) * 1990-03-29 1991-12-31 Ngk Spark Plug Co., Ltd. Joining structure of a turbine rotor
US5161908A (en) * 1987-04-06 1992-11-10 Ngk Insulators, Ltd. Joined structure comprising members of different coefficients of thermal expansion and joining method thereof
US5163770A (en) * 1985-12-11 1992-11-17 Ngk Insulators, Ltd. Method of bonding members having different coefficients of thermal expansion
US5351874A (en) * 1990-07-06 1994-10-04 Hoechst Ceramtec Ag Method of joining a ceramic component to a metal component
EP0856881A2 (en) * 1997-01-29 1998-08-05 Ngk Insulators, Ltd. Joint structure of metal member and ceramic member and method of producing the same
JP2006117493A (en) * 2004-10-25 2006-05-11 Kyocera Corp Joined structure of ceramic member and metallic member

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4798320A (en) * 1985-09-20 1989-01-17 Allied-Signal Inc. Ceramic-metal brazed joint for turbochargers
JPS6278168A (en) * 1985-09-30 1987-04-10 日本特殊陶業株式会社 Composite structure of ceramic to metal
JPH0456794B2 (en) * 1985-09-30 1992-09-09 Ngk Spark Plug Co
US5163770A (en) * 1985-12-11 1992-11-17 Ngk Insulators, Ltd. Method of bonding members having different coefficients of thermal expansion
JPS63139077A (en) * 1986-12-02 1988-06-10 工業技術院長 Method of joining different kind materials of different thermal expansion coefficient
US5161908A (en) * 1987-04-06 1992-11-10 Ngk Insulators, Ltd. Joined structure comprising members of different coefficients of thermal expansion and joining method thereof
EP0311428A1 (en) * 1987-10-07 1989-04-12 Norton Company Thermally stable joints between materials with different thermal expansion coefficients
US4988034A (en) * 1987-12-25 1991-01-29 Ngk Spark Plug Co., Ltd. Mechanical part having ceramic and metal sections soldered together and method of producing same
US4959258A (en) * 1987-12-28 1990-09-25 Ngk Insulators, Ltd. Joined metal-ceramic assembly method of preparing the same
US5076484A (en) * 1990-03-29 1991-12-31 Ngk Spark Plug Co., Ltd. Joining structure of a turbine rotor
US5351874A (en) * 1990-07-06 1994-10-04 Hoechst Ceramtec Ag Method of joining a ceramic component to a metal component
EP0856881A2 (en) * 1997-01-29 1998-08-05 Ngk Insulators, Ltd. Joint structure of metal member and ceramic member and method of producing the same
EP0856881A3 (en) * 1997-01-29 1999-10-27 Ngk Insulators, Ltd. Joint structure of metal member and ceramic member and method of producing the same
US6057513A (en) * 1997-01-29 2000-05-02 Ngk Insulators, Ltd. Joint structure of metal member and ceramic member and method of producing the same
JP2006117493A (en) * 2004-10-25 2006-05-11 Kyocera Corp Joined structure of ceramic member and metallic member
JP4671659B2 (en) * 2004-10-25 2011-04-20 京セラ株式会社 Bonding structure of ceramic member and metal member

Similar Documents

Publication Publication Date Title
JPS6082267A (en) Joint structure between ceramic shaft and metallic shaft
KR101570139B1 (en) Rotor Shaft of a Turbomachine and Method for the Production of a Rotor of a Turbomachine
JP2006207526A (en) Variable displacement type exhaust turbocharger and method for manufacturing variable nozzle mechanism structural member
EP0816007B1 (en) Method of friction-welding a shaft to a titanium aluminide turbine rotor
JPS6272578A (en) Method of connecting ceramic stub shaft to metal shaft and rotor shaft device thereby
US6160237A (en) Friction welding process for mounting blades of a rotor for a flow machine
JPS61142301A (en) Turbine rotor and its production
JPS6224603B2 (en)
JPH0444632B2 (en)
FR2819560A1 (en) Shaft fixing system for impeller wheel with radial thrust esp for turbocompressor has sleeve engaging with wheel hub and shaft spindle
JPH03279277A (en) Joint structure of turbine rotor
US7128468B2 (en) Hydrodynamic bearing, method of manufacturing the same, method of manufacturing shaft member for hydrodynamic bearing, spindle motor, and recording disk driving apparatus
JP3132602B2 (en) Manufacturing method of friction welding valve
KR100933521B1 (en) Internal grinding tool and its manufacturing method
JPS58178803A (en) Turbine shaft
JP3179928B2 (en) Bonded body, bonded body thereof and ceramics, and methods of manufacturing them
JPS60198302A (en) Turbine shaft
JP4646737B2 (en) Static pressure gas bearing spindle device
JP2536630B2 (en) Method for joining ceramic member and metal member
JPH02127986A (en) Structure for coupling ceramics body of rotation with metallic shaft
JP2003328989A (en) Impeller manufacturing method
JP2615675B2 (en) Joining method of ceramic shaft and metal member
JPS5913679A (en) Joint mechanism of ceramic and metal
JP2003097213A (en) Ceramic turbine rotor
JPH0866803A (en) Main spindle of machine tool