JPS60198302A - Turbine shaft - Google Patents

Turbine shaft

Info

Publication number
JPS60198302A
JPS60198302A JP5233084A JP5233084A JPS60198302A JP S60198302 A JPS60198302 A JP S60198302A JP 5233084 A JP5233084 A JP 5233084A JP 5233084 A JP5233084 A JP 5233084A JP S60198302 A JPS60198302 A JP S60198302A
Authority
JP
Japan
Prior art keywords
shaft
ceramic
diameter
metallic
ceramic shaft
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5233084A
Other languages
Japanese (ja)
Inventor
Sumio Hirao
平尾 純雄
Minoru Oota
稔 太田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP5233084A priority Critical patent/JPS60198302A/en
Publication of JPS60198302A publication Critical patent/JPS60198302A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/02Blade-carrying members, e.g. rotors
    • F01D5/026Shaft to shaft connections

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)

Abstract

PURPOSE:To enables safe and efficient grinding finish of a ceramic shaft and a metallic shaft, by a method wherein the size of the metallic shaft, joined with the ceramic shaft, is decreased over a size, within at least a range required for grinding fishish, of the ceramic shaft. CONSTITUTION:A diameter DM of a larger part 15A of a metallic shaft 15 is decreased over a diameter DC of a ceramic shaft 2. A collar for thrust bearing is engaged with a small part 15B of the metallic shaft 15, and is forced into contact with the collar surface of the large part 15A. In which case, a collar area, being wide eough to allow support of a thrust, must be ensured, and metal is more easy to machining, whereby the shaft of the metallic shaft 15 is previously increased to a little higher value, and centering adjustment is made through cutting of the metallic shaft 15 side. Further, the large part 15A of the metallic shaft 15 is previously increased slightly over the size of the ceramic shaft 2, and during cutting of the small part 15B of the metallic shaft 15 and a screw part 15C after joining, the size of the large part 15A is decreased over that of the ceramic shaft 2.

Description

【発明の詳細な説明】 〔技術分野〕 本発明はタービン軸に関し、特にタービンロータと一体
化に形成されたセラミック製軸部と金属製軸部とを接合
した構造のタービン軸に関する。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field] The present invention relates to a turbine shaft, and more particularly to a turbine shaft having a structure in which a ceramic shaft part integrally formed with a turbine rotor and a metal shaft part are joined.

〔従来技術〕[Prior art]

従来のこの種のタービン軸は、ターボチャージャや圧縮
機に直結されるガスタービン等に好適なものとして開発
されておシ、一般にはセラミックスの軸部と金属軸とを
嵌合または突合せの状態で接合するように構成されてい
る。しかして、このようなタービン軸の構成とするには
、双方の軸心を完全に一致させるための工作やセラミッ
ク軸の有する脆性に対してどのような配慮がなされるか
などの種々な問題点がある。
Conventional turbine shafts of this type have been developed as suitable for gas turbines that are directly connected to turbochargers and compressors, and are generally made by fitting or abutting a ceramic shaft and a metal shaft. configured to join. However, in order to configure such a turbine shaft, there are various problems such as machining to ensure that both shaft centers are perfectly aligned and what kind of consideration should be given to the brittleness of the ceramic shaft. There is.

第1図および第2図唸従来のこのようなタービン軸の一
例を示し、第1図は突合せて接合された例、また第2図
は嵌合して接合された例である。
FIGS. 1 and 2 show an example of such a conventional turbine shaft. FIG. 1 shows an example in which the turbine shafts are butted and joined, and FIG. 2 shows an example in which they are joined by fitting.

まず、第1図において、1はセラミックスで形成された
タービンロータ、2はタービンロータ1と一体に成形さ
れたセラミックスの軸でアシ、本例ではこのセラミック
軸2が2つの軸受3および4によって枢支されている。
First, in FIG. 1, 1 is a turbine rotor made of ceramics, 2 is a ceramic shaft formed integrally with the turbine rotor 1, and in this example, this ceramic shaft 2 is pivoted by two bearings 3 and 4. supported.

しかして、このセラミック軸2は金属軸50大径部5A
と圧縮機インベニ76寄シ、の低温な位置で突合せの状
態で接合されておυ、接合にはろう付けなどが用いられ
る。なおここで、大径部5Aとセラミック軸2とは同一
の径に形成されておシ、更に大径部5Aおよびセラミッ
ク軸の接合端部は接合強度が保たれる範囲内で共に面取
シされていて、これらの面取シによって形成される猥状
の凹部7にろう付は用のろうが溶着される。
Therefore, this ceramic shaft 2 has a large diameter portion 5A of the metal shaft 50.
They are joined in a butt state at a low temperature position near the compressor inlet 76, and brazing or the like is used for joining. Note that the large diameter portion 5A and the ceramic shaft 2 are formed to have the same diameter, and the joint ends of the large diameter portion 5A and the ceramic shaft are both chamfered within a range that maintains the joint strength. The solder for soldering is welded to the obscene recess 7 formed by these chamfers.

8は金属軸5の小径部5Bに嵌合させたスラスト軸受用
のカラ部材であシ、小径部5Bにはカラ部材8、更にイ
ンペラ6を嵌合させ、更にそのねじ部50にワッシャ9
およびナツト10を取付けて螺締することによシロータ
1とインペラ6とが同一軸系に固定されている。
Reference numeral 8 denotes a thrust bearing collar member fitted to the small diameter portion 5B of the metal shaft 5. The collar member 8 and the impeller 6 are fitted to the small diameter portion 5B, and a washer 9 is fitted to the threaded portion 50.
By attaching and screwing a nut 10, the rotor 1 and the impeller 6 are fixed to the same axis.

なお、このような組立てがなされるにあたっては、まず
上述した接合がなされた後、金属軸部の粗加工、ついで
セラミック軸2の特殊研磨砥石による粗加工および仕上
加工がなされ、最後に金属軸部の仕上加工がなされる手
順をふんで双方の軸心間に狂いが生じないようにしてい
る。
In order to perform such an assembly, the above-mentioned joining is first performed, then the metal shaft is rough-processed, then the ceramic shaft 2 is rough-processed and finished with a special grindstone, and finally the metal shaft is This finishing procedure is used to ensure that there is no misalignment between the two axes.

また、第2図においては、金属軸5の大径部5Aに嵌合
孔5Dが設けられていて、との嵌合孔5Dにセラミック
軸2の嵌合部2Aを焼ばめするか、若しくはろう付けす
るかして嵌合固定させる。しかして、この場合、強度上
の形状的な不連続を避けるために、セラミック軸2の嵌
合部2人が形成される付は根部分はテーパ状に・形成さ
れておシ、一方、金属軸5の嵌合孔5Dが形成される軸
端もまた、セラζ\ツク軸嵌合部2Aに急激な応力変化
を与えないようにするためにテーバが形成されていて、
これらのテーパによシ、この部分に第1図と同様な凹部
7Aが形成されている。
In addition, in FIG. 2, a fitting hole 5D is provided in the large diameter portion 5A of the metal shaft 5, and the fitting portion 2A of the ceramic shaft 2 is shrink-fitted into the fitting hole 5D. Fit and fix by brazing. In this case, in order to avoid shape discontinuity in terms of strength, the base of the ceramic shaft 2 where the two mating parts are formed is tapered, while the metal The shaft end where the fitting hole 5D of the shaft 5 is formed is also tapered to prevent sudden stress changes from being applied to the shaft fitting portion 2A.
A recess 7A similar to that shown in FIG. 1 is formed in this portion of these tapers.

なお、本例においても金属軸50大径部5Aとセラミッ
ク軸2の嵌合部2人以外は同一径に形成されておシ、以
て軸受3および4に互換性を持たせ同一寸法のものが適
用できるようにしている。
Also in this example, the large diameter portion 5A of the metal shaft 50 and the two fitting portions of the ceramic shaft 2 are formed to have the same diameter, so that the bearings 3 and 4 are compatible and have the same dimensions. is applicable.

また、その他の構成については第1図の例と変わらない
Further, the other configurations are the same as the example shown in FIG.

しかしながら、これらのように構成された型のタービン
軸にあっては、何れの場合も接合部近傍において、金属
軸5の大径部5Aとセラミック軸2とを同一の軸径とし
ているために、以下に述べるような工作加工上の問題点
があった。すなわち、(1)金属軸5とセラミック軸2
とを接合状態となしてセラミック軸2を研磨するには、
セラミック専用砥石が使用されるが、このようなセラミ
ック専用砥石には通常の場合ダイヤモンド砥石が使用さ
れておシ、この砥石によシセラミック軸2と金属軸5と
を共に研磨することは、研削効率や寸法精度の保証の点
からいって好ましいことではない。
However, in any of these types of turbine shafts configured, the large diameter portion 5A of the metal shaft 5 and the ceramic shaft 2 have the same shaft diameter near the joint. There were problems in machining as described below. That is, (1) metal shaft 5 and ceramic shaft 2
To polish the ceramic shaft 2 with the two in a bonded state,
A grindstone dedicated to ceramics is used, but a diamond grindstone is usually used for such a grindstone dedicated to ceramics, and polishing both the ceramic shaft 2 and the metal shaft 5 with this grindstone is a process of grinding. This is not desirable from the standpoint of efficiency and guaranteeing dimensional accuracy.

(2) これに加えて、セラミック軸2を第1図または
第2図の例で、例えば右方から専用砥石でトラバース研
磨する場合、セラミック軸2と金属軸5との間には凹部
7または7Aが形成されてはいるものの、砥石をセラミ
ック軸2と金属軸5との接合部すなわち、この凹部7や
7Aが形成されている位置にまで送シ込んで均−面を形
成しようとすると、金属軸大径部5Aの局面に当ってし
まい、びびシ等が生じて、ためにセラミック軸2の方に
割れが発生しやすい。
(2) In addition, when the ceramic shaft 2 is traverse polished from the right side using a special grindstone in the example shown in FIG. 1 or 2, there is a recess 7 or 7A is formed, but if you try to drive the grindstone to the joint between the ceramic shaft 2 and the metal shaft 5, that is, to the position where the recesses 7 and 7A are formed, to form a uniform surface, This hits the surface of the large diameter portion 5A of the metal shaft, causing vibrations and the like, which makes the ceramic shaft 2 more likely to crack.

(3) 更にまた、このような専用砥石は一般に平坦な
研磨直の成形が容易でないが、セラミック軸2に軸受3
や4を設ける限シ、少なくともその摺動部はミクロン単
位め精度に仕上げられる必要があシ、それKは専用砥石
をセラミック軸2の軸端、第2図の例では段付き部まで
完全に通過させてトラバース研磨を行うのでなければ達
成できない。
(3) Furthermore, although it is generally not easy to form such a dedicated grindstone into a flat shape immediately after polishing, the ceramic shaft 2 is equipped with a bearing 3.
4, at least the sliding part needs to be finished to an accuracy of microns, and the purpose of this is to completely grind the dedicated grindstone to the shaft end of the ceramic shaft 2, up to the stepped part in the example shown in Figure 2. This can only be achieved by passing it through and performing traverse polishing.

〔目 的 〕〔the purpose 〕

本発明は、このような従来の問題点の解決を図るべく、
金属軸とセラミック軸とを接合して構成されるタービン
軸のセラミック軸部の研磨加工時に、支障なく仕上研磨
がなされて良好な寸法精度が得られ、作業性の向上を図
ることのできるタービン軸を提供することにある。
The present invention aims to solve such conventional problems,
When polishing the ceramic shaft part of a turbine shaft made by joining a metal shaft and a ceramic shaft, a turbine shaft that can be finished polished without any problems to obtain good dimensional accuracy and improve workability. Our goal is to provide the following.

後の荒仕上げの状態で金属軸部の径がセラミックスの少
なくとも研磨対称となる軸部の径よシ小さくなるように
なして、特殊研磨砥石が金属軸部に接触することなくト
ラバースしてセラミック軸部の研磨仕上げが可能なよう
にする。
In the later rough finishing state, the diameter of the metal shaft is made smaller than at least the diameter of the shaft to be polished, so that the special polishing wheel can traverse without contacting the metal shaft and polish the ceramic shaft. Allows polishing of parts.

〔実施例〕〔Example〕

第3図■およびω)は本発明の一実施例を示し、本例は
突合せ接合とした場合の適用例である。
FIGS. 3 and 3) show an embodiment of the present invention, and this example is an application example in which butt joints are used.

ここで、その構成は第1図の場合と同様であるが、セラ
ミック軸2の径DCよシ金属軸15の大径部15A の
径DMが小さく形成される。
Here, the configuration is the same as that in FIG. 1, but the diameter DM of the large diameter portion 15A of the metal shaft 15 is formed smaller than the diameter DC of the ceramic shaft 2.

すなわち、例えば径DCが10wnであれば、径DMの
方は9.9鴎というように0.1+s程度小さくなして
、研磨仕上げがなされるようにする。
That is, for example, if the diameter DC is 10wn, the diameter DM is made smaller by about 0.1+s, such as 9.9mm, to achieve a polished finish.

次に、このように構成するタービン軸の加工手順を説明
する。本例のようにスラスト軸受用力28を金属軸15
の小径部15Bに嵌合させ、大径部15Aのカラー面と
当接させるi゛うにした構成では、スラストを受けるに
十分なだけのカラー面積を確保する必要があシ、更に金
属の方がはるかに加工し易いことから、金属軸15の方
の径をあらかじめ大きいめとしておいて、金属軸15の
方を切削加工することによって心出し調整を行うように
した方がよい。
Next, a procedure for machining the turbine shaft configured as described above will be explained. As in this example, the thrust bearing force 28 is applied to the metal shaft 15.
In this configuration, where the collar is fitted into the small diameter part 15B of the collar and comes into contact with the collar surface of the large diameter part 15A, it is necessary to secure a sufficient collar area to receive the thrust. Since it is much easier to process, it is better to make the diameter of the metal shaft 15 larger in advance and perform centering adjustment by cutting the metal shaft 15.

また、セラミックスと金属とでは研削性も異なるので、
同一工具で研磨するのは好ましくない。
In addition, the grindability of ceramics and metals is different, so
It is not recommended to use the same tool for polishing.

そこで、本例では接合前の状態で金属軸大径部15Aを
あらかじめセラミック軸2よシ太めとしておき、接合し
たあとの金属軸15の小径部15Bやねじ部150を含
む切削加工時にその大径部15Aの径をセラミック軸2
よシ小さくする。
Therefore, in this example, the large diameter part 15A of the metal shaft is made thicker than the ceramic shaft 2 before joining, and the large diameter part 15A is made thicker than the ceramic shaft 2 before joining. The diameter of part 15A is
Make it smaller.

かくして、上述したように特殊砥石によるセラミック軸
2の研磨仕上、金属軸部15の研磨仕上を個別に支障な
く行うことができる手はずを整えることができる。
In this way, arrangements can be made to individually polish the ceramic shaft 2 and the metal shaft portion 15 using the special grindstone without any trouble, as described above.

第4図は本発明の他の実施例であシ、本例は嵌合による
接合とした場合の適用例である。その構成は第2図の場
合とほぼ同様であるが、本例では、ラジアル軸受3およ
び4を何れもセラミック軸2に設けるようにする。
FIG. 4 shows another embodiment of the present invention, and this example is an application example in which connection is made by fitting. Its structure is almost the same as that shown in FIG. 2, but in this example, both radial bearings 3 and 4 are provided on the ceramic shaft 2.

しかして、金属軸25の大径部25Aを第2図の場合よ
シは幾分短か目となして、少なくとも接合後の研磨仕上
げ前の状態において、大径部25ムの径がセラミック軸
2の径よシわずかながらでも小さくなるようにする。
Therefore, the diameter of the large diameter portion 25A of the metal shaft 25 is slightly shorter than that shown in FIG. Make it slightly smaller than the diameter of 2.

第5図は本発明の更に他の実施例を示す0本例では金属
軸15の側は第1図の場合と同様であるが、セラミック
軸12の少なくとも軸受3および4の摺接部12Aおよ
び12B とその近傍をセラミック軸12のその他の部
分よシ太めに形成する。なお、本例の場合は金属軸大径
部15Aの径をセラミック軸12の接合部近傍の径よシ
必らずしも細めとする必要はない。
FIG. 5 shows still another embodiment of the present invention. In this example, the metal shaft 15 side is the same as that in FIG. 12B and its vicinity are formed to be thicker than the other parts of the ceramic shaft 12. In this example, the diameter of the metal shaft large diameter portion 15A does not necessarily have to be smaller than the diameter near the joint of the ceramic shaft 12.

このように構成した場合は、セラミック軸12の研磨仕
上げにあfcシ、その摺動部12Aおよび12B の近
傍の太めとした部分のみの研磨を実施すればよいので、
その研磨砥石が大径部15Aに接触するようなこ左がな
い。なお、タービン軸の加工手順については第3図の例
で説明したと同様であってよい。
With this configuration, it is only necessary to polish and finish the ceramic shaft 12, and polish only the thicker parts near the sliding parts 12A and 12B.
There is no way that the polishing wheel comes into contact with the large diameter portion 15A. Note that the processing procedure for the turbine shaft may be the same as that described in the example of FIG. 3.

本例の場合はセラミック軸12の接合部における接合強
度の低下をきたさないよう、摺動部12Aおよび12B
の近傍のみを強度的に設定したその他の部分の径よシ太
めとするか、あるいはその他の部分の径を強度的に設定
した径よシ細くする場〔効果〕 以上説明したように、本発明によれば、セラミック軸と
金属軸とを突合せまたは嵌合の状態で接合し、研磨仕上
げがなされるタービン軸の研磨仕上げ前の粗加工の状態
において、金属軸部の径をセラミック軸の少なくとも研
磨仕上げがなされる範囲の径よシ小さくするようにした
ので、セラミック軸に要する研磨仕上げをセラミック専
用砥石によって金属軸に接触させることなく全般にまた
が、9)ラバース研削することが可能となシ、従来のよ
うにセラミック軸の研磨時に金属軸と接触することによ
ってびびシが発生して化2ミック軸に割れが発生したシ
する虞が無くなシ、良好な寸法精度の仕上が得られるの
みならず、作業性の向上を図ることができる。 −
In this example, the sliding parts 12A and 12B are
[Effect] As explained above, when the diameter of only the vicinity of the area is made thicker than the diameter of other parts set for strength, or the diameter of other parts is made thinner than the diameter set for strength. According to the above, when a ceramic shaft and a metal shaft are joined in abutting or fitting state and are being roughly machined before polishing a turbine shaft, the diameter of the metal shaft portion is adjusted to at least the polishing of the ceramic shaft. Since the diameter of the area to be finished is made smaller, the polishing finish required for the ceramic shaft can be applied to the entire area without contacting the metal shaft with a grindstone exclusively for ceramics. , there is no risk of cracks occurring in the chemical shaft due to chatter caused by contact with the metal shaft during polishing of the ceramic shaft as in the past, and a finish with good dimensional accuracy can only be obtained. Therefore, it is possible to improve work efficiency. −

【図面の簡単な説明】[Brief explanation of the drawing]

第1図および第2図はセラミック軸と金属軸とを突合せ
方式および嵌合方式によ多接合させた従来のタービン軸
の構成の一例をそれぞれ示す断面図、 第3図俵)は本発明タービン軸の構成の一例を示す断面
図、 第3図(B)はその接合部の拡大断面図、第4図および
第5図は本発明タービン軸の他の実施例としての構成を
それぞれ示す断面図である。 1・・・ タービンロータ 2.12・・・ セラミック軸 12A、 12B・・・ 摺接部 3.4・・・軸受 5.15.25・・・ 金属軸 5jL 、 15A、 25A・・・ 大径部5B、1
5B・・・ 小径部 50 、150.250・・・ ねじ部5D・・・ 嵌
合孔 6・・・ インペラ 7.7A・・・凹部 8・・・ スラ軸受軸受カッ部材 9・・・ ワッシャ 10・・・ ナツト。 特許出願人 日産自動車株式会社 代理人弁理士 谷 義 − 第3図旧) +5A 7 2
Figures 1 and 2 are cross-sectional views showing an example of the configuration of a conventional turbine shaft in which a ceramic shaft and a metal shaft are joined in multiple ways by butt and fitting methods, respectively, and Figure 3) shows a turbine of the present invention. 3(B) is an enlarged sectional view of the joint portion thereof; FIGS. 4 and 5 are sectional views showing the configurations of other embodiments of the turbine shaft of the present invention; FIG. It is. 1... Turbine rotor 2.12... Ceramic shaft 12A, 12B... Sliding part 3.4... Bearing 5.15.25... Metal shaft 5jL, 15A, 25A... Large diameter Part 5B, 1
5B... Small diameter portion 50, 150.250... Threaded portion 5D... Fitting hole 6... Impeller 7.7A... Recessed portion 8... Sliding bearing cup member 9... Washer 10 ...Natsuto. Patent applicant: Yoshi Tani, patent attorney representing Nissan Motor Co., Ltd. - Figure 3 old) +5A 7 2

Claims (1)

【特許請求の範囲】 金属軸とセラミック軸とを突合せまたは嵌合によ多接合
し、その接合されたセラミック軸に研磨仕上げをなした
タービン軸において、前記研磨仕上げの際に、前記金属
軸を、その径が前記セラミック軸の少なくとも前記研磨
仕上げが必要な範囲の径よシ小さくなるように構成した
ことを特徴とするタービン軸。 (以下余白)
[Claims] A turbine shaft in which a metal shaft and a ceramic shaft are joined together by butting or fitting, and the joined ceramic shaft is polished, and the metal shaft is polished during the polishing. . A turbine shaft, wherein the diameter thereof is smaller than at least the diameter of the ceramic shaft in the range where the polishing is required. (Margin below)
JP5233084A 1984-03-21 1984-03-21 Turbine shaft Pending JPS60198302A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5233084A JPS60198302A (en) 1984-03-21 1984-03-21 Turbine shaft

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5233084A JPS60198302A (en) 1984-03-21 1984-03-21 Turbine shaft

Publications (1)

Publication Number Publication Date
JPS60198302A true JPS60198302A (en) 1985-10-07

Family

ID=12911779

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5233084A Pending JPS60198302A (en) 1984-03-21 1984-03-21 Turbine shaft

Country Status (1)

Country Link
JP (1) JPS60198302A (en)

Similar Documents

Publication Publication Date Title
JP4155646B2 (en) Method for joining a base of an airfoil and a disk and an assembly formed by this method
KR101570139B1 (en) Rotor Shaft of a Turbomachine and Method for the Production of a Rotor of a Turbomachine
US20060013693A1 (en) Outer diameter nut piloting for improved rotor balance
WO2002064959A1 (en) Connection method for turbo charger turbine shaft
US6276899B1 (en) Impeller manufacturing process
JPH02179238A (en) Bearing holder construction of motor
JP2006207526A (en) Variable displacement type exhaust turbocharger and method for manufacturing variable nozzle mechanism structural member
EP0857880B1 (en) Method of processing a shaft for hub unit
EP1134358A3 (en) Method of machining the turbine rotor shaft of a supercharger
US6160237A (en) Friction welding process for mounting blades of a rotor for a flow machine
JP2004308647A (en) Method for manufacturing impeller, and impeller
US9970309B2 (en) Method for producing a rotor of a charging apparatus
JPS6082267A (en) Joint structure between ceramic shaft and metallic shaft
JPH03279277A (en) Joint structure of turbine rotor
US5339521A (en) Machining method of ceramic turbine rotor
JPH0946983A (en) Method for finishing frame of motor, and motor to be finished by the method
JPS60198302A (en) Turbine shaft
US20100272572A1 (en) Method for producing an integrally bladed rotor, and rotor
CN105817918A (en) Special positioning fixture for blade numerical control precision machining
US5839643A (en) Method of weld-recoulping front cover and pump shell of torque converter
US4852236A (en) Method of repairing a worn wobbler housing for a constant-speed drive
JPS58178803A (en) Turbine shaft
JP4646737B2 (en) Static pressure gas bearing spindle device
JP3446913B2 (en) Yoke processing method
CN218787200U (en) Compressor impeller assembly