JPS6078610A - Removal of nitrogen gas contained in gaseous mixture containing at least carbon monoxide, nitrogen gas and carbon dioxide by adsorbing method - Google Patents

Removal of nitrogen gas contained in gaseous mixture containing at least carbon monoxide, nitrogen gas and carbon dioxide by adsorbing method

Info

Publication number
JPS6078610A
JPS6078610A JP58187477A JP18747783A JPS6078610A JP S6078610 A JPS6078610 A JP S6078610A JP 58187477 A JP58187477 A JP 58187477A JP 18747783 A JP18747783 A JP 18747783A JP S6078610 A JPS6078610 A JP S6078610A
Authority
JP
Japan
Prior art keywords
gas
adsorption tower
adsorption
pressure
tower
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58187477A
Other languages
Japanese (ja)
Inventor
Toshikazu Sakuratani
桜谷 敏和
Tetsuya Fujii
徹也 藤井
Shigeo Matsui
松井 滋夫
Shigeki Hayashi
茂樹 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
OSAKA OXGEN IND Ltd
JFE Steel Corp
Osaka Oxygen Industries Ltd
Original Assignee
OSAKA OXGEN IND Ltd
Osaka Oxygen Industries Ltd
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by OSAKA OXGEN IND Ltd, Osaka Oxygen Industries Ltd, Kawasaki Steel Corp filed Critical OSAKA OXGEN IND Ltd
Priority to JP58187477A priority Critical patent/JPS6078610A/en
Publication of JPS6078610A publication Critical patent/JPS6078610A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/40Capture or disposal of greenhouse gases of CO2
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/151Reduction of greenhouse gas [GHG] emissions, e.g. CO2

Landscapes

  • Carbon And Carbon Compounds (AREA)
  • Separation Of Gases By Adsorption (AREA)

Abstract

PURPOSE:To remove nitrogen gas from stock gas containing carbon monoxide gas and nitrogen gas by using a selective adsorbent of a synthetic zeolite system according to a pressure swing type adsorptive separation method. CONSTITUTION:Stock gas (a) is introduced into an adsorbing tower A under pressure and a valve 1 is opened to raise the pressure of said tower A from a vacuum state. After pressure is raised, a valve 3 is opened so as to hold the adsorbing pressure of the adsorbing tower A to about 20kg/cm<2> G and, after an adsorbing process, which is performed for a definite time sufficient to recover hardly adsorbable gas to a gas holder, is finished, the valves 1, 3 are closed and a valve 5 is opened to reduce the internal pressure of the adsorbing tower A to atmospheric pressure. Valves 7, 3 are opened to enter a purge process for purging hardly adsorbable component in the gap of the adsorbing tower A while product gas pressure is held to atmospheric pressure. Subsequently, a valve 9 is opened while the valves 7, 3 are closed and a vacuum pump for desorbing an easily adsorbable component is operated to perform vacuum exhausion to recover CO being product gas. This operation is successively repeated in respective adsorbing towers.

Description

【発明の詳細な説明】 本発明はPSA法(圧力変動式吸着分離方法)によって
転炉又は高炉の排ガス主としてcot、co。
DETAILED DESCRIPTION OF THE INVENTION The present invention uses a PSA method (pressure fluctuation adsorption separation method) to collect mainly cot, co, and other waste gases from a converter or blast furnace.

N、及びH,を含有する気体状混合物中のN2 を除去
し、CO濃度を高め又はcoを分離精製する方法に関す
る。
The present invention relates to a method for removing N2 from a gaseous mixture containing N and H, increasing the CO concentration, or separating and purifying co.

製鉄用の排ガスである転炉または高炉において発生する
排ガスは、比較的多量のcoガスを含有している。その
組成は下記に示す範囲内にある。
The exhaust gas generated in a converter or blast furnace, which is an exhaust gas for iron manufacturing, contains a relatively large amount of co gas. Its composition is within the range shown below.

Co COt、kJt Hz Ox 當ヵτ20−30%20−30%4o−酵1〜1oチ 
〇これらの拮ガスには相当量のCOガスが含まれている
ため、回収して燃料として燃焼用ガスとして一部使用さ
れているにすぎない。この場合に於てもN2 ガスは除
去することが望ましい。もし、これらの排ガスから高濃
度のCOガスを安価に回収出来れば、合成化学原料、精
錬容器内溶融金属中への吹込みガスなど用途が大きく拓
ける。
Co COt, kJt Hz Ox tau 20-30% 20-30% 4o-ferment 1-1o
〇Since these antagonistic gases contain a considerable amount of CO gas, only some of them are recovered and used as combustion gas as fuel. Even in this case, it is desirable to remove the N2 gas. If high-concentration CO gas could be recovered at low cost from these exhaust gases, it could be used as a raw material for synthetic chemicals, or as a gas injected into molten metal in refining vessels.

合成化学原料としてのCOガスを考える際には合成反応
が高温、高圧条件下で行なわれるのが通例であり、反応
効率を上けるために通常反応に関与しないN、は出来る
限り除去するのが望ましい。
When considering CO gas as a synthetic chemical raw material, the synthesis reaction is usually carried out under high temperature and high pressure conditions, and in order to increase reaction efficiency, it is important to remove as much as possible of N, which does not normally participate in the reaction. desirable.

一方、溶融金属の精錬の助出化を目的とする精錬容器内
へのガス吹込み操作は広く行なわれているが、溶融金属
中の不純ガス成分(N、ガス、 )l、ガスなど)の濃
度上昇を嫌う観点から高価なArガスが使用されるのが
通例である。そこで、製鉄所内で大量に発生している転
炉ガス、高炉ガスから高濃度のCOガスか安価に回収出
来ればこれをArに代替することがはy可能である。こ
の際、^濃JffiCOガス中のN2 濃度は溶鉄の窒
素濃度上昇を防ぐ観点から低いのが望ましい。
On the other hand, the operation of blowing gas into a refining vessel for the purpose of assisting the refining of molten metal is widely carried out, but it is possible to eliminate impurity gas components (N, gas, )l, gas, etc. in the molten metal. Expensive Ar gas is usually used from the viewpoint of avoiding an increase in concentration. Therefore, if highly concentrated CO gas can be recovered at low cost from converter gas and blast furnace gas, which are generated in large quantities in steel plants, it is possible to replace this with Ar. At this time, the N2 concentration in the concentrated JffiCO gas is desirably low from the viewpoint of preventing an increase in the nitrogen concentration of the molten iron.

従来、上記排ガスを原料に高濃度coガスを回収するプ
ロセスとしては深冷分離法、あるいは、調液法、Co5
orb法といった溶液吸収法がある。
Conventionally, the processes for recovering high-concentration CO gas using the above-mentioned exhaust gas as raw materials include the cryogenic separation method, the liquid preparation method, and the Co5
There is a solution absorption method such as the orb method.

しかしながら、前者は低温と高圧を、後者においては高
温と高圧を必要とし、両者共に設備が複雑かつ高価にな
る欠点がある。また、深冷分離法においてはN、とCO
の沸点が接近しているため、N。
However, the former requires low temperature and high pressure, and the latter requires high temperature and high pressure, and both have the drawback that the equipment is complicated and expensive. In addition, in the cryogenic separation method, N, and CO
Because the boiling points of N.

とCOの分離を完全に行なうことも困難である。It is also difficult to completely separate CO and CO.

以上の現状に鑑みて、本発明者らは、より簡便なプロセ
スで安価に高濃度coガスを回収する技術として吸着法
によるCOガスの回収の開発を試みた。
In view of the above-mentioned current situation, the present inventors attempted to develop CO gas recovery using an adsorption method as a technique for recovering high-concentration CO gas at low cost through a simpler process.

前記排ガスの吸着法(PSA法)による吸着分離は、公
知であり、吸着剤に吸着しにくいガス成分(以後、難吸
着成分と云う)の回収を目的としたものに特公昭38−
23928〜43−15045(特許一覧表参照)の1
2件を基本特許として種々公告あるいは出願されている
又、吸着剤に吸着しやすいガス成分(以後、易吸着成分
と云う)を吸着剤に吸着させ脱着して分離回収すること
により易吸着成分を高純度で分離する方法も古(から実
施されている。例えば、エチレンを易吸着成分とした具
体例および窒素分離への応用について等がある。
The above-mentioned adsorption separation using the adsorption method (PSA method) of exhaust gas is well known and was developed in Japanese Patent Publication No. 38-1973 for the purpose of recovering gas components that are difficult to adsorb to adsorbents (hereinafter referred to as difficult-to-adsorb components).
1 of 23928-43-15045 (see patent list)
The two basic patents have been publicly announced or filed for various purposes.Also, gas components that are easily adsorbed to an adsorbent (hereinafter referred to as easily adsorbed components) are adsorbed onto an adsorbent, desorbed, and separated and recovered. Separation methods with high purity have been practiced since ancient times. For example, there are specific examples using ethylene as an easily adsorbed component and applications to nitrogen separation.

従来から行なわれているガス混合物中の吸着剤に易吸着
成分を回収する方法は通常次の操作を含んだものである
、吸着加圧工租−還流工程−説着工程を順次繰返すこと
によって吸着剤に易吸着成分に富んだガスを取出すこと
が出来る。
The conventional method of recovering easily adsorbable components to an adsorbent in a gas mixture usually involves the following operations: adsorption pressurization, reflux step, and persuasion step, which are repeated in sequence. It is possible to extract gas rich in easily adsorbable components.

しかし、今回の排ガスの様に共吸着しやすいガス成分の
一酸化炭素を含む混合ガスより窒素を除去し、高濃度の
一酸化炭素として回収精製することは行なわれていない
However, it has not been done to remove nitrogen from a mixed gas containing carbon monoxide, a gas component that is easily co-adsorbed, and collect and purify it as highly concentrated carbon monoxide, such as the exhaust gas in this case.

本発明者らは種々の合成ゼオライトを用いて実験を行な
い、天然ゼオライトのモルデナイト系のものにくらべて
COガスの高選択性・高活性であり、COガスとN、ガ
ス分pI(4係数の太きいもの即ちCOガスの吸着量が
多く、がっ、N2ガス の吸着量が少くないものを利用
することによってcoガスの回収効率を向上させること
をつきとめ、この様な合成ゼオライトの使用並びに開発
をすることが出来る様になった。
The present inventors conducted experiments using various synthetic zeolites, and found that they have higher selectivity and activity for CO gas than mordenite-based natural zeolites. It was discovered that the recovery efficiency of CO gas could be improved by using a thick zeolite, that is, one that adsorbed a large amount of CO gas and not a small amount of N2 gas, and began the use and development of such synthetic zeolite. Now I can do it.

本発明は少なくとも一酸化店素カス及び窒素ガスを含む
原料ガスから圧力変動式吸着分離方法により窒素ガスを
除去する方法において、合成ゼオライトからなる吸着剤
を収納人した2つ以上の吸着塔を用い、その方法は (1)原料ガスにより吸着塔を加圧し、(11)さらに
原料ガスを吸着塔に流して、吸着塔出口における易吸着
成分の濃度が吸着塔入口における易吸着成分の濃度に達
するまで又は両者の濃度が等しくなる点の少し前まで吸
着剤に易吸着成分を吸着させる吸光工程、 (iii) 吸着工程終了後その吸着塔と真空脱着が終
った吸着塔とを連結し、前者の吸着塔からガスを後者の
吸着塔に導入し、前者の吸着塔の圧力を降下させ、 hQ 減圧した吸着塔に製品ガスを並流に導入して難吸
着成分をパージするパージ工程、 M 吸着剤に吸着されている易吸着成分を真空ポンプを
用いて脱着させ製品ガスを回収する回収工程、及び (VD 製品回収が終った吸着塔と吸着工程が終った吸
着塔とを連結して後者の吸着塔からのガスによる加圧工
程。
The present invention provides a method for removing nitrogen gas from a raw material gas containing at least monoxide carbon dioxide and nitrogen gas by a pressure fluctuation adsorption separation method, using two or more adsorption towers containing an adsorbent made of synthetic zeolite. The method is (1) pressurizing the adsorption tower with the raw material gas, (11) further flowing the raw material gas into the adsorption tower, and the concentration of the easily adsorbed component at the outlet of the adsorption tower reaches the concentration of the easily adsorbed component at the inlet of the adsorption tower. (iii) After the adsorption step, the adsorption tower is connected to the adsorption tower that has undergone vacuum desorption, and the former Gas is introduced from the adsorption tower into the latter adsorption tower, and the pressure in the former adsorption tower is lowered. hQ Purging process in which product gas is introduced in parallel to the depressurized adsorption tower to purge difficult-to-adsorb components; M adsorption agent A recovery process in which the easily adsorbed components adsorbed on the gas are desorbed using a vacuum pump to recover the product gas, and (VD) the adsorption tower from which the product recovery has been completed is connected to the adsorption tower from which the adsorption process has been completed to adsorb the latter. Pressurization process using gas from the tower.

から成り、定期的に吸着塔間の流れを変えて全ての吸着
塔におい℃上記操作を繰返すことを特徴とした方法に関
する。
This method is characterized by periodically changing the flow between the adsorption towers and repeating the above operation at ℃ in all the adsorption towers.

第3番目および第4番目σ)発明は、工程拗のノく一ジ
工程から排出されるガスを工程(v)が終った吸着塔に
導入することからなる吸着工程が附加されている。
In the third and fourth σ) inventions, an adsorption step is added which consists of introducing the gas discharged from the second step into the adsorption tower where step (v) has been completed.

第2番目および第4番目の発明は、吸着工程が終った稜
、吸着塔内の圧力をある圧力まで減圧させ、減圧(1,
1工程が附加されでいる。この工程は、吸着塔内σ)吸
着塔出口側の1a吸着成分の多い部分を吸着塔外へ廃棄
するためである。この場合、吸3 落圧(ゲージ圧)の百〜1程度の圧力に低下させるまで
、ガスを廃棄するのが好ましい、本発明の工程(1)は
、吸着塔((原料ガスを導入する吸着塔の加圧工程であ
る。本発明では回収すべきガスは易吸着成分であるので
、筒い吸着圧は必要ではなく、3 k17 / <ml
−G fit度の吸着圧で十分であり、それより低い吸
着圧であっても良い。
The second and fourth inventions reduce the pressure inside the adsorption tower to a certain pressure at the edge where the adsorption process has finished, and reduce the pressure (1,
One step has been added. This step is for discarding the portion of the adsorption tower containing a large amount of the 1a adsorbed component on the outlet side of the adsorption tower (σ) to the outside of the adsorption tower. In this case, it is preferable to discard the gas until the pressure is reduced to about 100 to 100% of the suction pressure (gauge pressure).Step (1) of the present invention is carried out in an adsorption tower ((an adsorption column into which the raw material gas is introduced) This is a step of pressurizing the column.In the present invention, since the gas to be recovered is an easily adsorbed component, a column adsorption pressure is not necessary, and 3 k17/<ml
An adsorption pressure of -G fit degree is sufficient, and a lower adsorption pressure may be used.

本発明の工程(11)は、吸着工程である。吸着塔出口
における易吸着成分(CO,CO,) の濃度が吸着塔
入口における易吸着成分の濃度と等しくなった点という
ことは、吸着剤の破過点を意味する。回収すべき成分が
Me、着成分(例えば、空気から酸素を分離する場合に
おいては酸素)であるならば高純度の難吸着成分を得る
ためには破過点よりも上の水準で吸着工程を終了するこ
とが望ましい。
Step (11) of the present invention is an adsorption step. The point at which the concentration of easily adsorbed components (CO, CO, ) at the outlet of the adsorption tower becomes equal to the concentration of easily adsorbed components at the inlet of the adsorption tower means the breakthrough point of the adsorbent. If the component to be recovered is Me or a deposited component (for example, oxygen in the case of separating oxygen from air), the adsorption step must be carried out at a level above the breakthrough point in order to obtain a highly purified component that is difficult to adsorb. It is desirable to terminate.

しかし本発明では、回収すべき成分は易吸着成分である
から、破過点又は破過点に達する少し前まで吸着を行な
う。
However, in the present invention, since the component to be recovered is an easily adsorbed component, adsorption is performed until the breakthrough point or just before the breakthrough point is reached.

■程怜は、吸着工程が終った吸着塔と真空脱着が終った
吸着塔とを連結し、好ましくは並流方向に前者の吸着塔
からガスを後者の吸着塔に導入し前者の吸着塔の圧力を
大気圧近くまで降下させる。
■Chengrei connects the adsorption tower after the adsorption process and the adsorption tower after vacuum desorption, and preferably introduces gas from the former adsorption tower into the latter adsorption tower in the cocurrent direction. Reduce the pressure to near atmospheric pressure.

又は製品回収の終った吸着塔と均圧まで減圧する。Or reduce the pressure to equal pressure with the adsorption tower after product recovery.

この工程では吸着塔に収納されている吸着剤間の空間中
のガスが放出され、真空脱着が終った吸着塔の加圧に使
用される。曲者の吸着塔の圧力がほぼ大気圧になるまで
この操作を続ける。
In this step, gas in the space between the adsorbents housed in the adsorption tower is released and used to pressurize the adsorption tower after vacuum desorption. Continue this operation until the pressure in the bender's adsorption tower reaches approximately atmospheric pressure.

工程4V)は、減圧した吸着塔に並流に製品ガスを導入
して吸着塔内に残っている難吸着成分(N、)をパージ
する。この場合の製品ガスの導入圧は、吸着圧より低く
、大気圧より高い方が望ましく、この場合ポンプ等を使
用する必要が11<、製品ガスタンクと吸着塔を連結す
ることによってパージを実施できる。
In step 4V), the product gas is cocurrently introduced into the depressurized adsorption tower to purge the difficult-to-adsorb components (N, ) remaining in the adsorption tower. In this case, the introduction pressure of the product gas is preferably lower than the adsorption pressure and higher than atmospheric pressure, and in this case, it is necessary to use a pump or the like, but purge can be performed by connecting the product gas tank and the adsorption tower.

工程(V)は、パージ工程が終った吸着塔を真空ポンプ
を用いて、好ましくは60〜60 Torrまで真空に
し、吸着剤に吸着されていた成分(COガス等)を脱着
させ、製品カスとして回収する。
In step (V), the adsorption tower after the purge step is evacuated to preferably 60 to 60 Torr using a vacuum pump, and components adsorbed to the adsorbent (CO gas, etc.) are desorbed and the product is removed as product scum. to recover.

工程■は、製品回収が終った吸着塔と吸着工程が終った
吸着塔とを連結し、後者の吸着塔からのガスによって前
者の吸着塔を加圧する。この場合後者の吸着塔がほぼ大
気圧になった時、ガスの導入を中止するので前者の吸A
塔の圧力は大気圧に達しない。
Step (2) connects the adsorption tower that has completed product recovery with the adsorption tower that has completed the adsorption process, and pressurizes the former adsorption tower with gas from the latter adsorption tower. In this case, when the latter adsorption tower reaches almost atmospheric pressure, the introduction of gas is stopped, so the former adsorption A
The pressure in the tower does not reach atmospheric pressure.

工程(Vll)は、他の吸着塔のパージ工程からのガス
による吸着(川)からなる。
Step (Vll) consists of adsorption (river) with gas from the purge step of another adsorption column.

吸着剤として使用する合成ゼオライトは次の通りである
The synthetic zeolites used as adsorbents are as follows.

米国のU、 C,C,社からMS−3A、MS−4A。MS-3A, MS-4A from U, C, C, USA.

MS−5A、MS−10XおよびMS −13Xとして
売られているモレキュラーシーブ、ドイツのバイエル社
から に−154,T−142,8−132,W−894゜K
−155,’l”−143,8−133゜K−254,
1’−144,およびS−134の内で売られている合
成ゼオライト;および東洋曹達株式会社からゼオラムA
−6,ゼオラムA−4゜ゼオラムA−5およびゼオラム
F−9として売られている合成ゼオライトである。
Molecular sieves sold as MS-5A, MS-10X and MS-13X, -154, T-142, 8-132, W-894°K from Bayer, Germany
-155,'l''-143,8-133°K-254,
1'-144, and S-134; and Zeolum A from Toyo Soda Co., Ltd.
-6, Zeolum A-4° is a synthetic zeolite sold as Zeolum A-5 and Zeolum F-9.

第2′@目の発明は次のような特徴を有する。The second invention has the following features.

(1) パージガスを回収することにより、系外への放
出量が減少し、COの収率が上昇する。
(1) By recovering the purge gas, the amount released outside the system is reduced and the yield of CO is increased.

(2)パージ工程からの#度の高いカスを回収すること
により、吸着剤表面の清浄度が長く保たれ、吸着剤の一
酸化炭素吸着能力が高めらhた、これは、se、着ガス
による表面e、着或いは汚染が\ 減少する(易吸着成分の吸着時に於ける難吸着成分の同
伴吸着量が減少する)からである。
(2) By collecting high-grade residue from the purge process, the cleanliness of the adsorbent surface was maintained for a long time, and the carbon monoxide adsorption capacity of the adsorbent was increased. This is because the adhesion or contamination of the surface e due to adsorption is reduced (the amount of adsorbed components that are difficult to adsorb together when adsorbing components that are easily adsorbed is reduced).

以下、本発−の代表的な具体例である転炉排ガス中のN
、を除去しCOを分離回収する方法に基づいて本発明の
詳細な説明するが、本発明の方法はこれらの具体例に限
定されるものではない。
The following is a typical example of N in converter exhaust gas.
The present invention will be described in detail based on a method of removing CO and separating and recovering CO, but the method of the present invention is not limited to these specific examples.

第1図は吸着法により連続的に転炉排ガスから難吸着成
分である窒素ガスを除去し、易吸着成分の一酸化炭素ガ
スを分離濃縮するフローシートである。
FIG. 1 is a flow sheet for continuously removing nitrogen gas, which is a component that is difficult to adsorb, from converter exhaust gas by an adsorption method, and separating and concentrating carbon monoxide gas, which is an easily adsorbable component.

吸着塔A、B、は、易吸着成分を選択的に吸着する吸着
剤が収納されている。吸着塔A、Bを真空ポンプ()を
用いて減圧排気k 30 Torr 好ましくは60 
Torr まで行い、今、吸着塔Aに原料ガスを加圧導
入、真空状態より昇圧させるたみパルプ(1)を開くこ
とによって行う、このときのパルプ(2)、 (3)、
 (41,(5L (61,(7)、 (8)、 (9
1,(10)はすべて閉である。
Adsorption towers A and B house adsorbents that selectively adsorb easily adsorbable components. Adsorption towers A and B are evacuated to a reduced pressure of k30 Torr, preferably 60 Torr, using a vacuum pump ().
Torr, and now the raw material gas is introduced under pressure into the adsorption tower A, and the pressure is raised from the vacuum state by opening the folding pulp (1).
(41, (5L (61, (7), (8), (9
1, (10) are all closed.

吸着塔Bはこのステップではまだ真空状態を保持してい
る吸着塔Aは昇圧後、吸着圧力0.1kg/cdtGか
ら5.0 kg/iG、好ましくは0.5k19/ff
1Gから2.0に9/ff1Gの吸着圧力を保つ様にパ
ルプ3は開かれ、難吸着ガスはガスボルダ−に回収され
る一定時間或は一定創、の収着工程終了後、原料供給パ
ルプ1及び出口バルブ3は閉じ、吸着塔Bへの連結パイ
プにあるパルプ5を開き、吸着塔Aの塔内圧力を大気圧
迄減圧させる。吸着塔Aの圧力が大気圧になった所で製
品ガスによる吸着塔Aの空隙(吸着剤間の空間)ガスを
追出すために、パルプ7及び3を開き、製品ガス圧力を
大気圧力或は大気圧力よりや〜高めの圧力(製品ガスタ
ンク圧力)で吸着塔Aの空隙中の難吸着成分のパージ工
程に入る。パージ量はあらかじめ計算された量或は一定
時間合なわれた後パルプ7は閉じられる。
Adsorption tower B still maintains a vacuum state in this step. Adsorption tower A after pressure increase has an adsorption pressure of 0.1 kg/cdtG to 5.0 kg/iG, preferably 0.5k19/ff.
The pulp 3 is opened so as to maintain an adsorption pressure of 9/ff1G from 1G to 2.0, and the gas that is difficult to adsorb is collected in a gas boulder. Then, the outlet valve 3 is closed, the pulp 5 in the connecting pipe to the adsorption tower B is opened, and the internal pressure of the adsorption tower A is reduced to atmospheric pressure. When the pressure of adsorption tower A becomes atmospheric pressure, pulps 7 and 3 are opened to expel gas from the voids (space between adsorbents) in adsorption tower A caused by product gas, and the product gas pressure is reduced to atmospheric pressure or At a pressure slightly higher than atmospheric pressure (product gas tank pressure), a purge process of the difficult-to-adsorb components in the voids of adsorption tower A begins. After the purge amount is a pre-calculated amount or is combined for a certain period of time, the pulp 7 is closed.

次いでパルプ9が開きパルプ7.3は閉じ吸着剤に吸着
している易吸着成分を脱着さ姓るため真空ポンプで60
 ’l’orr 好ましくはb O’I’orr まで
減圧排気を行つ工製品ガスであるCOを回収するもので
ある。
Next, the pulp 9 is opened and the pulp 7.3 is closed, and in order to desorb the easily adsorbed components adsorbed on the adsorbent, a vacuum pump is used to remove the easily adsorbed components.
'l'orr Preferably b O'I'orr CO, which is an industrial product gas, is recovered by evacuation under reduced pressure.

上記操作をそれぞれの吸着塔において順次、繰返すこと
により連続的に吸着剤に易吸着成分であるCOガスを分
離することができる一 実施例1゜ 本発明法にもとづいて、−酸化炭素混合ガス(CO=9
1.2チ N2= 8.8チ)の精製を試みた。
Example 1: By repeating the above operations in each adsorption tower, it is possible to continuously separate CO gas, which is a component easily adsorbed onto the adsorbent. Based on the method of the present invention, -carbon oxide mixed gas ( CO=9
An attempt was made to purify 1.2chi (N2 = 8.8chi).

精製工程としては既述の如く[吸着−減圧(並流)−パ
ージ(並流)−真空排気(向流)−加圧(並流)」の精
製ザイクルにもとづいて実施した。
As described above, the purification process was carried out based on the purification cycle of [adsorption-depressurization (co-current)-purge (co-current)-vacuum evacuation (counter-current)-pressurization (co-current).

活性化した合成ゼオライ)M、S、−3A(0,5k1
7、−ベレット)ヲIJFIしたステンレススチール製
の吸着塔を真空排気して(S Q Torr の真空に
保った後上記の混合ガス(CO=91.2% Nl =
6.8%)を線速2 cyj / secで塔の下部よ
り導入して、混合ガスの精製を実施した(精製所要時間
約6分)。
activated synthetic zeolite) M, S, -3A (0,5k1
7.-Berrett) After evacuating the stainless steel adsorption tower that had been heated (while maintaining the vacuum at S Q Torr), the above mixed gas (CO = 91.2% Nl =
6.8%) was introduced from the bottom of the column at a linear velocity of 2 cyj/sec to purify the mixed gas (required time for purification was approximately 6 minutes).

この場合、供給ガス都14.2N、/’ に対して精製
−酸化炭素ソース量は8.1 Nl であり、収率は3
8.8チ一酸化炭素純度は99−以上であった、次に本
明細8VC述べた方法について詳細に示す。
In this case, the amount of refined carbon oxide source is 8.1 Nl for the supplied gas capacity of 14.2 N,/', and the yield is 3
The purity of 8.8% carbon monoxide was greater than 99%.Next, the method described in 8VC will be described in detail.

第1図のフローにおいて、吸着塔A、Bにそれぞれ65
0℃で活性化した合成ゼオライ) (M、 S。
In the flow shown in Figure 1, adsorption towers A and B each have 65
Synthetic zeolite activated at 0 °C) (M, S.

−3A)を0.5 kgを収納し、真空ポンプで60 
Torr迄真空υF気を行う。配管(a)より一酸化炭
素混合ガス(CO=91.2% N2 = 8.8%)
を圧力上昇操作時バルブ(1)を開にして、吸着基因に
連続して送り、塔内圧力が1.0 kg/ (ml G
になる様に設定した。
-3A) is stored and 60 kg is stored with a vacuum pump.
Perform vacuum υF up to Torr. Carbon monoxide mixed gas (CO = 91.2% N2 = 8.8%) from pipe (a)
is continuously sent to the adsorption source by opening the valve (1) during pressure increase operation, and the pressure inside the column is 1.0 kg/ (ml G
I set it so that it becomes

更に吸着]工程として吸着塔出口バルブ(3)を開き、
吸着塔出口ガス純度が人口ガス純度とはy同じになる時
間、混合ガスを流−4−o約14.2N1. 出口純度
が入口純度に等しくなると出ロバルプ(3)を閉じ吸着
塔(B)への配管バルブ(5)を開き、吸着工程中の吸
着塔(5)の空隙(吸着剤空間)にたまっている空隙ガ
スを吸着塔(8)に回収する減圧工程、このとき吸着塔
は真空排気が終了しておりB塔内圧は60 ’l”or
rより220 Torrに昇圧する。A塔内圧が° 大
気圧(Okl/1crdG )になれはバルブ(5)は
閉じ製品ガスタンクとA塔の混合カス供給ラインに設け
ているバルブ(7)及び吸着塔出口バルブ(3)を開に
して製品ガスタンクより製品カス(−酸化炭素)を製品
ガスタンク圧力でもって吸着塔(5)の空隙に大気圧力
でなお吸着剤に吸着しないで残っているガスをwas 
teガスとして追い出すパージ工程、パージガスとして
約3. ONlを使用し塔(A)より追出されたガス量
は2.8Nノであった。
Further adsorption step, open the adsorption tower outlet valve (3),
The mixed gas was flowed -4-o at about 14.2 N1 for a time when the gas purity at the outlet of the adsorption tower was the same as the artificial gas purity. When the outlet purity becomes equal to the inlet purity, the outlet valve (3) is closed and the piping valve (5) to the adsorption tower (B) is opened, and the adsorption tower (5) during the adsorption process accumulates in the voids (adsorbent space). In the depressurization step of recovering the pore gas into the adsorption tower (8), at this time the adsorption tower has been evacuated and the internal pressure of the B tower is 60'l"or
Increase the pressure from r to 220 Torr. When the internal pressure of A tower reaches atmospheric pressure (Okl/1crdG), close the valve (5) and open the valve (7) installed in the mixed gas supply line between the product gas tank and A tower and the adsorption tower outlet valve (3). Then, the product residue (-carbon oxide) is transferred from the product gas tank to the gap of the adsorption tower (5) at atmospheric pressure using the product gas tank pressure to remove the remaining gas that has not been adsorbed to the adsorbent.
A purge process in which the purge gas is expelled as te gas, and the purge gas is approximately 3. The amount of gas expelled from the column (A) using ONl was 2.8N.

このパージ工程が終了するとバルブ(3)と(7)を閉
じると同時に吸着塔入口filil (−上部)と真空
ポンプを接続している配管に設けられているバルブ(9
)を開にし、吸着剤に吸着され゛〔いる易吸着ガスであ
る製品ガスCOガスを真空ポンプを使って大気圧力から
60 Torr 迄脱着排気させ製品タンクに回収する
方法であるこのときの回収ガス量は8.2Neであった
。又−酸化炭素純度は99%以上であった。
When this purge process is completed, valves (3) and (7) are closed, and at the same time, the valve (9) installed in the pipe connecting the adsorption tower inlet filil (-upper part) and the vacuum pump is closed.
), and the product gas CO gas, which is easily adsorbed by the adsorbent, is desorbed and evacuated from atmospheric pressure to 60 Torr using a vacuum pump and recovered into the product tank. The amount was 8.2Ne. Moreover, the carbon oxide purity was 99% or more.

ガス純度は、ガスクロマトグラフィーを用いて測定した
結果99チ以上であることン確認した。
The gas purity was confirmed to be 99% or higher as a result of measurement using gas chromatography.

実施例2゜ 以下本発明をさらに具体的に説明するために転炉排ガス
(CO=88%、 C(’、)2=2%、N2= 6.
5チ、N2−6チ、O,−= 0.5%)よりN2−1
(,2を除去し、COを分離濃縮を行った実施例を示す
Example 2 Below, in order to explain the present invention more specifically, converter exhaust gas (CO=88%, C(',)2=2%, N2=6.
5chi, N2-6chi, O, -= 0.5%) from N2-1
(, 2 is removed and CO is separated and concentrated.

第1図に示したフローにおいて吸着塔A、Bにそれぞれ
650℃で活性化した合成ゼオライト、バイリットに−
154を0.5 kl/を収納し、真空ポンプで60 
Torr 迄真空排気を行う。
In the flow shown in Figure 1, adsorption towers A and B contain synthetic zeolite activated at 650°C, bilit-
154 is stored at 0.5 kl/, and 60 kl/ is stored with a vacuum pump.
Evacuate to Torr.

配管(a)よりすでに除湿した転炉排ガスを圧力上昇操
作時バルブ(1)を開にして吸着塔Aに連続して送り、
塔内圧力が1.okg/=cになる様に流量を設定した
。更に吸着工程として吸着塔出口バルブ3を開き、吸着
塔出口ガス純度が入口ガス純度とほぼ同じKなる迄の時
間原料ガスを流し続ける。
The converter exhaust gas, which has already been dehumidified, is continuously sent from the pipe (a) to the adsorption tower A by opening the valve (1) during the pressure increase operation.
The pressure inside the column is 1. The flow rate was set so that okg/=c. Further, as an adsorption step, the adsorption tower outlet valve 3 is opened, and the raw material gas continues to flow for a period of time until the adsorption tower outlet gas purity becomes approximately the same K as the inlet gas purity.

出口純度が入口純度になると出ロバルプ3を閉じ吸着塔
(Blへの配管バルブ5を開き、吸着工程中の吸着基因
の空隙(吸着剤間)にたまっている空隙ガスを吸着塔(
B)に回収このときB塔内圧は60Torr より22
0 Torr に昇圧さハるA塔内圧が大気圧(Okg
/cr/LG)になれはバルブ5は閉じ製品ガスタンク
とA塔の原料供給ラインに設けであるバルブ7及び吸着
塔出口バルブ3を開にして製品ガスタンクより製品ガス
(CO)製品ガ′スタンク圧力でもって吸着塔(2)の
空隙に大気圧力で吸着剤に吸着しないで残っているガス
を追い出すパージ工程、このパージ工程が終了するとバ
ルブ3と7を閉じると同時に、吸着塔人(i (lli
’ (下部)と真空ポンプを接続しているバルブ9を開
にし、吸着剤にrIk着されている易吸着ガスである製
品ガスCO及びCO,ガスを真空ポンプを使って大気圧
から60’I’orrまで脱着排気させ製品タンクに回
収する方法である、このときの回収カス轍はCOが6.
2 Nlでガス純度はCOが94チ、CO7が4.7%
、N2 が1.6チであった。
When the outlet purity reaches the inlet purity, the outlet valve 3 is closed and the piping valve 5 to the adsorption tower (Bl is opened, and the void gas accumulated in the voids (between the adsorbents) that are the cause of adsorption during the adsorption process is transferred to the adsorption tower (
Recovered to B) At this time, the internal pressure of B column was 60 Torr, so 22
The pressure inside the A column is increased to 0 Torr, and the pressure inside the A column is atmospheric pressure (Okg
/cr/LG), valve 5 is closed and valve 7, which is installed between the product gas tank and the raw material supply line of tower A, and adsorption tower outlet valve 3 are opened to release the product gas (CO) from the product gas tank to the product gas tank pressure. Therefore, the purge step is to expel the remaining gas that is not adsorbed by the adsorbent into the gap of the adsorption tower (2) under atmospheric pressure.When this purge step is completed, valves 3 and 7 are closed, and at the same time, the adsorption tower (i (lli
' Open the valve 9 that connects the vacuum pump and the product gas CO and CO, which are easily adsorbed gases that are attached to the adsorbent, using the vacuum pump to lower the atmospheric pressure to 60'I. This is a method of desorbing and exhausting up to 'orr and collecting it in a product tank.The collected waste track at this time has a CO of 6.
2Nl gas purity is 94% for CO and 4.7% for CO7
, N2 was 1.6ch.

又供給ガス量が12.5N7で収率は61.6%になっ
た。
Further, when the amount of gas supplied was 12.5N7, the yield was 61.6%.

2塔式の場合の工程 、1m塔′・ 実施例6゜ 以下本発明をさらに具体的に説鴫するため、−酸化炭素
混合ガス(CO=93.0労、N2=7.0%)の精製
を試みた、 精製工程として既述の如く「原本1加圧−吸(72流)
−減圧(並流)吸着0J)−パージ(並流)吸着(3)
−真空排気(向流)−加圧(吸着)(並流)」の精製ザ
イクルにもとづいて実施した、活性化したゼオライトに
− 1 5 4 ( (]、55kg1/8公レツト)
を充填したステンレススチール&の吸着基( I D 
i Bx 1 m )を真空排気して6 0 Toyr
c)真空に保った後、上記の混合ガス(CO=93.0
%,N2=7.o%) を線速3 crrL/ see
で塔の下部より導入して混合ガスの精製を実施した。
Steps in case of two-column type, 1 m tower'・Example 6゜To explain the present invention more specifically, -carbon oxide mixed gas (CO = 93.0%, N2 = 7.0%) As mentioned above, the purification process was as follows:
- Reduced pressure (co-current) adsorption 0J) - Purge (co-current) adsorption (3)
- Vacuum evacuation (counter-current) - Pressurization (adsorption) (co-current)" on activated zeolite carried out on the basis of a purification cycle - 154 ((), 55 kg 1/8 public ret)
Stainless steel filled with adsorption group (I D
i Bx 1 m) was evacuated and 60 Toyr
c) After keeping the vacuum, the above mixed gas (CO=93.0
%, N2=7. o%) linear velocity 3 crrL/see
The mixed gas was purified by introducing it from the bottom of the tower.

この場合、供給ガス量12.5N/に対し精製COガス
玩は7.49NAで60回収率は6. 3. 8 ’%
 であった。精製後のガス組成はC0=99.2%N2
=0.8チ実施例4。
In this case, the amount of supplied gas is 12.5N/, the purified CO gas is 7.49NA, and the recovery rate is 6. 3. 8'%
Met. Gas composition after purification is C0 = 99.2%N2
=0.8chi Example 4.

実施例6と同一装置を用いて下記実験条件で転炉排カス
を用いた精製分離を行った結果である、実験条件 ガス組成 C0=88%、CO,=2.0%N, = 
4. Oチ、H, = 5. 9%0、 = 0. 1
% 吸着剤MS−5A 操作温度 25℃ 吸着圧力 1. 0 kg/cr7tG吸着速度 3C
rn/sec 供給ガス量12.ON7 に対し、精製COガス量は6
. 7 N6で60回収率は61.0%であった。精製
後のガス組成C0=96.7% C02=2.5%N2
= 0. 8% 従来状では製品ガス量は5. 1 5 Nl で回収率
は22、5%であったが、本発明の方法では5. 8 
5 Nlの製品ガスが回収出来、収率も52.5係と向
上した、残留窒素濃度は0.9%以下であった。
Experimental conditions Gas composition: C0 = 88%, CO, = 2.0% N, =
4. Ochi, H, = 5. 9%0, = 0. 1
% Adsorbent MS-5A Operating temperature 25°C Adsorption pressure 1. 0 kg/cr7tG adsorption rate 3C
rn/sec Supply gas amount 12. For ON7, the amount of purified CO gas is 6
.. 7N6 recovery rate was 61.0%. Gas composition after purification C0=96.7% C02=2.5%N2
= 0. 8% In the conventional state, the product gas amount is 5. The recovery rate was 22.5% for 15 Nl, but it was 5.5% for the method of the present invention. 8
5 Nl of product gas was recovered, the yield was improved to 52.5%, and the residual nitrogen concentration was 0.9% or less.

実施例5。Example 5.

実施例4と同−命件でe.着時の廃東ガス量を約半分(
原料ガス濃度に達する手前で吸着工程を終了させた場合
)Klた場合の転炉排ガスの精製・分離を行った結果で
ある、 実験条件 ガス組成 C0=88%、C02= 2.0チ、N、 
= 4.0チ、几=5.9% 0、=0.1% 吸着剤 ZE−501 操作温度 25°C 吸着圧力 1.0 kg/crit G吸着速度 2.
Oca/sec 原料供給量 9.23 Nl 上記を真空ポンプを用いてOQ Torr まで排気を
行って製品ガスである一酸化炭素ガスを脱着回収をはか
った。
Same as Example 4 - e. Approximately half the amount of waste gas at the time of arrival (
Experimental conditions Gas composition C0 = 88%, C02 = 2.0%, N ,
= 4.0chi, 几=5.9% 0, =0.1% Adsorbent ZE-501 Operating temperature 25°C Adsorption pressure 1.0 kg/crit G adsorption rate 2.
Oca/sec Raw material supply amount 9.23 Nl The above gas was evacuated to OQ Torr using a vacuum pump to desorb and recover carbon monoxide gas, which is a product gas.

従来法では製品ガス量5.9 Nl収率37.2%であ
ったのに対して、本発ηの方法では製品ガス量6、2 
N/収率72,6%と向上した。残留窒素濃度は0.8
%以下であった。
While the conventional method had a product gas amount of 5.9% and a Nl yield of 37.2%, the present η method had a product gas amount of 6.2%.
The N/yield was improved to 72.6%. Residual nitrogen concentration is 0.8
% or less.

2塔式の場合の工程 他塔より 他塔より 他塔 本発明は、高炉又は転炉排ガスから窒素ガスを除去する
のに適用できるが、産業上発生したCO+ N、又はc
o + co、 + ri、からなるガスからN2 を
除去するのに使用できる。
Process in case of two-column type Column-to-other column The present invention can be applied to remove nitrogen gas from blast furnace or converter flue gas, but industrially generated CO+N, or c
It can be used to remove N2 from gases consisting of o + co, + ri.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発すjを実施するための2塔式装置のフロ
ーシートである。 特許出願人 川崎製鉄株式会社 同 大阪酸素工業株式会社 代理人 弁理士湯浅恭三1111 (外4名)
FIG. 1 is a flow sheet of a two-column type apparatus for carrying out J of the present invention. Patent applicant Kawasaki Steel Corporation Osaka Sanso Kogyo Co., Ltd. Agent Patent attorney Kyozo Yuasa 1111 (4 others)

Claims (1)

【特許請求の範囲】 1、少なくとも一酸化炭素ガス及び窒素ガスを含む原料
ガスから圧力変動式吸着分離方法において、合成ゼオラ
イト系の吸着剤を収納した2つ以上の吸着塔を用い、そ
の方法は(1)原料カスによる吸着塔を加圧し、(ii
)さらに原料ガスを吸着塔に流して、吸着塔出口におけ
る易吸着成分の製置が吸着塔入口における易吸着成分の
濃度に達するまで又は両者の濃度が等しくなる点の少し
前まで吸着剤に易吸着成分を吸着させる吸着工程、曲)
吸着工程終1後その吸着塔と真空脱着が終った吸着塔と
を連結し、前者の吸着塔からガスを後者の吸着塔に導入
し、前者の吸着塔の圧力を降下させ、 怜 減圧した吸着塔に製品ガスを並流に導入して難吸着
成分をパージするパージ工程、M 吸着剤に吸着されて
いる易吸着成分を真空ポンプを用いて脱着させ製品ガス
髪回収する回収工程、及び (Vll 製品回収が終った吸着塔と吸着工程が終った
吸着塔とを連結して後者の吸着塔からのガスによる加圧
工程、 から成り、定期的に吸着塔間の流れを変えて、全ての吸
着塔において上記操作を繰返すことを特徴とした方法。 2、少なくとも一酸化炭素ガス及び窒素ガスを含む原料
ガスからの圧力変動式吸着分離方法において、合成ゼオ
ライト系の吸着剤を収納した2つ以上の吸着塔を用い、
その方法は (1)原料ガスにより吸着塔を加圧し、(11)さらに
原料ガスを吸着塔に流して、吸着塔出口における易吸着
成分の濃度が吸着塔入口における易吸着成分の濃度に達
するまで又は両者の濃度が等しくなる点の少し前まで吸
着剤に易吸着成分を吸着させる吸着工程、(m+ 吸着
工程終了後、吸着塔内の圧力をある圧力まで減圧する減
圧(I)工程、 4■ 減圧(I)工程終了後その吸着塔と真空脱着が終
った吸着塔とを連結し、前者の吸着塔からガスを後者の
吸着塔に導入し、前者の吸着塔の圧力を降下させ、 (′V) 減圧した吸着塔に製品ガスを並流に導入して
難吸着成分をパージするパージ工程、V−吸着剤に吸着
されている易吸着成分を真空ポンプを用いて脱着させ製
品ガスを回収する回収工程、及び 〜+D I!4品回収が終った吸着塔と吸着工程が終っ
た吸着塔とを連結して後者の吸着塔からのガスによる加
圧工程、 から成り、定期的に吸着塔間の流れを変えて、全ての吸
着塔において上記操作を繰返すことを特徴とした方法、 3、少なくとも一酸化炭素ガス及び窒素ガスを含む原料
ガスから圧力変動式吸着分離方法にた2つ以上の吸着塔
を用い、その方法はm m1stガスにより吸着塔を加
圧し、(11)さらに原料ガスを吸着塔に流して、吸着
塔出口における易吸着成分の濃度が吸着塔入口における
易吸着成分の濃度に達するまで又は両者の濃度が等しく
なる点の少し前まで吸着剤に易吸着成分を吸着させる吸
着工程、 Gi+) 吸着工程終了後その吸着塔と真空脱着が終っ
た吸着塔とを連結し、前者の吸着塔からガスを後者のI
iJ着塔に導入し、前者の吸着塔の圧力を降下させ、 曖ψ 減圧した吸着塔に製品ガスを並流に導入して難吸
着成分をパージするパージ工程、この工程で吸着塔上部
より流出してくるガスを工程0会が終った吸着塔に導入
してその吸着塔の加圧に使用し、 (v)吸着剤に吸着され°〔いる易吸着成分を真空ポン
プを用いて脱着させ製品ガスを回収する回収工程、 6/If #!品回収が終った吸着塔と吸着工程が終っ
た吸着塔とを連結して後者の吸着塔からのガスによる加
圧工程、及び (Vゆ 他の吸着塔のパージ工程からのガスによる吸着
(Ill)工程、 から成り、定期的に吸着塔間の流れを変えて、全ての吸
着塔において上記操作を繰返すことを特徴とした方法。 4、少なくとも一酸化炭素ガス及び窒素ガスを含む原料
ガスから圧力変動式吸着分離方法において、合成ゼオラ
イト系の吸着剤を収納した2つ以上の吸着剤を用い、そ
の方法は(i)原料ガスにより吸着塔を加圧し、(11
)さらに原料ガスを吸着塔に流して、吸着塔出口におけ
る易吸着成分の濃度が吸着塔入口における易吸着成分の
濃度に達するまで又は両者の濃度が等しくなる点の少し
前まで吸着剤に易吸着成分を吸着させる吸着工程、 (m) 吸着工程終了後、吸着塔内の圧力をある圧力ま
で減圧する減圧(Il工程、 (φ 減圧(I)工程終了後その吸着塔と真空脱着が終
った吸着塔とを連結し、前者の吸着塔からガスを後者の
吸着塔に導入し、前者の吸着絹の圧力を降下させ、 M 減圧した吸着塔に製品ガスを並流に導入して難吸着
成分をパージするパージ工程、この工程で吸着塔上部よ
り流出してくるガスを工程■が終ったr!A着塔に導入
してその吸着塔の加圧に使用し、 位O吸着剤に吸着されている易吸着成分を真空ポンプを
用いて脱着させ製品ガスを回収する回収工程。 (via)製品回収が終った吸着塔と吸着工程が終った
吸着塔とを連結して後者の吸着塔からのガスによる加圧
工程、及び (ViiD他の吸着塔のパージ工程からσ)ガスによる
吸着(Ill)工程、 から成り、定期的に吸着塔間の流れを変えて、全ての吸
着塔において上記操作を繰返すことを特徴とした方法。
[Claims] 1. A pressure fluctuation type adsorption separation method from a raw material gas containing at least carbon monoxide gas and nitrogen gas, using two or more adsorption towers containing synthetic zeolite-based adsorbents; (1) Pressurize the adsorption tower with raw material waste, (ii
) Furthermore, the raw material gas is allowed to flow through the adsorption tower, and the adsorbent is easily absorbed until the concentration of the easily adsorbed component at the outlet of the adsorption tower reaches the concentration of the easily adsorbed component at the inlet of the adsorption tower, or a little before the point where both concentrations become equal. Adsorption process to adsorb adsorbed components, song)
After the adsorption process is completed, the adsorption tower is connected to the adsorption tower where vacuum desorption has been completed, and gas is introduced from the former adsorption tower to the latter adsorption tower to reduce the pressure in the former adsorption tower. A purge step in which the product gas is introduced into the tower in parallel flow to purge the poorly adsorbed components, a recovery step in which easily adsorbed components adsorbed on the M adsorbent are desorbed using a vacuum pump and the product gas is recovered, The process consists of connecting an adsorption tower from which product recovery has been completed to an adsorption tower from which the adsorption process has been completed, and applying pressure using gas from the latter adsorption tower.The flow between the adsorption towers is periodically changed to ensure that all adsorption is achieved. A method characterized by repeating the above operations in a tower. 2. In a pressure fluctuation adsorption separation method from a raw material gas containing at least carbon monoxide gas and nitrogen gas, two or more adsorbents containing synthetic zeolite-based adsorbents are used. Using an adsorption tower,
The method is to (1) pressurize the adsorption tower with the raw material gas, and (11) further flow the raw material gas into the adsorption tower until the concentration of easily adsorbed components at the outlet of the adsorption tower reaches the concentration of easily adsorbed components at the inlet of the adsorption tower. or an adsorption step in which the adsorbent adsorbs the easily adsorbed component until just before the concentration of both becomes equal; After the pressure reduction (I) step is completed, the adsorption tower is connected to the adsorption tower that has undergone vacuum desorption, gas is introduced from the former adsorption tower to the latter adsorption tower, and the pressure of the former adsorption tower is reduced. V) A purge step in which the product gas is introduced in a parallel flow into the depressurized adsorption tower to purge the poorly adsorbed components, V- Desorb the easily adsorbed components adsorbed on the adsorbent using a vacuum pump and recover the product gas The process consists of a recovery process, and a pressurization process using gas from the latter adsorption tower by connecting the adsorption tower from which the recovery of ~+D I!4 products has been completed and the adsorption tower from which the adsorption process has been completed, and periodically pressurizing the adsorption tower between the adsorption towers. 3. A method characterized by repeating the above operation in all adsorption towers by changing the flow of the gas; The method is to pressurize the adsorption tower with m m1st gas, (11) further flow the raw material gas into the adsorption tower, and make the concentration of the easily adsorbed component at the outlet of the adsorption tower equal to the concentration of the easily adsorbed component at the inlet of the adsorption tower. Gi The gas from the adsorption tower is transferred to the latter I
The product gas is introduced into the iJ adsorption tower, the pressure of the former adsorption tower is lowered, and the product gas is introduced in parallel flow into the depressurized adsorption tower to purge the difficult-to-adsorb components. The resulting gas is introduced into the adsorption tower where the process has been completed and used to pressurize the adsorption tower. Recovery process for recovering gas, 6/If #! The adsorption tower that has completed the product recovery and the adsorption tower that has completed the adsorption process are connected to perform a pressurization process using the gas from the latter adsorption tower, and adsorption (Ill) using the gas from the purge process of the other adsorption tower. ) A method characterized by periodically changing the flow between the adsorption towers and repeating the above operation in all the adsorption towers. 4. Pressure from the raw material gas containing at least carbon monoxide gas and nitrogen gas. In the variable adsorption separation method, two or more adsorbents containing synthetic zeolite-based adsorbents are used, and the method consists of (i) pressurizing the adsorption tower with a raw material gas, and (11
) Furthermore, the raw material gas is allowed to flow through the adsorption tower, and is easily adsorbed onto the adsorbent until the concentration of the easily adsorbed component at the outlet of the adsorption tower reaches the concentration of the easily adsorbed component at the inlet of the adsorption tower, or until a little before the point where both concentrations become equal. (m) After the completion of the adsorption process, the pressure inside the adsorption tower is reduced to a certain pressure (Il process; The gas is introduced from the former adsorption tower into the latter adsorption tower, the pressure of the former adsorption silk is lowered, and the product gas is introduced in parallel flow into the depressurized adsorption tower to remove the difficult-to-adsorb components. In the purging process, the gas flowing out from the upper part of the adsorption tower is introduced into the r! A recovery process in which easily adsorbable components are desorbed using a vacuum pump and product gas is recovered. (via) The adsorption tower from which product recovery has been completed and the adsorption tower from which the adsorption process has been completed are connected to collect the gas from the latter adsorption tower. The process consists of a pressurization step by , and an adsorption (Ill) step by gas (from the purge step of ViiD and other adsorption towers), and the above operation is repeated in all adsorption towers by periodically changing the flow between the adsorption towers. A method characterized by
JP58187477A 1983-10-06 1983-10-06 Removal of nitrogen gas contained in gaseous mixture containing at least carbon monoxide, nitrogen gas and carbon dioxide by adsorbing method Pending JPS6078610A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58187477A JPS6078610A (en) 1983-10-06 1983-10-06 Removal of nitrogen gas contained in gaseous mixture containing at least carbon monoxide, nitrogen gas and carbon dioxide by adsorbing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58187477A JPS6078610A (en) 1983-10-06 1983-10-06 Removal of nitrogen gas contained in gaseous mixture containing at least carbon monoxide, nitrogen gas and carbon dioxide by adsorbing method

Publications (1)

Publication Number Publication Date
JPS6078610A true JPS6078610A (en) 1985-05-04

Family

ID=16206761

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58187477A Pending JPS6078610A (en) 1983-10-06 1983-10-06 Removal of nitrogen gas contained in gaseous mixture containing at least carbon monoxide, nitrogen gas and carbon dioxide by adsorbing method

Country Status (1)

Country Link
JP (1) JPS6078610A (en)

Similar Documents

Publication Publication Date Title
EP0489555B1 (en) Hydrogen and carbon monoxide production by pressure swing adsorption purification
CA1336041C (en) Separation of gas mixtures including hydrogen
AU2008336265B2 (en) A plant and process for recovering carbon dioxide
KR940006239B1 (en) Integrated processes for the production of carbon monoxide
JPS6137968B2 (en)
EP1101522B1 (en) Pressure swing adsorption process
KR101686085B1 (en) Recovery of NF3 from Adsorption Operation
JPS6137970B2 (en)
JPH0422848B2 (en)
JPS6078610A (en) Removal of nitrogen gas contained in gaseous mixture containing at least carbon monoxide, nitrogen gas and carbon dioxide by adsorbing method
JPS60819A (en) Method for separating and removing carbon dioxide in gaseous mixture containing carbon monoxide by using adsorption method
JP2999050B2 (en) Recovery method of low concentration hydrogen sulfide
JPS607919A (en) Separating and removing method of carbon dioxide in mixed gas containing carbon monoxide by adsorption
JPS60155520A (en) Process for purifying carbon monoxide from mixed gas containing carbon monoxide gas by adsorption process
JPH0112529B2 (en)
KR102439733B1 (en) Method of Separating and Purifying Deuterium from Gas Mixture of Deuterium and Nitrogen
JPS60155519A (en) Process for purifying carbon monoxide from mixed gas containing carbon monoxide using adsorption process
JPS60103002A (en) Method for purifying carbon monoxide and hydrogen in gaseous mixture containing carbon monoxide, carbon dioxide, hydrogen and nitrogen by adsorption
JPS6139090B2 (en)
JPH0221285B2 (en)
JPS625645B2 (en)
JPS6097022A (en) Concentration and separation of carbon monoxide in carbon monoxide-containing gaseous mixture by using adsorbing method
JPS6097020A (en) Purification of carbon monoxide in gaseous mixture containing carbon monoxide, carbon dioxide and nitrogen gas by using adsorbing method
JPS62193623A (en) Method for taking out easily-adsorbing substance as high-purity gas
JPS6139087B2 (en)