JPS607771A - Semiconductor device - Google Patents

Semiconductor device

Info

Publication number
JPS607771A
JPS607771A JP11512483A JP11512483A JPS607771A JP S607771 A JPS607771 A JP S607771A JP 11512483 A JP11512483 A JP 11512483A JP 11512483 A JP11512483 A JP 11512483A JP S607771 A JPS607771 A JP S607771A
Authority
JP
Japan
Prior art keywords
region
base
layer
collector
type gaas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11512483A
Other languages
Japanese (ja)
Inventor
Yuji Oda
雄二 小田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP11512483A priority Critical patent/JPS607771A/en
Publication of JPS607771A publication Critical patent/JPS607771A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/70Bipolar devices
    • H01L29/72Transistor-type devices, i.e. able to continuously respond to applied control signals

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Bipolar Transistors (AREA)

Abstract

PURPOSE:To reduce the junction capacitance between the base and the collector of a hetero-bipolar transistor and increase the switching rate by a method wherein, when the hetero-bipolar transistor is prepared, the base-collector junction is located below the small sized emitter region, and further the base region is partially removed on the collector region. CONSTITUTION:An SiO2 film 12 is deposited on an undoped insulating GaAs substrate 11 and is covered with a photoresist pattern 13 which has a predetermined opening portion. Si<+> ions are implanted into the substrate 11. The pattern 13 and the film 12 are removed and a heat treatment is effected, whereby an N type GaAs collector region 14 is formed. Then, on the entire surface including the region 14 a P type GaAs layer 151 to be the base region is laminated, on which layer 151 an N type GaAs layer 161 to be the emitter region is laminated by growth. The entire surface of thus grown layer is overlaid with an N type GaAs cap layer 171. Thereafter, the layers 161 and 171 are etched such that parts 16 and 17 remain above the region 14. The layer 15 is removed at the region 14 such that a part of the region 14 is exposed.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は半導体装置に係り、特にへテロバイポーラトラ
ンジスタの構造に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a semiconductor device, and particularly to the structure of a heterobipolar transistor.

〔発明の技術的背景とその問題点〕[Technical background of the invention and its problems]

ヘテロバイポーラトランジスタ(以下HBTという)は
バンドギャップの異なる2種の半導体により形成される
ヘテロ接合をバイポーラトランジスタのエミッタ・ベー
ス接合として用いる。その一般的な構造としては、バン
ドギャップエネルギの大きなN型半導体でエミッタを形
成し、バンドギャップエネルギの小さなP型、N型半導
体でベース、コレクタを形成している。
A hetero-bipolar transistor (hereinafter referred to as HBT) uses a heterojunction formed by two types of semiconductors with different band gaps as an emitter-base junction of the bipolar transistor. In its general structure, the emitter is formed of an N-type semiconductor with a large band gap energy, and the base and collector are formed with P-type and N-type semiconductors with a small band gap energy.

このような構造を有するHBTでは、エミッタからベー
スには電子は容易に注入され得るが、ベース中の正孔は
、バンドギャップエネルギの違いのためにエミッタ・ベ
ース間に生じているエネルギ障壁にさえぎられてほとん
どエミッタへ注入されず、従って大きなエミッタ注入効
果が実現でき、電流増幅率の大きなトランジスタが得ら
れる。さらにこの事はホモバイポーラトランジスタのよ
うにエミッタとベースのキャリア濃度比を大きくとらな
くても十分大きな電流増幅率が得られることにつながり
、高濃度のベースを採用し、ベース抵抗を小さくするこ
とが可能となる。
In an HBT with such a structure, electrons can be easily injected from the emitter to the base, but holes in the base are blocked by the energy barrier created between the emitter and base due to the difference in band gap energy. Therefore, a large emitter injection effect can be realized, and a transistor with a large current amplification factor can be obtained. Furthermore, this means that a sufficiently large current amplification factor can be obtained without having a large carrier concentration ratio between the emitter and the base as in a homo-bipolar transistor, and it is possible to use a highly concentrated base and reduce the base resistance. It becomes possible.

次にHBTとして最も一般的なAlGaAs−GaAs
系HBTの構造を第1図で説明する。
Next, AlGaAs-GaAs is the most common HBT.
The structure of the system HBT will be explained with reference to FIG.

即ち、コレクタ電極(1)となる高濃度N型GaAs基
板にコレクタ領域(2)となるN型GaAsエピタキシ
ャル層、ベース領域(3)となるP型GaAs層、エミ
ッタ領域(4)となるN型AlGaAs層、キャップ層
(5)と呼ばれるN型GaAs層からなり、ベース領域
(3)となるP型GaAs層はキャリア濃度が例えば1
018〜1019cm−3、厚さは0.1〜0.2μm
、エミッタ領域(4)となるN型AlGaAs層はキャ
リア濃度が例えば1〜5×1016cm−3、厚さは0
.2〜1.0μmで20〜50モル%のAlAsを含ん
でおりキャップ層(5)となるN型GaAs層(5)は
エミッタ領域(4)のAlが酸化することを防止するた
め設けられているものであり、1〜3×1018のキャ
リア濃度を有している。そしてコレクタ(c)はコレク
タ電極(1)に、ベース(B)はベース領域(3)に、
またエミッタ(E)は、キャップ層(5)にそれぞれ形
成された斜線で示す導電層に接続されている。
That is, a highly doped N-type GaAs substrate becomes the collector electrode (1), an N-type GaAs epitaxial layer becomes the collector region (2), a P-type GaAs layer becomes the base region (3), and an N-type becomes the emitter region (4). It consists of an AlGaAs layer and an N-type GaAs layer called a cap layer (5), and the P-type GaAs layer that becomes the base region (3) has a carrier concentration of, for example, 1.
018~1019cm-3, thickness 0.1~0.2μm
, the N-type AlGaAs layer serving as the emitter region (4) has a carrier concentration of, for example, 1 to 5 x 1016 cm-3 and a thickness of 0.
.. An N-type GaAs layer (5) having a diameter of 2 to 1.0 μm and containing 20 to 50 mol % of AlAs and serving as a cap layer (5) is provided to prevent Al in the emitter region (4) from oxidizing. It has a carrier concentration of 1 to 3×10 18 . The collector (c) is connected to the collector electrode (1), the base (B) is connected to the base region (3),
Further, the emitters (E) are connected to conductive layers shown by diagonal lines formed on the cap layer (5).

このようなHBTはシリコントランジスタに比較し次の
ようなメリットを有する。
Such an HBT has the following advantages compared to a silicon transistor.

(1)エミッタ1濃度が低いためにエミッタ・ベース間
容量が同一形状で比較すれば小さくなる。
(1) Since the emitter 1 concentration is low, the capacitance between the emitter and the base becomes smaller when compared with the same shape.

(2)ベース濃度が高いためにベース抵抗が小さくなる
(2) Since the base concentration is high, the base resistance becomes small.

(3)高い電流増幅率が得られる。(3) A high current amplification factor can be obtained.

これらメリットはトランジスタの高速化あるいは低雑音
化にとって非常に有利であるが、実際にはシリコントラ
ンジスタに比較して性能のすぐれたHBTは出現してい
ない。
Although these advantages are very advantageous for increasing the speed and reducing noise of transistors, in reality, no HBT with superior performance compared to silicon transistors has appeared.

これは従来のHBTの構造がメサ構造であり、シリコン
トランジスタで実現されているような微細な構造が出来
にくいのが主な理由である。更に具体的に説明すると、
ベース・コレクタ間接合面積を小さくすることが出来に
くいために、接合容量を小さくすることが出来ない。こ
のコレクタ容量は本発明で扱う狭いベースを有するトラ
ンジスタにおいてはスイッチング速度に比例的に影響す
るため第1図に示すようなHBTではスイッチング速度
を高めるのは困難であった。
The main reason for this is that the structure of a conventional HBT is a mesa structure, which makes it difficult to create a fine structure like that achieved with silicon transistors. To be more specific,
Since it is difficult to reduce the base-collector junction area, it is impossible to reduce the junction capacitance. Since this collector capacitance proportionally affects the switching speed in a transistor having a narrow base, which is used in the present invention, it has been difficult to increase the switching speed in an HBT as shown in FIG.

〔発明の目的〕[Purpose of the invention]

本発明は前述した問題点に鑑みなされたものであり、絶
縁性または半絶縁性の半導体基板を用いたベース・コレ
クタ間の接合容量の小さいHBTとしての半導体装置を
提供することを目的とする。
The present invention has been made in view of the above-mentioned problems, and an object of the present invention is to provide a semiconductor device as an HBT that uses an insulating or semi-insulating semiconductor substrate and has a small base-collector junction capacitance.

〔発明の概要〕[Summary of the invention]

本発明は絶縁性あるいは半絶縁性の半導体基板の表面部
に設けられた第1導電型の領域と、半導体基板の表面上
部あるいは表面部に設けられ、第2導電型の領域と、第
1導電型の領域及び第2導電型の領域の上部に設けられ
、かつ半導体基板よりも大きなバンドギャップエネルギ
を有する第1導電型の半導体領域とを具備する半導体装
置において、第2導電型の領域の一部のみが第1導電型
の領域と整流性接合を形成し、他の第2導電型の領域は
半導体基板の表面上部あるいは表面部に設けられている
ことを特徴とする半導体装置であり、この構造の特徴は
、絶縁性あるいは半絶縁性の半導体基板の表面にコレク
タ領域を設け、ベース領域はこのコレクタ領域と一部分
でのみ接合を形成し、他のベース領域すなわち外部ベー
ス領域のほとんどが半導体基板上に設けられていること
である。
The present invention includes a first conductivity type region provided on the surface of an insulating or semi-insulating semiconductor substrate, a second conductivity type region provided on the top or surface of the semiconductor substrate, and a first conductivity type region provided on the top or surface of the semiconductor substrate. In a semiconductor device comprising a mold region and a first conductivity type semiconductor region provided above the second conductivity type region and having a larger bandgap energy than the semiconductor substrate, one of the second conductivity type regions is provided. This is a semiconductor device characterized in that only a portion of the semiconductor substrate forms a rectifying junction with a region of the first conductivity type, and the other region of the second conductivity type is provided on the upper surface or the surface portion of the semiconductor substrate. The feature of the structure is that a collector region is provided on the surface of an insulating or semi-insulating semiconductor substrate, the base region forms a junction with this collector region only in a part, and most of the other base region, that is, the external base region, is connected to the semiconductor substrate. It is provided above.

〔発明の実施例〕[Embodiments of the invention]

次に本発明の半導体装置の一実施例を第2図により説明
する。
Next, an embodiment of the semiconductor device of the present invention will be described with reference to FIG.

即ち絶縁性GaAs基板(11)の表面部にはコレクタ
領域(14)としてのN型GaAs領域が形成されてい
る。
That is, an N-type GaAs region as a collector region (14) is formed on the surface of the insulating GaAs substrate (11).

このコレクタ領域(14)は例えばキャリア濃度が10
16cm−3厚みが0.5μmである。コレクタ領域(
14)の表面上部から絶縁性GaAs基板(11)の表
面上部にかけてはベース領域(15)としてのP型Ga
As層が形成されている。このベース領域(15)は例
えばキャリア濃度が4×1018cm−3、厚みが0.
2μmである。
This collector region (14) has a carrier concentration of, for example, 10
16 cm-3 thickness is 0.5 μm. Collector area (
14) to the upper surface of the insulating GaAs substrate (11) is a P-type Ga base region (15).
An As layer is formed. This base region (15) has, for example, a carrier concentration of 4 x 1018 cm-3 and a thickness of 0.
It is 2 μm.

このベース領域(15)は後述するエミッタ領域(16
)付近では絶縁性GaAs基板(11)上に設けられて
いるコレクタ領域(14)と接合するがその他のベース
領域(15)は絶縁性GaAs基板(11)上に設けら
れている。このコレクタ領域(14)ベース領域(15
)を介してエミッタ領域(16)としてのN型AlGa
As層が設けられており、このエミッタ領域(16)は
キャリア濃度が5×1016cm−3、厚みが0.5μ
mである。このエミッタ領域(16)上には0.2μm
厚のN型GaAs層からなるキャップ層(17)が設け
られ、HBTとしての半導体装置が完成される。
This base region (15) is an emitter region (16) which will be described later.
) is connected to the collector region (14) provided on the insulating GaAs substrate (11), but the other base region (15) is provided on the insulating GaAs substrate (11). This collector area (14) and base area (15
) via N-type AlGa as emitter region (16)
An As layer is provided, and this emitter region (16) has a carrier concentration of 5 x 1016 cm-3 and a thickness of 0.5 μ.
It is m. 0.2 μm on this emitter region (16)
A cap layer (17) made of a thick N-type GaAs layer is provided, and a semiconductor device as an HBT is completed.

次に第3図により本実施例の製造工程を説明し、本実施
例の構成と効果を明らかにする。
Next, the manufacturing process of this embodiment will be explained with reference to FIG. 3, and the structure and effects of this embodiment will be clarified.

先ず第3図(a)に示すようにアンドープ絶縁性GaA
s基板(11)上にSiO2膜(12)をCVD法によ
り被着したのち、通常の光蝕刻技術を用いてフォトレジ
ストパターン(13)を形成し、Si+をイオン注入す
る。
First, as shown in FIG. 3(a), undoped insulating GaA
After a SiO2 film (12) is deposited on the s-substrate (11) by CVD, a photoresist pattern (13) is formed using ordinary photoetching technology, and Si+ ions are implanted.

この注入条件はGaAs基板(11)表面近くにピーク
濃度がくるようにする。
The implantation conditions are such that the peak concentration is near the surface of the GaAs substrate (11).

引き続いてフォトレジスト(13)をマスクにしてSi
O2膜(12)をエッチングした後、再びSi+をイオ
ン注入して基板表面部(深さ0.5μm)にSi+イオ
ン注入層を形成する。ついで第3図(b)に示すように
フォトレジスト(13)、SiO2膜(12)をすべて
除去し、800℃のAsH3H2雰囲気でアニールする
ことにより、キャリア濃度〜1016cm−3、深さ〜
0.5μmのコレクタ領域(14)としてのN型GaA
s領域が形成される。
Subsequently, using the photoresist (13) as a mask, Si
After etching the O2 film (12), Si+ ions are again implanted to form a Si+ ion-implanted layer on the surface of the substrate (depth 0.5 μm). Next, as shown in FIG. 3(b), the photoresist (13) and the SiO2 film (12) are all removed and annealed in an AsH3H2 atmosphere at 800°C, resulting in a carrier concentration of ~1016 cm-3 and a depth of ~
N-type GaA as collector region (14) of 0.5 μm
An s region is formed.

次に第3図(c)に示すようにキャリア濃度4×101
8cm−3のベース領域用としてのP型GaAs層(1
51)を例えばBeをドーパントとし、分子線エピタキ
シ法(MBE法)により厚さ0.2μm程、形成し、更
にSiをドーパントとしてキャリア濃度5×1016c
m−3のエミッタ領域用としてのN型AlGaAs層(
161)を同じくMBE法により、厚さ0.5μm形成
する。またキャップ層用としてのN型GaAs層(17
1)をSiをドーパントとして0.2μm形成する。
Next, as shown in FIG. 3(c), the carrier concentration is 4×101
P-type GaAs layer (1
51) is formed to a thickness of about 0.2 μm using, for example, Be as a dopant by molecular beam epitaxy (MBE method), and then Si is used as a dopant to form a carrier concentration of 5×10 16 c.
N-type AlGaAs layer for emitter region of m-3 (
161) is also formed to a thickness of 0.5 μm by the MBE method. In addition, an N-type GaAs layer (17
1) is formed to a thickness of 0.2 μm using Si as a dopant.

次に通常の光蝕刻法を用いて第3図(d)に示すように
AlGaAs層(161)及びN型GaAs層(171
)をそれぞれエミッタ領域(16)、キャップ層(17
)を残してエッチング除去する。
Next, using a normal photoetching method, an AlGaAs layer (161) and an N-type GaAs layer (171) are formed as shown in FIG. 3(d).
) are respectively emitter region (16) and cap layer (17).
) is removed by etching.

更に通常の光蝕刻法を用いて第3図(e)に示すように
P型GaAs層(151)をベース領域(15)を残し
てエッチング除去し、本実施例のHBTが得られる。
Furthermore, the P-type GaAs layer (151) is etched away using a conventional photoetching method, leaving the base region (15), as shown in FIG. 3(e), to obtain the HBT of this example.

勿論キャップ層(17)上、ベース領域(15)上、コ
レクタ領域(14)上にはAuGe系のオーミック電極
などが形成される。
Of course, AuGe-based ohmic electrodes and the like are formed on the cap layer (17), the base region (15), and the collector region (14).

以上の工程及び構造からわかるように本実施例のHBT
においては、ベース・コレクタ接合はエミッタのある領
域のごく近傍のみにあり、いわゆる外部ベース例えば電
極をとるためのベース領域(15)は絶縁性GaAs基
板(11)上にあるためコレクタ容量は極めて小さくな
っている。従って従来大きなコレクタ容量のために制限
されていたスイッチングスピード、即ち、HBTの高速
性は本実施例によって大きく改善できる。また、集積回
路を構成するに当っては本実施例は絶縁性基板を用いて
いるため素子分離が容易という特徴も有している。
As can be seen from the above steps and structure, the HBT of this example
In this case, the base-collector junction is only in the vicinity of the emitter region, and the so-called external base, for example, the base region (15) for taking the electrode, is on the insulating GaAs substrate (11), so the collector capacitance is extremely small. It has become. Therefore, the switching speed, that is, the high speed performance of the HBT, which was conventionally limited due to the large collector capacitance, can be greatly improved by this embodiment. Further, in constructing an integrated circuit, this embodiment uses an insulating substrate, so it has the feature that element isolation is easy.

なお前述した実施例ではベース領域をMBE法により形
成したが、これに限定されるものではなく、インプラな
どの手段により基板表面部にコレクタ領域形成と同様に
形成してもよい。
Although the base region was formed by the MBE method in the above-described embodiment, the base region is not limited to this, and may be formed on the surface of the substrate by means such as implantation in the same manner as the collector region is formed.

更に第4図に示すようにベース領域(15)(18)を
イオン注入とMBEの併用により形成すれば更にベース
抵抗の低いHBTを実現でき、よりスイッチングスピー
ドを改善できる。
Furthermore, as shown in FIG. 4, if the base regions (15) and (18) are formed by a combination of ion implantation and MBE, an HBT with even lower base resistance can be realized and the switching speed can be further improved.

〔発明の効果〕〔Effect of the invention〕

上述のように本発明の半導体装置としてのHBTは、ベ
ースコレクタ間の接合容量が小さい、スイッチングスピ
ードが早い効果がある。
As described above, the HBT as a semiconductor device of the present invention has the advantage of having a small base-collector junction capacitance and a fast switching speed.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の半導体装置の一例を示す説明用断面図、
第2図は本発明の半導体装置の一実施例を示す説明用断
面図、第3図は本発明の半導体装置の一実施例の製造工
程を順に示す説明用断面図、第4図は本発明の半導体装
置の他の実施例を示す説明用断面図である。 1、11・・・絶縁性GaAs基板 4、14・・・コレクタ領域 5、15、18・・・ベ
ース領域6、16・・・エミッタ領域 7、17・・・
キャップ層代理人 弁理士 井 上 一 男 第 I V (d) (C) (e) 第2図 (b) ム td) 7 特許1長は若杉和夫殿 ■、ル件の表示 昭和58年峙許顛i1! 115124号2、発明の名
称 半導体装置 :3、補正音する箭 事件との関係 l寺a′:「出+rKi人(307)東
京芝浦電気株式会社 4、代理人 〒144 東京都太田区M17田4丁目41番11号第−小野田ビ
ル 弁上特許事務所内 ゛電話 736−3558 (,3257)弁理士弁上−男 補正命令の日付 昭和58年9月7日(発送日 1iF3L058年9月
27日)6、補正の対象 図 面 7、補正の内容 原図1TIを添付図面のように訂正する。 以上 第 1 図 〆 ウ < り (り) (Cン Ce) 富2図 +−ニーJl rb) ム (d、) 7 、;I ダ 1゛乙 3
FIG. 1 is an explanatory cross-sectional view showing an example of a conventional semiconductor device;
FIG. 2 is an explanatory cross-sectional view showing one embodiment of the semiconductor device of the present invention, FIG. 3 is an explanatory cross-sectional view sequentially showing the manufacturing process of one embodiment of the semiconductor device of the present invention, and FIG. FIG. 3 is an explanatory cross-sectional view showing another embodiment of the semiconductor device of FIG. 1, 11... Insulating GaAs substrate 4, 14... Collector region 5, 15, 18... Base region 6, 16... Emitter region 7, 17...
Cap layer agent Patent attorney Kazuo Inoue IV (d) (C) (e) Figure 2 (b) Mtd) 7 The first patent owner is Mr. Kazuo Wakasugi, and the patent was issued in 1988. Part i1! 115124 No. 2, Name of the invention Semiconductor device: 3, Relationship with the correction sound case No. 41-11 - Onoda Building Benjo Patent Office Telephone: 736-3558 (,3257) Patent Attorney Benjo - Date of amendment order: September 7, 1982 (Delivery date: September 27, 1982) 6. Drawings subject to correction 7. Contents of correction Original drawing 1TI is corrected as shown in the attached drawing. d,) 7,;I da 1゛Otsu3

Claims (1)

【特許請求の範囲】[Claims] 絶縁性あるいは半絶縁性の半導体基板の表面部に選択的
に設けられた第1導電型の領域と、前記半導体基板の表
面上部あるいは表面部に設けられた第2導電型の領域と
、前記第1導電型の領域及び前記第2導電型の領域の上
部に設けられ、かつ前記半導体基板よりも大きなバンド
ギャップエネルギを有する第1導電型の半導体領域とを
具備する半導体装置において、前記第2導電型の領域の
一部のみが前記第1導電型の領域と整流性接合を形成し
、他の第2導電型の領域は前記半導体基板の表面上部あ
るいは表面部に設けられていることを特徴とする半導体
装置。
a first conductivity type region selectively provided on the surface of an insulating or semi-insulating semiconductor substrate; a second conductivity type region provided on the top or surface of the semiconductor substrate; A semiconductor device comprising a first conductivity type region and a first conductivity type semiconductor region provided above the second conductivity type region and having a larger bandgap energy than the semiconductor substrate. Only a part of the region of the mold forms a rectifying junction with the region of the first conductivity type, and the other region of the second conductivity type is provided on the upper surface or the surface portion of the semiconductor substrate. semiconductor devices.
JP11512483A 1983-06-28 1983-06-28 Semiconductor device Pending JPS607771A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11512483A JPS607771A (en) 1983-06-28 1983-06-28 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11512483A JPS607771A (en) 1983-06-28 1983-06-28 Semiconductor device

Publications (1)

Publication Number Publication Date
JPS607771A true JPS607771A (en) 1985-01-16

Family

ID=14654854

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11512483A Pending JPS607771A (en) 1983-06-28 1983-06-28 Semiconductor device

Country Status (1)

Country Link
JP (1) JPS607771A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61268061A (en) * 1985-05-23 1986-11-27 Agency Of Ind Science & Technol Hot-electron-transistor and manufacture thereof
JPS6249658A (en) * 1985-08-29 1987-03-04 Matsushita Electric Ind Co Ltd Heterojunction bipolar transistor and manufacture thereof
JPS6249656A (en) * 1985-08-29 1987-03-04 Matsushita Electric Ind Co Ltd Heterojunction bipolar transistor and manufacture thereof
JPS6249657A (en) * 1985-08-29 1987-03-04 Matsushita Electric Ind Co Ltd Heterojunction bipolar transistor and manufacture thereof
JPS6249660A (en) * 1985-08-29 1987-03-04 Matsushita Electric Ind Co Ltd Heterojunction bipolar transistor and manufacture thereof
JPS6281759A (en) * 1985-10-05 1987-04-15 Fujitsu Ltd Structure of heterojunction type bipolar transistor
JPS62295459A (en) * 1986-06-16 1987-12-22 Hitachi Ltd Semiconductor device
JPS63318778A (en) * 1987-06-22 1988-12-27 Nec Corp Heterojunction bipolar transistor and manufacture
US5147775A (en) * 1987-07-24 1992-09-15 Matsushita Electric Industrial Co., Ltd. Method of fabricating a high-frequency bipolar transistor
US5252841A (en) * 1991-05-09 1993-10-12 Hughes Aircraft Company Heterojunction bipolar transistor structure having low base-collector capacitance, and method of fabricating the same

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61268061A (en) * 1985-05-23 1986-11-27 Agency Of Ind Science & Technol Hot-electron-transistor and manufacture thereof
JPH0422341B2 (en) * 1985-05-23 1992-04-16 Kogyo Gijutsuin
JPS6249658A (en) * 1985-08-29 1987-03-04 Matsushita Electric Ind Co Ltd Heterojunction bipolar transistor and manufacture thereof
JPS6249656A (en) * 1985-08-29 1987-03-04 Matsushita Electric Ind Co Ltd Heterojunction bipolar transistor and manufacture thereof
JPS6249657A (en) * 1985-08-29 1987-03-04 Matsushita Electric Ind Co Ltd Heterojunction bipolar transistor and manufacture thereof
JPS6249660A (en) * 1985-08-29 1987-03-04 Matsushita Electric Ind Co Ltd Heterojunction bipolar transistor and manufacture thereof
JPS6281759A (en) * 1985-10-05 1987-04-15 Fujitsu Ltd Structure of heterojunction type bipolar transistor
JPS62295459A (en) * 1986-06-16 1987-12-22 Hitachi Ltd Semiconductor device
JPS63318778A (en) * 1987-06-22 1988-12-27 Nec Corp Heterojunction bipolar transistor and manufacture
US5147775A (en) * 1987-07-24 1992-09-15 Matsushita Electric Industrial Co., Ltd. Method of fabricating a high-frequency bipolar transistor
US5252841A (en) * 1991-05-09 1993-10-12 Hughes Aircraft Company Heterojunction bipolar transistor structure having low base-collector capacitance, and method of fabricating the same

Similar Documents

Publication Publication Date Title
US5298438A (en) Method of reducing extrinsic base-collector capacitance in bipolar transistors
EP0184016A1 (en) Heterojunction bipolar transistor
JPH0797589B2 (en) Method for manufacturing heterojunction bipolar transistor
JP3294461B2 (en) Heterojunction bipolar transistor and manufacturing method thereof
JPS607771A (en) Semiconductor device
JP3262056B2 (en) Bipolar transistor and manufacturing method thereof
JPH05109750A (en) Semiconductor device and manufacture of the same
US5434091A (en) Method for making collector up bipolar transistors having reducing junction capacitance and increasing current gain
US5700701A (en) Method for reducing junction capacitance and increasing current gain in collector-up bipolar transistors
JPS63200567A (en) Hetero junction bipolar transistor and manufacture thereof
JP3358901B2 (en) Method for manufacturing compound semiconductor device
JP4092597B2 (en) Semiconductor device and manufacturing method thereof
JP2000216168A (en) Bipolar transistor and manufacture thereof
JPS61280665A (en) Hetero-junction bipolar transistor and manufacture thereof
JPS6354767A (en) Bipolar transistor and manufacture thereof
JPH0460340B2 (en)
JP3715477B2 (en) Bipolar transistor
JP2814984B2 (en) Heterojunction bipolar transistor and manufacturing method thereof
JP2803147B2 (en) Bipolar transistor
JP2504767B2 (en) Method of manufacturing heterojunction bipolar transistor
JPH07273126A (en) Heterojunction transistor
JPH11135516A (en) Heterojunction bipolar transistor and manufacture thereof
JPS63244679A (en) Heterojunction bipolar transistor
JPS63318778A (en) Heterojunction bipolar transistor and manufacture
JPH0713968B2 (en) Method for manufacturing compound semiconductor device