JPS6077423A - Controlling method for gap and alignment with double diffraction grating - Google Patents

Controlling method for gap and alignment with double diffraction grating

Info

Publication number
JPS6077423A
JPS6077423A JP58184433A JP18443383A JPS6077423A JP S6077423 A JPS6077423 A JP S6077423A JP 58184433 A JP58184433 A JP 58184433A JP 18443383 A JP18443383 A JP 18443383A JP S6077423 A JPS6077423 A JP S6077423A
Authority
JP
Japan
Prior art keywords
signal
gap
diffracted
diffraction grating
lambda
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP58184433A
Other languages
Japanese (ja)
Other versions
JPH0460331B2 (en
Inventor
Hiroo Kinoshita
博雄 木下
Atsunobu Une
宇根 篤▲のぶ▼
Makoto Inoshiro
猪城 真
Nobuyuki Takeuchi
竹内 信行
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP58184433A priority Critical patent/JPS6077423A/en
Publication of JPS6077423A publication Critical patent/JPS6077423A/en
Publication of JPH0460331B2 publication Critical patent/JPH0460331B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Control Of Position Or Direction (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)

Abstract

PURPOSE:To simultaneously control accurately an alignment control with a gap from the variation in the added intensity by including the light directly reflected and diffracted on the installing surface of the first diffraction grating of the first article and adding the intensity of the diffracted light of all degrees diffracted symmetrically to the incident light. CONSTITUTION:Only the lights of +1 and -1 order of the diffracted lights of diffraction gratings 12, 14 of a wafer 11 and a mask 13 are photoelectrically converted by converters 16, 17, and the intensities I+1, I-1 are added by an adder 18. When a signal of a pitch lambda/2 produced by the reflection on the back surface of the mask 13 is integrated, an envelope which exhibits a peak at the pitch P<2>/lambda is obtained, thereby attaining a signal of the ideal conditions of the zero reflection of the back surface. When an interval Z is regulated to the maximum peak value, it can be set to P<2>/lambda, 2P<2>/lambda,.... The maximum point is obtained with the signal (a) having a peak at every P<2>/lambda as roughly regulated signal. Further, a signal (b) of a period lambda/2 is used as an ultrafinely regulated signal to finely regulate in a region G. With this configuration, the position and the gap can be set in the order of 100Angstrom with the simple grating mark.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は半導体ICやLSIを製造するための露光装置
やバタン評価装置に利用されるギャップと位置の高精度
アライメントに関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to highly accurate alignment of gaps and positions used in exposure devices and batten evaluation devices for manufacturing semiconductor ICs and LSIs.

〔従来技術〕[Prior art]

半導体ICやLSIの微細化に伴い、マスクバクンをウ
ェハに一括しもしくはステップアンドリピート方式によ
って露光φ転写する装置において、マスクとウェハを互
いに高精度に位置合せする技術の確立は不可欠でありX
特に、サブミクロンバタンを露光・転写するX線露光装
置では高精度位置合せとともに、マスクとウェハ間のギ
ャップを高精度で一定値に設定する技術の確立が欠かせ
ないものと寿っている。
With the miniaturization of semiconductor ICs and LSIs, it is essential to establish technology to align the mask and wafer with high precision in equipment that performs exposure φ transfer by batching the mask onto the wafer or using a step-and-repeat method.
In particular, for X-ray exposure equipment that exposes and transfers submicron patterns, it is essential to establish a technology that not only allows high-precision alignment but also sets the gap between the mask and the wafer to a constant value with high precision.

この一方式として、例えばJ、 Vac、 Scl、 
Teahnol、Vol、 19.No、 4.198
1 、 P214で紹介されているように、0.1μm
以下の位置合せを行うことを目的として2重回折格子を
用いた位置合せ法の開発が進められている。この方法は
、第1図に示す第1の物体1に設けた第1の回折格子2
と、第2の物体3に設けた第2の回折格子4とを一定ギ
ャップ2をおいて重ね、これら第1および第2の回折格
子にコヒーレント光もしくは準単色光を垂直に入射し、
両回折格子によって入射光に対して対称的な方向に回折
された同次数の回折光、例えば+1次の回折光の強度を
減算処理し、その差分強度の変化によって第1の物体と
第2の物体の相対変位を検出して位置合せするものであ
るが、第2図に示すように、ギャップのわずかの変化に
よって位置合せ信号が大きく変化するため実用は困難で
あった。すなわち、第2図は波長λ= 0.6328μ
m1回折格子のピッチP=2μmとした場合について、
第1・第2の物体の位置ずれ量d(μm)と上記差分強
度Δ■との関係を示したもので、図中(イ)、(ロ)、
(→がそれぞれギャップ2を6.1.6.2,6.3(
μm)とした場合に対応する。
For example, J, Vac, Scl,
Teahnol, Vol. 19. No, 4.198
1. As introduced in P214, 0.1 μm
Development of an alignment method using a double diffraction grating is underway with the aim of performing the following alignment. This method uses a first diffraction grating 2 provided on a first object 1 shown in FIG.
and a second diffraction grating 4 provided on a second object 3 are stacked with a constant gap 2, and coherent light or quasi-monochromatic light is perpendicularly incident on these first and second diffraction gratings,
The intensity of the diffracted light of the same order, for example, the +1st order diffracted light, which is diffracted in a direction symmetrical to the incident light by both diffraction gratings, is subtracted, and the difference between the first object and the second object is determined by the change in the difference intensity. This method detects the relative displacement of an object and aligns it, but as shown in FIG. 2, it has been difficult to put it into practical use because the alignment signal changes greatly due to a slight change in the gap. That is, in Figure 2, the wavelength λ = 0.6328μ
Regarding the case where the m1 diffraction grating pitch P = 2 μm,
It shows the relationship between the positional deviation amount d (μm) of the first and second objects and the above-mentioned differential intensity Δ■, and in the figure (a), (b),
(→ are respectively gap 2 6.1.6.2, 6.3(
μm).

このような変化は、第1図に示した回折光のAとB1す
なわち第1の物体1の裏面、すなわち回折格子2を設け
た面で反射する回折光Aと、第1の物体1を通過し第2
の物体3で垂直に反射し、改めて第1の物体で回折する
光Bとの干渉の影響が原因しているものと考えられる。
Such a change is caused by the difference between the diffracted lights A and B1 shown in FIG. 2nd
This is thought to be caused by the influence of interference with the light B which is vertically reflected by the first object 3 and diffracted again by the first object.

〔発明の目的および構成〕[Object and structure of the invention]

本発明は、このような事情に鑑みてなされたもので、そ
の目的は、ギャップ制御と位置合せ制御とを同時rかつ
高精度に行なうことが可能な2重回折格子によるギャッ
プ・位置合せ制御法を提供することにある。
The present invention has been made in view of the above circumstances, and its purpose is to provide gap/alignment control using a double diffraction grating that allows gap control and alignment control to be performed simultaneously and with high precision. It is about providing law.

このような目的を達成するために、本発明は入射光に対
して対称的な方向に回折された、第1の物体の第1の回
折格子を設けた面で直接反射回折した光を含むすべての
同次数の回折光強度を加算処理し、この加算強度の変化
によってギャップおよび位置合せ制御を行なうものであ
る。
In order to achieve such an object, the present invention is directed to all the light including the light directly reflected and diffracted by the surface of the first object provided with the first diffraction grating, which is diffracted in a direction symmetrical to the incident light. The intensities of the diffracted lights of the same order are added, and gap and alignment control is performed based on changes in the added intensities.

〔実施例〕〔Example〕

第3図は本発明の一実施例を示す構成図であり、11は
ウェハ、12けウェハに設けた回折格子、13はマスク
、14はマスクに設けた回折格子、15はレーザ光源、
16.17は光電変換器、18は信号処理制御部、19
はマスク微調ステージ、20はウェハ微調ステージを示
す。
FIG. 3 is a configuration diagram showing an embodiment of the present invention, in which 11 is a wafer, 12 is a diffraction grating provided on the wafer, 13 is a mask, 14 is a diffraction grating provided on the mask, 15 is a laser light source,
16. 17 is a photoelectric converter, 18 is a signal processing control unit, 19
2 represents a mask fine adjustment stage, and 20 represents a wafer fine adjustment stage.

上記構成において、レーザ光源15から発したコヒーレ
ント光は、真空吸着ホルダーによって保持されるマスク
13上の回折格子14に入射する。
In the above configuration, coherent light emitted from the laser light source 15 is incident on the diffraction grating 14 on the mask 13 held by the vacuum suction holder.

マスクの回折格子によって回折した光は、微調ステージ
20上に保持されるウェハ11上に作成された回折格子
12で反射し、b度マスク上の回折格子14を通過する
The light diffracted by the diffraction grating of the mask is reflected by the diffraction grating 12 formed on the wafer 11 held on the fine adjustment stage 20, and passes through the diffraction grating 14 on the b degree mask.

これらウェハおよびマスクの回折格子で回折した光のう
ち、+1次と一1次の回折光のみを光電変換器16.1
7で受け、その光強度を電気信号に変換する。
Of the light diffracted by the diffraction gratings of the wafer and mask, only the +1st and 11th order diffracted lights are transferred to the photoelectric converter 16.1.
7 and converts the light intensity into an electrical signal.

次に、信号処理部18で+1次の回折光強度1−4−、
と−1次の回折光強度i−1を加算し、ΣI−I 十、
 + I−、をめる。
Next, in the signal processing unit 18, the +1st order diffracted light intensity 1-4-,
and -1st order diffracted light intensity i-1, ΣI-I ten,
+I-, turn on.

この加算強度ΣIのギャップ2に対する変化は、第4図
に示すようにp’l、yλごとにピークをもつ信号と、
マスク13の裏面、すなわち回折格子14を設けた面に
おける反射の影響で生ずるλ/2を周期とする信号とが
重畳した信号として示される。
The change in the added strength ΣI with respect to gap 2 is a signal that has a peak at each p'l and yλ as shown in FIG.
The signal is shown as a superimposed signal with a signal having a period of λ/2 that is generated due to the influence of reflection on the back surface of the mask 13, that is, the surface on which the diffraction grating 14 is provided.

P2/λ+2pkλ・・・でピークをもつ信号は、マス
ク裏面での反射を零とした理想条件下で得られるもので
あシ、この信号は、偽で変化する信号を積分器等によっ
て処理することにより、その包絡線として得ることがで
きる。したがって、との包絡線を監視しながらその最大
値にマスク・ウェー1間のギャップ2を調整することに
よって、Pンλ 。
The signal having a peak at P2/λ+2pkλ... is obtained under ideal conditions with zero reflection on the back side of the mask, and this signal must be processed by processing a false and changing signal using an integrator, etc. can be obtained as its envelope. Therefore, by adjusting the gap 2 between mask ways 1 to its maximum value while monitoring the envelope of P and λ.

2P2 、・・・のギャップ値に設定することが可能と
/λ なる。もし、上記包絡線の最大値近傍が緩やかな変化を
示す場合には、さらに微分値をとるなどの処理を行なう
ことによって、最大値の検出を容易にすることができる
It is possible to set the gap value to 2P2, . . . /λ. If the vicinity of the maximum value of the envelope shows a gradual change, the maximum value can be easily detected by further processing such as taking a differential value.

さらに、この包絡線の最大値はし′2の周期をもつ信号
のピーク値と一致もしくは±2/4の範囲内で一致する
。このため、このシ2の周期をもつ信号をフィードバッ
ク信号として用いることによつλ て、±/4以下の精度でギャップ制御が可能となる。す
なわち、第4図において、P/λごとにピークをもつ信
号(イ)を粗合せ信号としてその最大点を検出し、さら
にシ2を周期とする信号(ロ)を微合せ信号として、領
域Gで微合せ制御を行なうことができる。
Furthermore, the maximum value of this envelope coincides with the peak value of the signal having a period of 2' or within a range of ±2/4. Therefore, by using this signal having a period of 2 as a feedback signal, gap control can be performed with an accuracy of ±/4 or less. That is, in FIG. 4, the signal (A) having a peak for each P/λ is used as a rough combination signal to detect its maximum point, and the signal (B) whose period is C2 is used as a fine combination signal to detect the area G. Fine adjustment control can be performed with .

次に、このようなギャップ条件での位置ずれ量に対する
加算強度Σ■の変化は、第5図に示すようにずれ量が/
2のときに最大、0のときに最小を示す。この傾向は同
図に示すようにギャップが1μm程度変化しても変わら
ず、その最大、最小値をとる位置ずれ量は#1とんど変
化しない。すなわち、第5図において、(イ)、(ロ)
、(ハ)はそれぞれギャップ2が14.22,14.7
2,15.22(μm)の場合の位置ずれ量dと加算強
度Σ■との関係を示す。
Next, the change in the additional strength Σ■ with respect to the amount of positional deviation under such gap conditions is as shown in Figure 5, when the amount of deviation is /
2 indicates the maximum, and 0 indicates the minimum. As shown in the figure, this tendency does not change even if the gap changes by about 1 μm, and the positional deviation amount #1 that takes the maximum and minimum values hardly changes. That is, in Figure 5, (a) and (b)
, (c) have gap 2 of 14.22 and 14.7, respectively.
The relationship between the positional deviation amount d and the addition strength Σ■ in the case of 2.15.22 (μm) is shown.

なお、回折格子のピッチPは3.0μmである。したが
って、この加算強度Σ■は位置合せ信号としても十分に
使用可能である。すなわち、ギャップ合せ信号の最大値
で位置ずれを起こさせ、位置ずれ量が/2のときに位置
合せ信号が最大となる。
Note that the pitch P of the diffraction grating is 3.0 μm. Therefore, this added strength Σ■ can be sufficiently used as an alignment signal. That is, the positional deviation is caused by the maximum value of the gap alignment signal, and the alignment signal becomes maximum when the positional deviation amount is /2.

このため、予めウェハとマスクに作製した回折格子マー
クを72分だけずらして設けておけば、ギャップ、位置
ともΣ工の最大値を検出するととによって高精度に合せ
ることが可能となる。あるいはまた、はじめにギャップ
を設定した後、位置ずれ変化の最小値に合せることによ
って、位置合せが可能となる。
For this reason, if the diffraction grating marks made on the wafer and the mask are provided in advance so as to be shifted by 72 minutes, it becomes possible to match both the gap and the position with high precision by detecting the maximum value of the Σ-factor. Alternatively, alignment can be achieved by first setting a gap and then adjusting it to the minimum value of the change in positional deviation.

これらいずれの方法でも位置合せは可能であるが、格子
のラインアンドスペースが1;1がら太きくずれる場合
には、位置の最小値検出の方が有利である。
Alignment is possible using any of these methods, but if the lines and spaces of the grating are deviated by 1:1, detection of the minimum position value is more advantageous.

以上の2つのギャップと位置の合せを交互に行なうこと
によって、マスク、ウェハ上の1対の回折格子から位置
、ギャップの同時検出が可能となる。
By alternately performing the above two gap and position alignments, it becomes possible to simultaneously detect the position and gap from a pair of diffraction gratings on the mask and wafer.

以上、1次回折光を利用した場合を例に説明したが、本
発明はこれに限定されるものではなく、よシ高次の回折
光を利用しても同様の効果を得ることができる。また、
上述した実施例ではマスク。
Although the case where the first-order diffracted light is used has been described above, the present invention is not limited to this, and the same effect can be obtained even if a higher-order diffracted light is used. Also,
In the embodiments described above, a mask.

ウェハにそれぞれ1つの回折格子マークを作製した場合
につい−Cのみ説明したが、例えば特開昭53−227
59号において説明されているようにX、T軸方向に直
交する回折格子を1組としてマーりを作製すると、” 
l ”N11両方向について同時にギャップ設定および
位置合せ制御ができ、さらにもう1つのマークを別に設
けることにょシマスク、ウェハ間の平行度をきわめて高
精度に1iilJ御できる。また、レーザ光源から発す
るコヒーレント光の代りに準単色′>Cを用いても同様
の効果が得られる。
Although only -C has been described for the case where one diffraction grating mark is manufactured on each wafer, for example, Japanese Patent Laid-Open No. 53-227
As explained in No. 59, when a beam is created using a set of diffraction gratings orthogonal to the X and T axis directions, "
Gap setting and alignment control can be performed simultaneously in both directions, and by providing another mark, the parallelism between the mask and wafer can be controlled with extremely high precision. A similar effect can be obtained by using quasi-monochromatic '>C instead.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、本発明によれば、2重回折格子に
垂直に入射した光に対し、対称的な方向に回折された同
次数の回折光強度を、第1の物体の回折格子を設けた面
で直接反射回折した光を含めて加力処理し、その加算強
度を用いることによって、ギャップの高イ′青度設定・
制御が可能となるとともに、高精度な位置合せも同時に
可能とな勺、簡単な格子マークによって100Aオーダ
の位置・ギャップ設定を行なうことができる。
As explained above, according to the present invention, for light incident perpendicularly on a double diffraction grating, the intensity of diffracted light of the same order diffracted in a symmetrical direction is transferred to the diffraction grating of the first object. By applying force including the light directly reflected and diffracted by the provided surface, and using the added intensity, it is possible to set a high blueness of the gap.
Positions and gaps on the order of 100A can be set using simple grid marks that allow control and highly accurate positioning at the same time.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は2重回折位置合せ法の原理図、第2図社従来の
差分強度を用いた位置合せ信号を示す図、第3図は本発
明の一実施例を示す構成図、第4図はギャップ合せ信号
としての加算強度信号を示す図、第5図は位置合せ信号
としての加算強度信号を示す図である。 11−−−・ウェハ(i2の物体)、12・・・・ウェ
ハ上に設けた回折格子(第2の回折格子)、13・−の
・マスク(第1の物体)、14・・争・マスクに設けた
回折格子(第1の回折格子)、l 5ee*sレーザ光
源、16,1γ5ees光電変換器、18・・・・信号
処理部、19・・・・マスク微調ステージ、20III
I・・ウェハ微調ステージ。 特許出願人 日本電信電話公社 代理人山 川政樹
Fig. 1 is a diagram showing the principle of the double diffraction alignment method, Fig. 2 is a diagram showing a conventional alignment signal using differential intensity, Fig. 3 is a configuration diagram showing an embodiment of the present invention, and Fig. 4 is a diagram showing the alignment signal using the conventional differential intensity. The figure shows an added intensity signal as a gap alignment signal, and FIG. 5 shows an added intensity signal as a position alignment signal. 11--- Wafer (i2 object), 12... Diffraction grating provided on the wafer (second diffraction grating), 13... Mask (first object), 14... Conflict... Diffraction grating provided on the mask (first diffraction grating), l5ee*s laser light source, 16,1γ5ees photoelectric converter, 18...signal processing section, 19...mask fine adjustment stage, 20III
I...Wafer fine adjustment stage. Patent applicant Masaki Yamakawa, agent of Nippon Telegraph and Telephone Public Corporation

Claims (1)

【特許請求の範囲】[Claims] 第1の物体に設けた第1の回折格子と、第2の物体に設
けたM2の回折格子とを一定のギャップをおいて重ね、
これら第1および第2の回折格子にコヒーレント光もし
くは準単色光を入射し、両回折格子によって生じた回折
光の強度の変化によって第1の物体と第2の物体の相対
変位を検出して位置合せする装置において、前記コヒー
レント光もしくは準単色光を第1の物体に垂直に入射さ
せ、入射光に対して対称的な方向に回折された、第1の
物体の第1の回折格子を設けた面で直接反射回折した光
を含むすべての同次数の回折光強度を加算処理し、この
加算強度の変化によって第1の物体と第2の物体間のギ
ャップを制御するとともに第1の物体と第2の物体の相
対変位を検出し位置合せ制御することを特徴とする2重
回折格子によるギャップ・位置合せ制御法。
A first diffraction grating provided on a first object and an M2 diffraction grating provided on a second object are overlapped with a certain gap,
Coherent light or quasi-monochromatic light is incident on these first and second diffraction gratings, and the relative displacement of the first object and the second object is detected by the change in the intensity of the diffracted light generated by both diffraction gratings, and the position of the object is determined. In the combining device, the coherent light or quasi-monochromatic light is incident on the first object perpendicularly, and a first diffraction grating of the first object is provided, which is diffracted in a direction symmetrical to the incident light. The intensities of all the diffracted lights of the same order, including the light directly reflected and diffracted by the surface, are summed, and the gap between the first object and the second object is controlled by changing the summed intensity, and the gap between the first object and the second object is controlled. A gap/alignment control method using a double diffraction grating, which is characterized by detecting the relative displacement of two objects and controlling the alignment.
JP58184433A 1983-10-04 1983-10-04 Controlling method for gap and alignment with double diffraction grating Granted JPS6077423A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58184433A JPS6077423A (en) 1983-10-04 1983-10-04 Controlling method for gap and alignment with double diffraction grating

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58184433A JPS6077423A (en) 1983-10-04 1983-10-04 Controlling method for gap and alignment with double diffraction grating

Publications (2)

Publication Number Publication Date
JPS6077423A true JPS6077423A (en) 1985-05-02
JPH0460331B2 JPH0460331B2 (en) 1992-09-25

Family

ID=16153064

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58184433A Granted JPS6077423A (en) 1983-10-04 1983-10-04 Controlling method for gap and alignment with double diffraction grating

Country Status (1)

Country Link
JP (1) JPS6077423A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006013400A (en) * 2004-06-29 2006-01-12 Canon Inc Method and apparatus for detecting relative positional deviation between two objects
JP2010183075A (en) * 2009-02-04 2010-08-19 Asml Netherlands Bv Imprint lithography
JP2011029538A (en) * 2009-07-29 2011-02-10 Toshiba Corp Method of manufacturing semiconductor device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006013400A (en) * 2004-06-29 2006-01-12 Canon Inc Method and apparatus for detecting relative positional deviation between two objects
JP2010183075A (en) * 2009-02-04 2010-08-19 Asml Netherlands Bv Imprint lithography
US8248608B2 (en) 2009-02-04 2012-08-21 Asml Netherlands B.V. Imprint lithography
JP2011029538A (en) * 2009-07-29 2011-02-10 Toshiba Corp Method of manufacturing semiconductor device

Also Published As

Publication number Publication date
JPH0460331B2 (en) 1992-09-25

Similar Documents

Publication Publication Date Title
JPH039403B2 (en)
EP0323242A2 (en) Method and apparatus for aligning two objects, and method and apparatus for providing a desired gap between two objects
JP3713354B2 (en) Position measuring device
JPS6077423A (en) Controlling method for gap and alignment with double diffraction grating
JPH01107102A (en) Optical automatic positioning apparatus
JP2578742B2 (en) Positioning method
JPS62229942A (en) Optical positioning device
JPH0582729B2 (en)
JPH0441485B2 (en)
JP3713355B2 (en) Position measuring device
JPH0269604A (en) Aligning method
JPS6227730B2 (en)
JP2554626B2 (en) Positioning method and positioner using diffraction grating
JPH0295203A (en) Aligning device
JPS63298102A (en) Position aligning method
JP3548665B2 (en) Position measuring device
JPS6047420A (en) Method and device for alignment by double diffraction gratings
JPH0365603A (en) Method of aligning position
JPS5975628A (en) Positioning method by double diffraction grating
JPH0451968B2 (en)
JPH01242904A (en) Alignment device
JPH0441285B2 (en)
JPS63204104A (en) Position detecting method
JPH04188608A (en) Alignment device using diffraction grating
JPS63299329A (en) Aligner