JPH01107102A - Optical automatic positioning apparatus - Google Patents

Optical automatic positioning apparatus

Info

Publication number
JPH01107102A
JPH01107102A JP62263554A JP26355487A JPH01107102A JP H01107102 A JPH01107102 A JP H01107102A JP 62263554 A JP62263554 A JP 62263554A JP 26355487 A JP26355487 A JP 26355487A JP H01107102 A JPH01107102 A JP H01107102A
Authority
JP
Japan
Prior art keywords
light
diffraction grating
diffraction
wafer
mask
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62263554A
Other languages
Japanese (ja)
Inventor
Hiroshi Miyake
三宅 洋
Takahide Iida
隆英 飯田
Shuzo Hattori
服部 秀三
Etsuyuki Uchida
内田 悦行
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Industries Corp
Original Assignee
Toyoda Automatic Loom Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyoda Automatic Loom Works Ltd filed Critical Toyoda Automatic Loom Works Ltd
Priority to JP62263554A priority Critical patent/JPH01107102A/en
Publication of JPH01107102A publication Critical patent/JPH01107102A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain the moire signal of a regular pattern free from disturbance due to interference, by separating the light signal passing only through the first diffraction lattice and not participated in the detection of positional shift from the position shift detecting light signals passing through both of the first and second diffraction lattices. CONSTITUTION:A diffraction lattice 20 on a mark side and the diffraction lattice 22 on a wafer side parallel thereto are respectively provided to an X-ray mask 10 and a wafer 10 as the first and second diffraction lattices. Then, the lattice 20 is irradiated with coherent lights, that is, lights aligned in a phase/wavelength and easy to generate interference from a light source 24. Hereupon, light not participitated in the detection of positional shift receives diffraction directly to return in the incident direction. The lights diffracted by both of the lattices 20, 22 become moire light sensitively changing in intensity with respect to the relative displacement of the mask 10 and the wafer 12 by the condensing function of a linear Fresnel zone plate in the direction right-angled to the positioning direction thereof. This light is detected by a light detection part to be processed by a processor 32 and, on the basis of the signal generated from a signal generator 34, a laminated piezoelectric element 36 adjusts the relative positions of both diffraction lattices.

Description

【発明の詳細な説明】 く゛産業上の利用分野〉 本発明は2物体間の相対位置を、回折格子を含む光学系
を利用して決める光学式自動位置決め装置に関するもの
である。。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to an automatic optical positioning device that determines the relative position between two objects using an optical system including a diffraction grating. .

〈従来の技術〉 半導体製造装置やパターン評価装置等において、例えば
第一の基板と第二の基板とにそれぞれ回折格子を設け、
これら2枚1組の回折格子の反射光から得られるモアレ
信号を用いて、双方の基板の相対位置を精度よく決定す
ることが行われており、特開昭60−67822号公報
に記載されているように高分解能の位置決め信号が得ら
れる利点がある。
<Prior art> In semiconductor manufacturing equipment, pattern evaluation equipment, etc., for example, diffraction gratings are provided on each of a first substrate and a second substrate,
Moiré signals obtained from the reflected light from a pair of these two diffraction gratings are used to accurately determine the relative positions of both substrates, as described in Japanese Patent Application Laid-Open No. 60-67822. It has the advantage of being able to obtain high-resolution positioning signals.

例えば、第8図に示すように半導体製造の露光工程等に
おいて、第一基板たるマスク100と第二基板たるウェ
ハ102とに、回折格子A+Azと回折格子B+B*と
の2mを取り付ける。これらの回折格子は、第9図に示
すようにいずれもピッチPの一次元回折格子で、位置決
め方向において、回折格子AlAtの組とBIBtO組
とがそれぞれ反対方向にP/4ずつ位相がずらされてい
る。マスク側の格子A+B+で回折を受けてウェハ側の
格子AzBtに達した光は、その格子A。
For example, as shown in FIG. 8, in the exposure process of semiconductor manufacturing, etc., 2 m of diffraction gratings A+Az and B+B* are attached to a mask 100 as a first substrate and a wafer 102 as a second substrate. As shown in FIG. 9, these diffraction gratings are all one-dimensional diffraction gratings with a pitch of P, and in the positioning direction, the phases of the diffraction grating AlAt group and the BIBtO group are shifted by P/4 in opposite directions. ing. The light that is diffracted by the grating A+B+ on the mask side and reaches the grating AzBt on the wafer side is the grating A.

B2で再び回折を受けて入射方向へ戻っていく。It undergoes diffraction again at B2 and returns to the direction of incidence.

この光はマスク100とウェハ102との横方向の相対
変位によって周期的に変化する第10図に示すようなモ
アレ信号■。+  IIに変換されるが、この例では回
折格子A+AtとB、 Btとの各位相差により、18
0°位相の異なる信号となる。
This light is a moiré signal (2) as shown in FIG. 10, which changes periodically depending on the relative displacement in the lateral direction between the mask 100 and the wafer 102. +II, but in this example, due to the phase difference between the diffraction gratings A+At, B, and Bt, 18
The signals have a 0° phase difference.

そしてこれら二つの信号の差(Ia −Im )がゼロ
となるように位置決めを行うのである。この例で2組の
回折格子を用いる目的は、回折光の強度変化が最大とな
る点で検出するためであり、また、入射方向へ戻ってい
く0次回折光以外に、±1次回折光や±2次回折光等を
利用しても、同様な方法での位置決めが可能となる。
Then, positioning is performed so that the difference (Ia - Im) between these two signals becomes zero. The purpose of using two sets of diffraction gratings in this example is to detect the point where the intensity change of the diffracted light is maximum, and in addition to the 0th-order diffracted light that returns to the incident direction, the ±1st-order diffracted light and the ±1st-order diffracted light Positioning can be performed in a similar manner by using second-order diffracted light or the like.

〈発明が解決しようとする問題点〉 ところで、マスク側の第一の格子A3等で直接回折を受
けて入射方向に戻る光があり、この第一の格子A1等の
みを経由する光は位置決めつまり位置ズレの検出には関
与しないものである。一方、第一の格子A1等を経由し
てウェハ例の第二の格子A2等で回折を受け、再び第一
の格子A1等を経由して入射方向に戻る光は位置ズレの
検出に寄与するものである。しかし、第一の格子A9等
のみで直接回折を受けた位置ズレに無関係な光が、第一
および第二の格子A、A2等を経由した位置ズレを検出
する光と干渉を起こし、その結果、位置ズレ検出のため
のモアレ信号が乱されてしまって、正しい位置へのアラ
イメントが困難になる問題があった。
<Problems to be Solved by the Invention> By the way, there is light that is directly diffracted by the first grating A3 etc. on the mask side and returns to the incident direction, and the light that passes only through this first grating A1 etc. It is not involved in detecting positional deviation. On the other hand, the light that passes through the first grating A1, etc., undergoes diffraction at the second grating A2, etc. of the wafer example, and returns to the incident direction via the first grating A1, etc. again contributes to the detection of positional deviation. It is something. However, the light unrelated to the positional shift that has been directly diffracted only by the first grating A9, etc., interferes with the light that detects the positional shift via the first and second gratings A, A2, etc., and as a result, There was a problem in that the moiré signal for detecting positional deviation was disturbed, making it difficult to align to the correct position.

これは、上述のようにO次回折光を利用する場合だけで
なく、±1次回折光、±2次回折光など高次の回折光を
利用する場合でも同様に生じる問題である。
This problem occurs not only when O-order diffracted light is used as described above, but also when higher-order diffracted light such as ±1st-order diffracted light and ±2nd-order diffracted light is used.

く問題点を解決するための手段〉 本発明は以上のような問題を解決するためになされたも
のであり、その特徴は、■第一部材に設けられた第一の
回折格子およびこれと平行に第二部材に設けられた第二
の回折格子と、■第一の回折格子にレーザ光等のコヒー
レントな光を照射する光源と、■第一の回折格子を経由
して第二の回折格子で反射し、再び第一の回折格子を経
由する回折光をモアレ信号として検出する検出装置と、
■位置決め方向において第一部材と第二部材との相対位
置を調整する駆動装置と、■上記モアレ信号に基づいて
駆動装置を制御する駆動制御手段とを備え、第一部材と
第二部材との相対位置を決める光学式自動位置決め装置
において、上記第二の回折格子に、第一部材と第二部材
との位置決め方向と直角な方向において線型フレネルゾ
ーンプレートを形成した点にある。
Means for Solving the Problems> The present invention has been made to solve the above problems, and its features include: (1) a first diffraction grating provided on the first member; a second diffraction grating provided on the second member; ■ a light source that irradiates coherent light such as a laser beam to the first diffraction grating; and ■ a second diffraction grating that passes through the first diffraction grating. a detection device that detects the diffracted light that is reflected by the first diffraction grating and passes through the first diffraction grating again as a moiré signal;
(1) A drive device that adjusts the relative position of the first member and the second member in the positioning direction; (2) A drive control means that controls the drive device based on the moiré signal; In the optical automatic positioning device for determining relative positions, a linear Fresnel zone plate is formed on the second diffraction grating in a direction perpendicular to the positioning direction of the first member and the second member.

すなわち、第一の回折格子は従来と同様に位置決め方向
において一定のピッチで格子が形成されたものであり、
一方、第二の回折格子は位置決め方向においては第一の
回折格子に対応するピッチの格子パターンとされるが、
位置決め方向と直角な方向においては線型フレネルゾー
ンプレートが形成されたものなのである。この線型フレ
ネルゾーンプレートは、−次元フレネル帯板とも称され
、周知のように光の透過度分布が段階的に減少するパタ
ーンを有して集光作用を有するものである。
That is, the first diffraction grating is a grating formed at a constant pitch in the positioning direction as in the conventional case,
On the other hand, the second diffraction grating has a grating pattern with a pitch corresponding to that of the first diffraction grating in the positioning direction.
In a direction perpendicular to the positioning direction, a linear Fresnel zone plate is formed. This linear Fresnel zone plate is also called a -dimensional Fresnel zone plate, and, as is well known, has a pattern in which the light transmittance distribution decreases in stages and has a light condensing effect.

〈作用および効果〉 この線型フレネルゾーンプレートがいわばレンズのよう
な集光機能を果たすため、第一の回折格子のみを経由し
た回折光の出射方向と、第一の回折格子のみならず第二
の回折格子をも経由した回折光の出射方向とが異ならさ
れる。言い換えれば、第一の回折格子のみを経由した位
置ズレ検出に関与しない光信号と、第一および第二双方
の回折格子を経由した位置ズレ検出用光信号とが切り離
されるのである。したがって、位置ズレ検出に関与しな
い信号が位置ズレ検出信号と干渉することが回避されて
、干渉による乱れのない正規のパターンのモアレ信号が
得られる。そのため高精度の位置決めが可能となるので
ある。
<Functions and Effects> Since this linear Fresnel zone plate performs a light focusing function like a lens, the output direction of the diffracted light passing only through the first diffraction grating and the second diffraction grating as well as the first diffraction grating The emitting direction of the diffracted light that has also passed through the diffraction grating is made different. In other words, the optical signal that is not involved in positional deviation detection and that has passed through only the first diffraction grating is separated from the optical signal for positional deviation detection that has passed through both the first and second diffraction gratings. Therefore, signals not involved in positional deviation detection are prevented from interfering with the positional deviation detection signal, and a regular pattern of moiré signals without disturbance due to interference can be obtained. Therefore, highly accurate positioning is possible.

〈実 施 例〉 以下、本発明の一実施例を図面に基づいて説明する。<Example> Hereinafter, one embodiment of the present invention will be described based on the drawings.

第4図は半導体製造におけるX線露光装置の位置決め機
構部に本発明を適用した例を示すものである。第一部材
としてのX線マスク10と第二部材としてのウェハ12
とが、それぞれマスクステージ14とウェハステージ1
6とに互いに平行に固定され、何れかのステージ例えば
マスクステージ14が横方向に移動可能とされて、マス
ク10とウェハ12との位置決め方向における相対位置
が調節可能である。マスク10側にはX線発生装置18
が設置され、そのX線の照射によりマスク10によって
規定されるパターンでウェハ12上に露光されるように
なっている。
FIG. 4 shows an example in which the present invention is applied to a positioning mechanism of an X-ray exposure apparatus used in semiconductor manufacturing. X-ray mask 10 as a first member and wafer 12 as a second member
are mask stage 14 and wafer stage 1, respectively.
6 are fixed parallel to each other, and any stage, for example, the mask stage 14, is movable in the lateral direction, so that the relative positions of the mask 10 and the wafer 12 in the positioning direction can be adjusted. An X-ray generator 18 is located on the mask 10 side.
is installed, and the wafer 12 is exposed to the X-rays in a pattern defined by the mask 10.

マスク10には第一の回折格子として機能するマスク側
回折格子20が設けられ、ウェハ12には第二の回折格
子として機能するウェハ側回折格子22が互いに平行に
設けられている。これらは詳しい図示は省略するが、回
折光の強度変化が最大となる点で位置検出を行い得るよ
うに2組のものが設置されている。
The mask 10 is provided with a mask-side diffraction grating 20 that functions as a first diffraction grating, and the wafer 12 is provided with wafer-side diffraction gratings 22 that function as a second diffraction grating in parallel with each other. Although detailed illustrations of these are omitted, two sets are installed so that position detection can be performed at the point where the intensity change of the diffracted light is maximum.

マスク側回折格子20にコヒーレントな光、すなわち位
相・波長がそろった干渉を起こしやすい光を照射する光
源として、例えばヘリウム−ネオン(He−Ne)レー
ザを発生するレーザ光源24が設置されている。ここか
らのレーザ光はミラー26で反射され、ハーフミラ−2
8を経てマスク側回折格子20に照射されて、その格子
20およびウェハ側回折格子22で回折を受け、入射方
向へ戻っていく。この回折光はステージ14の横方向の
変位に対してのみ敏感に強度が変化するモアレ光である
。このモアレ光はハーフミラ−28で直角に曲げられ、
光検出器(ディテクタ部)30でサイン波状の電気信号
つまりモアレ信号に変換される。このモアレ信号は信号
処理装置32で処理され、制御信号として駆動信号発生
装置34へ指令を与える。それにより、駆動信号発生装
置34から積層圧電素子36へ駆動信号が供給され、積
層圧電素子36がマスクステージ14を所定位置まで移
動させる。モアレ信号が所定の強度となったとき、例え
ば先に説明したように180°位相の異なるモアレ信号
の出力差(Ia  Im)がゼロになったとき、位置決
め完了であり、その後X線発生装置18によりウェハ1
2にX線が照射され、所定パターンでレジストが感光さ
れるのある。
A laser light source 24 that generates, for example, a helium-neon (He-Ne) laser is installed as a light source that irradiates the mask-side diffraction grating 20 with coherent light, that is, light that has the same phase and wavelength and is likely to cause interference. The laser beam from here is reflected by the mirror 26, and the half mirror 2
8, the light is irradiated onto the mask-side diffraction grating 20, is diffracted by the grating 20 and the wafer-side diffraction grating 22, and returns to the incident direction. This diffracted light is moiré light whose intensity changes sensitively only with respect to the lateral displacement of the stage 14. This moiré light is bent at a right angle by a half mirror 28,
A photodetector (detector unit) 30 converts the signal into a sine wave electric signal, that is, a moiré signal. This moiré signal is processed by the signal processing device 32 and gives a command to the drive signal generating device 34 as a control signal. Thereby, a drive signal is supplied from the drive signal generator 34 to the laminated piezoelectric element 36, and the laminated piezoelectric element 36 moves the mask stage 14 to a predetermined position. When the moire signal reaches a predetermined intensity, for example, when the output difference (Ia Im) of the moire signals with a 180° phase difference becomes zero as explained earlier, positioning is complete, and then the X-ray generator 18 Wafer 1
2 is irradiated with X-rays, and the resist is exposed in a predetermined pattern.

本実施例では光検出器30が、マスク側回折格子20お
よびウェハ側回折格子22を経由した回折光をモアレ信
号として検出する検出装置を構成している。また、積層
圧電素子36がマスク10とウェハ12との位置決め方
向における相対位置を調整する駆動装置を構成し、さら
に信号処理装置32と駆動信号発生装置34とが、上述
のモアレ信号に基づいて積層圧電素子36を制御する駆
動制御手段を構成している。
In this embodiment, the photodetector 30 constitutes a detection device that detects the diffracted light that has passed through the mask-side diffraction grating 20 and the wafer-side diffraction grating 22 as a moiré signal. Further, the laminated piezoelectric element 36 constitutes a drive device that adjusts the relative position of the mask 10 and the wafer 12 in the positioning direction, and furthermore, the signal processing device 32 and the drive signal generation device 34 act on the laminated piezoelectric element 36 based on the above-mentioned moiré signal. It constitutes a drive control means for controlling the piezoelectric element 36.

第1図にマスク側回折格子20とウェハ側回折格子22
との具体的な格子パターンを示す。マスクステージ14
の変位方向、換言すればマスク10とウェハ12との位
置決め方向を図中X方向とすると、マスク側回折格子2
0はX方向において等ピッチで光透過部と光吸収部が交
互に表れる格子パターンとされている。一方、ウェハ側
回折格子22は、X方向においてはマスク側回折格子2
0と同一のピッチで格子が形成されているが、これと直
角なY方向においては線型フレネルゾーンプレートが形
成されて、透過度分布が段階的に減少するパターンとさ
れている。すなわち、マスク側回折格子20は従来通り
の一次元回折格子であるが、ウェハ側回折格子22はX
方向には等ピッチの透過度分布とされ、Y方向には不等
ピンチおよびパターンのフレネルゾーンプレートとされ
た二次元回折格子となっているのである。
FIG. 1 shows a mask-side diffraction grating 20 and a wafer-side diffraction grating 22.
A specific grid pattern is shown. mask stage 14
If the displacement direction of the mask 10 and the wafer 12, in other words the positioning direction of the mask 10 and the wafer 12, is the X direction in the figure, then the mask side diffraction grating 2
0 is a lattice pattern in which light transmitting parts and light absorbing parts appear alternately at equal pitches in the X direction. On the other hand, the wafer-side diffraction grating 22 is different from the mask-side diffraction grating 2 in the X direction.
A grating is formed with the same pitch as 0, but in the Y direction perpendicular to this, a linear Fresnel zone plate is formed, resulting in a pattern in which the transmittance distribution decreases in stages. That is, the mask-side diffraction grating 20 is a conventional one-dimensional diffraction grating, but the wafer-side diffraction grating 22 is
It is a two-dimensional diffraction grating with a transmittance distribution of equal pitch in the Y direction and a Fresnel zone plate with unequal pinch and pattern in the Y direction.

第1図の下段には、不等ピッチの透過・吸収パターンが
Y方向に5本記載されているが、その1本1本をフレネ
ルゾーンプレートとみることができ、その見地に立てば
、本実施例においてはY方向に延びるフレネルゾーンプ
レートがX方向に等ピッチで複数形成されていると見る
ことができる。
In the lower part of Figure 1, five transmission/absorption patterns with uneven pitches are shown in the Y direction, each of which can be seen as a Fresnel zone plate, and from that point of view, the book In the embodiment, it can be seen that a plurality of Fresnel zone plates extending in the Y direction are formed at equal pitches in the X direction.

線型フレネルゾーンプレートは、いわば円筒レンズのよ
うに光を集光する性質を有していることは既に知られて
いるところである。本実施例においては第2図に示すO
次回折光を位置決めに利用するのであるが、第3図に概
念的に示すように、マスク側回折格子20を経由してウ
ェハ側回折格子22で反射する回折光を、フレネルゾー
ンプレートの集光作用によりX方向において集光しつつ
、再度マスク側回折格子20を経由させ、その光学系の
焦点位置に設置されたディテクタたる光検出器30によ
って(実際にはミラー28で光経路が曲げられた後であ
るが)、モアレ信号となるべき再回折格子20および2
2を経た光を効率よく取り入れることができる。本実施
例の場合、0次回折光の利用であるから信号強度が高く
、S/N比の向上1位置決め精度の向上を図ることがで
きる。
It is already known that a linear Fresnel zone plate has the property of condensing light like a cylindrical lens. In this example, O shown in FIG.
The next diffraction light is used for positioning, and as conceptually shown in FIG. While condensing the light in the X direction, the light is passed through the mask-side diffraction grating 20 again, and then the light is collected by the photodetector 30, which is a detector installed at the focal point of the optical system (actually, after the light path is bent by the mirror 28). ), the re-diffraction gratings 20 and 2 which should become moiré signals
Light that has passed through step 2 can be efficiently taken in. In the case of this embodiment, since the 0th order diffracted light is used, the signal strength is high, and it is possible to improve the S/N ratio and the positioning accuracy.

従来の回折格子パターンの不都合は、第5図の左側に示
すように、マスク側回折格子A、のみで回折を受けたマ
スク側回折光と、マスク側およびウェハ側双方の回折格
子A、およびA2で回折を受けたウェハ側回折光との飛
び先つまり出射方向が同じであり、両回折光の干渉が起
こることにあった。これに対して本実施例では、第5図
の右側に示すように、線型フレネルゾーンプレートの集
光作用により、ウェハ側回折光の出射方向とマスク側回
折光の出射方向とが異なる方向とされて、これらの回折
光が完全に分離されるため、上述の干渉の問題が解消し
、マスク10とウェハ12とを完全に平行に保ったまま
、正確な位置決めができるのである。
The disadvantage of the conventional diffraction grating pattern is that, as shown on the left side of FIG. The destination of the diffracted light on the wafer side, that is, the direction of the emitted light, is the same, and interference between the two diffracted lights may occur. On the other hand, in this embodiment, as shown on the right side of FIG. 5, due to the light condensing effect of the linear Fresnel zone plate, the emitting direction of the wafer-side diffracted light and the emitting direction of the mask-side diffracted light are made to be different directions. Since these diffracted lights are completely separated, the above-mentioned interference problem is solved, and accurate positioning can be performed while keeping the mask 10 and the wafer 12 completely parallel.

そして、マスク10とウェハ12とがX方向において相
対的に移動させられると、ウェハ側回折格子22のゾー
ンプレート部をマスク側回折格子20が遮る・程度が周
期的に変化するため、マスク側回折格子20を経てウェ
ハ側回折格子22で反射する光の強度も周期的に変化す
る。したがって、従来と同様に第10図に示すようなサ
イン波状のモアレ信号が得られ、これを位置決め信号と
して使うことができる。
When the mask 10 and the wafer 12 are moved relative to each other in the X direction, the zone plate portion of the wafer side diffraction grating 22 is blocked by the mask side diffraction grating 20. Since the extent changes periodically, the mask side diffraction The intensity of the light that passes through the grating 20 and is reflected by the wafer-side diffraction grating 22 also changes periodically. Therefore, as in the conventional case, a sine wave moiré signal as shown in FIG. 10 is obtained, and this can be used as a positioning signal.

なお、ウェハ12をマスク10に対して位置決め方向と
直角なX方向に相対的に変位させると、ウェハ側回折格
子22の集光作用を奏するフレネルゾーンプレートがX
方向に変位し、いわば円筒レンズを動かす場合と同様に
、その光学系の焦点位置がX方向に変位することとなる
。このことを利用してX方向の比較的粗い位置決めを行
うことができる。つまり、X方向には微調整の位置決め
を、X方向には粗調整用の位置決めをそれぞれ行い得る
のである。
Note that when the wafer 12 is displaced relative to the mask 10 in the
The focal position of the optical system is displaced in the X direction, so to speak, similar to when moving a cylindrical lens. Utilizing this fact, relatively rough positioning in the X direction can be performed. In other words, positioning for fine adjustment can be performed in the X direction, and positioning for coarse adjustment can be performed in the X direction.

以上は本来の位置決め方向をX方向に設定した場合であ
るが、第6図および第7図に示すような1組の4分割回
折格子を、それぞれマスク側回折格子40およびウェハ
側回折格子42として用いることにより、互いに直交す
るX方向とX方向の2方向で同時に位置決めを行うこと
ができる。マスク側回折格子40は、X方向位置決め用
の格子部A X +およびAX2と、X方向位置決め用
の格子部AY、およびAY、とが、格子中心に関してそ
れぞれ対称となるように形成されている。何れの格子部
も、中間部のパターンは省略して示すが(回折格子42
側についても同じ)、第1図に示す回折格子20と同様
のパターンのものである。
The above is a case where the original positioning direction is set in the X direction, but a set of four-part diffraction gratings as shown in FIGS. 6 and 7 are used as the mask-side diffraction grating 40 and the wafer-side diffraction grating 42, respectively. By using this, positioning can be performed simultaneously in two directions, the X direction and the X direction, which are perpendicular to each other. The mask-side diffraction grating 40 is formed such that the grating portions A X + and AX2 for X-direction positioning and the grating portions AY and AY for X-direction positioning are symmetrical with respect to the grating center. In both grating parts, the pattern in the middle part is omitted (diffraction grating 42
The same applies to the sides), and the pattern is similar to that of the diffraction grating 20 shown in FIG.

ウェハ側回折格子42は、X方向位置決め用の格子部B
X、およびBX、と、X方向位置決め用の格子部BY、
およびBY2とが、いずれも線型フレネルゾーンプレー
トとして格子中心に関しそれぞれ対称に形成されている
。個々の格子部そのものは第1図に示す回折格子22と
同じパターンとされている。そして、X方向位置決め用
の格子部AX、、AX!およびBX、、BX2が対応し
、またX方向位置決め用の格子部AY、、AY2および
BY、、BY、が対応するように、各4分割回折格子4
0および42がマスク10およびウェハ12に互いに平
行に設けられ、それによってX方向およびX方向の位置
決め用の各モアレ信号が得られるのである。
The wafer-side diffraction grating 42 is a grating portion B for positioning in the X direction.
X, and BX, and a lattice part BY for positioning in the X direction,
and BY2 are each formed as linear Fresnel zone plates symmetrically with respect to the lattice center. The individual grating portions themselves have the same pattern as the diffraction grating 22 shown in FIG. Then, the lattice portions AX,, AX! for positioning in the X direction. and BX, , BX2 correspond to each other, and the grating portions AY, , AY2 and BY, , BY for positioning in the X direction correspond to each other.
0 and 42 are provided in parallel to each other on the mask 10 and the wafer 12, thereby obtaining respective moiré signals for positioning in the X direction and the X direction.

以上説明した実施例では0次回折光を利用しているが、
0次のものに限らず、例えば第2図に示す±1次の回折
光等、高次の回折光を利用する場合でも、本発明は同様
に適用することができる。
In the embodiment described above, the 0th order diffracted light is used, but
The present invention can be similarly applied even when using not only zero-order diffracted light but also higher-order diffracted light, such as the ±1st-order diffracted light shown in FIG. 2, for example.

また、本発明はX線露光装置における位置決めに限らず
、その他の光学式露光装置あるいは縮小投影型露光装置
(ステッパ)、さらにはX線マスク検査装置(例えば特
願昭61−8391号公報に開示のもの)など、各種装
置における位置決めに適用することができる。また、位
置決めの対象についても、マスクおよびウェハ以外の2
基板間、さらには基板以外の2部材間の位置決めにも適
用可能である。
Furthermore, the present invention is applicable not only to positioning in an X-ray exposure apparatus, but also to other optical exposure apparatuses or reduction projection exposure apparatuses (steppers), and even to X-ray mask inspection apparatuses (for example, disclosed in Japanese Patent Application No. 8391/1982). It can be applied to positioning in various devices such as In addition, regarding the positioning target, two types other than masks and wafers may be used.
It is also applicable to positioning between substrates, and even between two members other than substrates.

その他、逐一説明はしないが、本発明は当業者の知識に
基づき種々の変更を施した態様で実施し得ることは勿論
である。
Although not described in detail, it goes without saying that the present invention can be implemented with various modifications based on the knowledge of those skilled in the art.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例における第一および第二の回
折格子たるマスク側回折格子およびウェハ側回折格子を
示す斜視図であり、第2図は第1図における■祖国、第
3図は同じく■祖国である。 第4図は本発明の適用対象の一例であるX線露光装置の
全体を概念的に示す図である。第5図は従来の回折格子
と本発明に係る回折格子との機能の違いを比較して示す
説明図である。第6図および第7図は、マスク側回折格
子およびウェハ側回折格子にそれぞれ4分割回折格子を
使用する例を示す平面図である。第8図は基板位置決め
用回折格子の従来例を示す正面図であり、第9図はそれ
ら格子のパターンを示す平面図である。第10図は位置
決めに供されるモアレ信号の例を示す図である。 10:マスク      12:ウエハ14:マスクス
テージ  16:ウエハステージ18:X線発生装置 20:マスク側回折格子 22:ウェハ側回折格子 24:レーザ光源    26:ミラー28:ハーフ≦
ラー   30:光検出器32:信号処理装置 34:駆動信号発生装置 36:積層圧電素子出願人 
株式会社 豊田自動織機製作所第1図 瓜 第2図    第3図 01視)([ネ覧) 第4図 第5図 第8図      第9図 第10図
FIG. 1 is a perspective view showing a mask-side diffraction grating and a wafer-side diffraction grating, which are first and second diffraction gratings in an embodiment of the present invention, and FIG. is also ■homeland. FIG. 4 is a diagram conceptually showing the entirety of an X-ray exposure apparatus, which is an example of an object to which the present invention is applied. FIG. 5 is an explanatory diagram comparing and showing the difference in function between a conventional diffraction grating and a diffraction grating according to the present invention. FIG. 6 and FIG. 7 are plan views showing examples in which four-part diffraction gratings are used as the mask-side diffraction grating and the wafer-side diffraction grating, respectively. FIG. 8 is a front view showing a conventional example of a diffraction grating for substrate positioning, and FIG. 9 is a plan view showing a pattern of the grating. FIG. 10 is a diagram showing an example of a moiré signal used for positioning. 10: Mask 12: Wafer 14: Mask stage 16: Wafer stage 18: X-ray generator 20: Mask side diffraction grating 22: Wafer side diffraction grating 24: Laser light source 26: Mirror 28: Half ≦
30: Photodetector 32: Signal processing device 34: Drive signal generator 36: Multilayer piezoelectric element applicant
Toyoda Automatic Loom Works Co., Ltd. Figure 1 Figure 2 Figure 3 Figure 01 view) Figure 4 Figure 5 Figure 8 Figure 9 Figure 10

Claims (1)

【特許請求の範囲】  第一部材に設けられた第一の回折格子およびこれと平
行に第二部材に設けられた第二の回折格子と、 第一の回折格子にレーザ光等のコヒーレントな光を照射
する光源と、 第一の回折格子を経由して第二の回折格子で反射し、再
び第一の回折格子を経由する回折光をモアレ信号として
検出する検出装置と、 位置決め方向において第一部材と第二部材との相対位置
を調整する駆動装置と、 前記モアレ信号に基づいて駆動装置を制御する駆動制御
手段と を備え、第一部材と第二部材との相対位置を決める光学
式自動位置決め装置において、 前記第二の回折格子に、前記第一部材と第二部材との位
置決め方向と直角な方向において線型フレネルゾーンプ
レートを形成した特徴とする光学式自動位置決め装置。
[Claims] A first diffraction grating provided on the first member, a second diffraction grating provided parallel to the first diffraction grating on the second member, and a coherent light such as a laser beam applied to the first diffraction grating. a detection device that detects the diffracted light that passes through the first diffraction grating, is reflected by the second diffraction grating, and passes through the first diffraction grating again as a moiré signal; An optical automatic device that determines the relative position of the first member and the second member, comprising a drive device that adjusts the relative position between the member and the second member, and a drive control means that controls the drive device based on the moiré signal. An optical automatic positioning device, wherein a linear Fresnel zone plate is formed on the second diffraction grating in a direction perpendicular to the positioning direction of the first member and the second member.
JP62263554A 1987-10-19 1987-10-19 Optical automatic positioning apparatus Pending JPH01107102A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62263554A JPH01107102A (en) 1987-10-19 1987-10-19 Optical automatic positioning apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62263554A JPH01107102A (en) 1987-10-19 1987-10-19 Optical automatic positioning apparatus

Publications (1)

Publication Number Publication Date
JPH01107102A true JPH01107102A (en) 1989-04-25

Family

ID=17391160

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62263554A Pending JPH01107102A (en) 1987-10-19 1987-10-19 Optical automatic positioning apparatus

Country Status (1)

Country Link
JP (1) JPH01107102A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002088637A1 (en) * 2001-04-26 2002-11-07 Creo Srl Absolute moire type position encoder for use in a control system
JP2006332677A (en) * 2005-05-27 2006-12-07 Asml Netherlands Bv Imprint lithography
JP2008522412A (en) * 2004-11-30 2008-06-26 モレキュラー・インプリンツ・インコーポレーテッド Interference analysis to produce nanoscale devices
JP2010267682A (en) * 2009-05-12 2010-11-25 Bondtech Inc Device and method for alignment, and semiconductor device
JP2017204539A (en) * 2016-05-10 2017-11-16 キヤノン株式会社 Position detector, position detection method, imprint device and manufacturing method of article
KR20190100951A (en) * 2016-12-23 2019-08-29 보드 오브 리전츠, 더 유니버시티 오브 텍사스 시스템 Hybrid integration of components on compact devices using moire-based measurement and vacuum-based extraction and mounting
CN111238363A (en) * 2018-11-28 2020-06-05 中国科学院光电技术研究所 Multi-wave radial shearing interferometer based on Fresnel zone plate

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002088637A1 (en) * 2001-04-26 2002-11-07 Creo Srl Absolute moire type position encoder for use in a control system
US6660997B2 (en) 2001-04-26 2003-12-09 Creo Srl Absolute position Moiré type encoder for use in a control system
JP2008522412A (en) * 2004-11-30 2008-06-26 モレキュラー・インプリンツ・インコーポレーテッド Interference analysis to produce nanoscale devices
JP2006332677A (en) * 2005-05-27 2006-12-07 Asml Netherlands Bv Imprint lithography
US8241550B2 (en) 2005-05-27 2012-08-14 Asml Netherlands B.V. Imprint lithography
JP2010267682A (en) * 2009-05-12 2010-11-25 Bondtech Inc Device and method for alignment, and semiconductor device
JP2017204539A (en) * 2016-05-10 2017-11-16 キヤノン株式会社 Position detector, position detection method, imprint device and manufacturing method of article
KR20190100951A (en) * 2016-12-23 2019-08-29 보드 오브 리전츠, 더 유니버시티 오브 텍사스 시스템 Hybrid integration of components on compact devices using moire-based measurement and vacuum-based extraction and mounting
CN111238363A (en) * 2018-11-28 2020-06-05 中国科学院光电技术研究所 Multi-wave radial shearing interferometer based on Fresnel zone plate
CN111238363B (en) * 2018-11-28 2021-09-07 中国科学院光电技术研究所 Multi-wave radial shearing interferometer based on Fresnel zone plate

Similar Documents

Publication Publication Date Title
US5004348A (en) Alignment device
US5347356A (en) Substrate aligning device using interference light generated by two beams irradiating diffraction grating
JPH04225212A (en) Projection aligner
JPH01107102A (en) Optical automatic positioning apparatus
JP3428705B2 (en) Position detecting device and method of manufacturing semiconductor device using the same
JP2808619B2 (en) Positioning apparatus, exposure apparatus, and element manufacturing method
JPH08191043A (en) Alignment method and exposure system used for this method
JP3221057B2 (en) Alignment device
JPS62229942A (en) Optical positioning device
EP0397530B1 (en) Alignment apparatus
JPH11154645A (en) Scan type aligner and method thereof
JPH0295203A (en) Aligning device
JP3085292B2 (en) Scanning exposure equipment
JPH0548932B2 (en)
JP3713355B2 (en) Position measuring device
JPH06147827A (en) Positional shift detecting method
JP2683409B2 (en) Positioning device
JP2883385B2 (en) Alignment method and their devices
JP2862307B2 (en) Position shift detection method
KR900005639B1 (en) Method and apparatus for setting a gap between first and second objects
JPH06105679B2 (en) Exposure equipment
JPS63177004A (en) Method for detecting positional shift of mask and wafer
JP2874909B2 (en) Method and apparatus for aligning first and second objects
JP3513304B2 (en) Position shift detection method and semiconductor device manufacturing method using the same
JPH0365603A (en) Method of aligning position