JPS6074682A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPS6074682A
JPS6074682A JP18271583A JP18271583A JPS6074682A JP S6074682 A JPS6074682 A JP S6074682A JP 18271583 A JP18271583 A JP 18271583A JP 18271583 A JP18271583 A JP 18271583A JP S6074682 A JPS6074682 A JP S6074682A
Authority
JP
Japan
Prior art keywords
film
region
semiconductor
semiconductor device
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP18271583A
Other languages
Japanese (ja)
Other versions
JPH056345B2 (en
Inventor
Hajime Sasaki
元 佐々木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP18271583A priority Critical patent/JPS6074682A/en
Publication of JPS6074682A publication Critical patent/JPS6074682A/en
Publication of JPH056345B2 publication Critical patent/JPH056345B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Electrodes Of Semiconductors (AREA)

Abstract

PURPOSE:To contrive to improve the integration degree by enabling the formation of a sub-micron electrode by a method wherein gate, source, and drain electrodes are formed by self-alingnment. CONSTITUTION:After the part scheduled for element isolation region of a p type Si sibstrate 11 is selectively removed by etching, the element isolation region 12 is formed by filling the removed part with SiO2. A polycrystalline Si film is formed at the gate-scheduled part in a resist pattern, and thereafter the Si film and a thermal oxide film are slectively removed, resulting in the formation of a polycrystalline Si pattern 14 with both ends extending on the region 12 via gate oxide film 13 at an island form region. Next, walls 16 made of SiO2 are formed only on the side surfaces of the pattern 14 and the oxide film 13 by etching of an SiO2 film 15 by RIE. After evaporation of an Al film over the entire surface, the Al film on the walls 16 and 16 is lifted off by removal of the wall 16; thereby isolating the Al film. The isolated Al film is patterned, and accordingly an Al gate electrode 23 crossing over the gate oxide film, a source take-out Al electrode 24 connected to the source region 20, and a drain take-out Al electrode 25 connected to the drain region 21 are formed.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は半導体装置の製造方法に関し、特に電極形成工
程を改良した半導体装置の製造方法に係る。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a method for manufacturing a semiconductor device, and particularly to a method for manufacturing a semiconductor device in which an electrode forming process is improved.

〔発明の技術的背景〕[Technical background of the invention]

従来、MO8型半導体装置は次のような方法により製造
されている。
Conventionally, MO8 type semiconductor devices have been manufactured by the following method.

まず、側えばp型シリコン基板1の素子分離領域予定部
を選択的に除去し、この除去部にS t 02等の絶縁
物を埋め込んで素子分離領域2を形成する。つづいて、
素子分離領域2で分離された基板1の島状領域に熱酸化
膜を形成し、該熱酸化膜上に多結晶シリコンからなるr
−計電極3を形成した後、該電極3をマスクとして熱酸
化膜を選択的にエツチングしてダート酸化膜4を形成す
る。ひきつづき、ダート電極3及び素子分離領域2をマ
スクとしてn型不純物、例えば砒素を基板1にドーピン
グしてn型のソース、ドレイン領域5,6を形成する。
First, a portion of the p-type silicon substrate 1 where the element isolation region is to be formed is selectively removed, and an insulator such as S t 02 is buried in the removed portion to form the element isolation region 2 . Continuing,
A thermal oxide film is formed on the island-like region of the substrate 1 separated by the element isolation region 2, and a layer made of polycrystalline silicon is formed on the thermal oxide film.
- After forming the meter electrode 3, the thermal oxide film is selectively etched using the electrode 3 as a mask to form a dirt oxide film 4. Subsequently, using the dirt electrode 3 and the element isolation region 2 as a mask, the substrate 1 is doped with an n-type impurity, such as arsenic, to form n-type source and drain regions 5 and 6.

次いで、全面に5102膜7を堆積し、コンタクトホー
ル8・・・を開孔した後、全面にAt膜を蒸着し、i4
ターニングして前記ソース、ドレイン領域5,6とコン
タクトホール8,8を介して接続したAt取出し電極9
,10を形成し、MO8型半導体装置を製造する(第1
図図示)。こうした方法によれば、f−)電極3とソー
ス、ドレイン領域5,6との合せ余裕が不粟となるため
、高集積化が可能となる。
Next, after depositing a 5102 film 7 on the entire surface and opening contact holes 8..., an At film is deposited on the entire surface, and an i4
At extraction electrodes 9 are turned and connected to the source and drain regions 5 and 6 through contact holes 8 and 8.
, 10 to manufacture an MO8 type semiconductor device (first
(Illustrated) According to this method, the alignment margin between the f-) electrode 3 and the source and drain regions 5 and 6 is reduced, so that high integration is possible.

〔背景技術の問題点〕[Problems with background technology]

しかしながら、上述した従来法にあってはソース、ドレ
イン領域5,6とAt取出し電極9゜10との接続を図
るためのコンタクトホールの形成に際し、マスク合せが
必要となり、十分な合せ余裕が必要となる。このため、
素子の微細化が進行すると、合せ余裕が十分にとれなく
なるので、コンタクトホールがソース領域とダート電極
とに亘って形成されたりしてソース、ダート間短絡を招
く。したがって、フォトエツチング技術を使用してのソ
ース、ドレインのAt取出し電極の形成が困難となる。
However, in the conventional method described above, mask alignment is required when forming contact holes for connecting the source and drain regions 5 and 6 to the At extraction electrodes 9 and 10, and sufficient alignment margin is required. Become. For this reason,
As device miniaturization progresses, sufficient alignment margins are no longer available, and a contact hole may be formed across the source region and the dirt electrode, resulting in a short circuit between the source and the dirt. Therefore, it becomes difficult to form At extraction electrodes for the source and drain using photoetching technology.

〔発明の目的〕[Purpose of the invention]

本発明はセルファラインでダート電極と、ソース、ドレ
イン電極を形成することにより、サラミクロンの電極形
成が可能な高集積度の半導体装置を製造し得る方法を提
供しようとするものである。
The present invention aims to provide a method for manufacturing a highly integrated semiconductor device capable of forming Saramicron electrodes by forming dirt electrodes, source and drain electrodes using Selfa lines.

〔発明の概要〕[Summary of the invention]

本発明は第1導電型の半導体基板もしくは半導体層に素
子分離領域を形成する工程と、この素子分離領域で分離
された半導体基板もしくは半導体層の島状領域にダート
絶縁膜を介して両端が素子分離領域上に延びる被膜ノ9
ターンを選択的に形成する工程と、この被膜・奢ターン
の側面のみに該パターンに対して選択エツチング性を有
する壁体を形成した後、該i9ターン及び壁体をマスク
として第2導電型の不純物を半導体基板もしくは半導体
層にドーピングして第2導電型の半導体領域を形成する
工程と、前記被膜・母ターン及び露出した半導体領域の
一部をエツチング除去して半導体基板もしくは半導体層
に溝部を形成すると共に、前記壁体を残存させる工程と
、全面に金属膜もしくは金属シリサイド5− 膜を堆積した後、残存壁体を除去してその上の金属又は
金属シリサイドをリフトオフすることにより電極を形成
する工程とを具備したことを特徴とするものである。こ
うした本発明によれば、ダート電極と上面に溝部が作ら
れたソース、ドレイン領域とをセルファラインで形成で
きると共に、f−計電極とソース、ドレイン電極とをセ
ルファラインで形成でき、高集積度の半導体装置を簡単
に製造できる。
The present invention includes a step of forming an element isolation region in a semiconductor substrate or a semiconductor layer of a first conductivity type, and an island-like region of the semiconductor substrate or semiconductor layer separated by the element isolation region, with a dirt insulating film interposed between both ends of the element. Coating 9 extending over the separation area
After the step of selectively forming turns and forming a wall having selective etching properties with respect to the pattern only on the side surface of this film/detailed turn, a second conductivity type is etched using the i9 turn and wall as a mask. A step of doping the semiconductor substrate or semiconductor layer with an impurity to form a second conductivity type semiconductor region, and etching away the film/mother turn and a part of the exposed semiconductor region to form a groove in the semiconductor substrate or semiconductor layer. At the same time, a step of leaving the wall remains, and after depositing a metal film or metal silicide film on the entire surface, removing the remaining wall and lifting off the metal or metal silicide thereon, forming an electrode. The method is characterized by comprising a step of: According to the present invention, the dirt electrode and the source and drain regions with grooves formed on the upper surface can be formed using the Selfa line, and the f-meter electrode and the source and drain electrodes can be formed using the Selfa line, allowing for high integration. semiconductor devices can be easily manufactured.

〔発明の実施例〕[Embodiments of the invention]

次に、本発明をnチャンネルMO8)ランジスタの製造
に適用した側について第2図(、)〜(e)を参照して
説明する。
Next, the application of the present invention to the manufacture of an n-channel MO8) transistor will be explained with reference to FIGS. 2(a) to 2(e).

■ まず、p型シリコン基板1ノの素子分離領域予定部
を選択的にエツチング除去した後、除去部に5tO2を
埋め込んで素子分離領域12を形成した。つづいて、熱
酸化処理を施して素子分離領域12で分離された基板1
1の島状領域に熱酸化膜を成長させた後、全面に多結晶
シリコン膜を堆積した。ひきつづき、多結晶シリコ6− ン膜をダート予定部に写真蝕刻法によりレジストパター
ン(図示せず)を形成した後、該レジストパターンをマ
スクとして多結晶シリコン膜及び熱酸化膜をリアクティ
ブイオンエツチング(RIE )によシ選択的に除去し
て前記島状領域にダート酸化膜13を介して両端が前記
素子分離領域12上に延びる多結晶シリコンパターン1
4を形成した。この後レジスト・!ターンを除去し、更
に全面にCVD法により厚さaooolの810□膜1
5を堆積した(第2図(&)図示)。
(2) First, a portion of the p-type silicon substrate 1 where an element isolation region was to be formed was selectively removed by etching, and then 5tO2 was filled in the removed portion to form an element isolation region 12. Next, the substrate 1 is separated by the element isolation region 12 by thermal oxidation treatment.
After growing a thermal oxide film on the island-like region 1, a polycrystalline silicon film was deposited on the entire surface. Subsequently, a resist pattern (not shown) is formed in the area where the polycrystalline silicon film is to be darted by photolithography, and then the polycrystalline silicon film and the thermal oxide film are subjected to reactive ion etching (reactive ion etching) using the resist pattern as a mask. A polycrystalline silicon pattern 1 is selectively removed by RIE) to form a polycrystalline silicon pattern 1 in the island region with both ends extending above the element isolation region 12 via a dirt oxide film 13.
4 was formed. After this, resist! After removing the turns, an 810□ film 1 with a thickness of aooool is formed on the entire surface by CVD method.
5 was deposited (as shown in FIG. 2).

(11)次いで、RIEにより5102膜15をエツチ
ングして多結晶シリコンミ9ターン14及びダート酸化
膜13の側面のみに5102からなる壁体16を形成し
た。つづいて、素子分離領域12、多結晶クリコンパタ
ーン14及び壁体16をマスクとしてn型不純物、例え
ば砒素を基板11の露出した島状領域にイオン注入した
後、熱処理を施してn型の拡散領域17.IIIを形成
した(第2図(b)図示)。
(11) Next, the 5102 film 15 was etched by RIE to form a wall 16 made of 5102 only on the side surfaces of the polycrystalline silicon mi9 turns 14 and the dirt oxide film 13. Next, using the element isolation region 12, the polycrystalline crystal pattern 14, and the wall 16 as masks, an n-type impurity, such as arsenic, is ion-implanted into the exposed island region of the substrate 11, and then heat treatment is performed to form an n-type diffusion region. 17. III was formed (as shown in FIG. 2(b)).

(iii )次いで、RIEにより多結晶シリコンパタ
ーン14がなくなるまでエツチングした。この時、露出
したn型拡散領域17.18の表面がエツチングされて
溝部191,192が形成されると共に、残存したn型
拡散領域によりソース、ドレイン領域20.21が形成
された。同時に塀状に突出した壁体16が残存した(第
2図(c)図示)。
(iii) Next, etching was performed by RIE until the polycrystalline silicon pattern 14 disappeared. At this time, the surfaces of the exposed n-type diffusion regions 17 and 18 were etched to form grooves 191 and 192, and the remaining n-type diffusion regions formed source and drain regions 20 and 21. At the same time, a wall 16 projecting like a wall remained (as shown in FIG. 2(c)).

(iV) 次いで、全面にAt膜を蒸着した。この時、
第2図(d)に示す如く、At膜22は突出した壁体1
6上にも蒸着され、該壁体16を境に溝部19、.19
2上のAt膜22とダート酸化膜13上のkl膜22と
が分離された。つづいて、壁体16を除去してその壁体
16,16上のA/−膜をリフトオフすることにより、
壁体16゜16を境にしてAt膜を分離した後、分離さ
れたA/=膜をノJ?ターニングしてダート酸化膜13
上を横切るA/1.ダート電極23.ソース領域20と
接続したソース取出しAt電極24及びドレイン領域2
1と接続したドレイン取出しAt電極25を形成した。
(iv) Next, an At film was deposited on the entire surface. At this time,
As shown in FIG. 2(d), the At film 22 is attached to the protruding wall 1.
6, and grooves 19, . 19
The At film 22 on the dirt oxide film 13 and the KL film 22 on the dirt oxide film 13 were separated. Subsequently, by removing the wall 16 and lifting off the A/- film on the wall 16, 16,
After separating the At film along the wall 16°16, the separated A/=film is Turning and dirt oxide film 13
A/1 across the top. Dart electrode 23. Source extraction At electrode 24 and drain region 2 connected to source region 20
A drain lead-out At electrode 25 connected to 1 was formed.

この後、全面にSi3N4から々るパッシベーション膜
26を堆積してnチャンネルMO8)ランジスタを形成
した(第2図(、)図示)。
Thereafter, a passivation film 26 made of Si3N4 was deposited on the entire surface to form an n-channel MO8 transistor (as shown in FIG. 2(a)).

しかして、本発明によればダート電極予定部に位置する
多結晶シリコン・ぐターン14及び壁体16をマスクと
して砒素のイオン注入を行なうことにより、その後に多
結晶シリコンパターン14を含む領域にr−)電極23
を形成した場合、該ダート電極23とn型のソース、ド
レイン領域20.21とをセルファラインで形成できる
。また、ダート電極予定部の両側に残存させた壁体16
.16をリフトオフ材として利用してAt膜22を分離
するため、ソース、ドレインの取出しAt電極24.2
5とAtダート電極23とをセルファラインで形成でき
る。この場合、Atダート電極23と取出しAt電極2
4゜25の間の距離を壁体ie、ieの幅でコントロー
ルできるため、Atゲート電極23とソースドレインの
コンタクトホールの距離を数千久と短縮できる。したが
って、高集積度のnチャンネルMO8)ランジスタを製
造できる。
According to the present invention, by implanting arsenic ions using the polycrystalline silicon pattern 14 and wall body 16 located in the planned dirt electrode portion as a mask, the region including the polycrystalline silicon pattern 14 is then irradiated. -) Electrode 23
In this case, the dirt electrode 23 and the n-type source and drain regions 20.21 can be formed by self-alignment. In addition, the wall bodies 16 left on both sides of the planned dirt electrode part
.. 16 as a lift-off material to separate the At film 22, the source and drain At electrodes 24.2
5 and the At dirt electrode 23 can be formed by self-alignment. In this case, the At dirt electrode 23 and the extraction At electrode 2
Since the distance between 4.degree. Therefore, a highly integrated n-channel MO8) transistor can be manufactured.

9− また、第2図(b) 、 (e)に示す如く多結晶シリ
コンノ’?ターン14、壁体16.16をマスクとして
シリコン基板11にn型拡散領域17,1Bを形成した
後、その拡散領域17.18f表面をエツチングして上
面に溝部191.192を有するソース、ドレイン領域
20.21を形成するため、At取出し電極24.25
とソース、ドレイン領域20.21との接触面積を大き
くでき、ひいてはソース、ドレイン領域を微細化して高
集積化を図る場合でも、良好な接続が可能となる。
9- Also, as shown in FIGS. 2(b) and (e), polycrystalline silicon? After forming n-type diffusion regions 17 and 1B in the silicon substrate 11 using the turn 14 and the walls 16 and 16 as masks, the surfaces of the diffusion regions 17 and 18f are etched to form source and drain regions having grooves 191 and 192 on the upper surface. 20.21, At extraction electrodes 24.25
The contact area between the source and drain regions 20 and 21 can be increased, and even when the source and drain regions are miniaturized to achieve high integration, good connection is possible.

なお、上記実施例において素子分離領域の形成前に該領
域に対応する箇所に基板と同導電型の不純物をドーピン
グして反転防止層を形成してもよい。
Note that in the above embodiment, before forming the element isolation region, an inversion prevention layer may be formed by doping an impurity of the same conductivity type as the substrate at a location corresponding to the region.

上記実施例ではダート電極予定部に多結晶シリコン・ン
ターンを形成したが、これに代って非晶質シリコンパタ
ーン等壁体に対して選択エツチング性を有する材料のパ
ターンならいかなるものを用いてもよい。
In the above embodiment, a polycrystalline silicon pattern was formed in the dirt electrode planned portion, but any pattern made of a material that has selective etching properties with respect to the wall body, such as an amorphous silicon pattern, may be used instead. good.

10− 上記実施例では電極としてAtを用いたが、これに代っ
てAt −St 、 At−Cu 、 At−81−C
uなどのA/=合金やTi lW r Mo + Ta
などの高融点金属、モリブデンシリサイド、タングステ
ンシリサイド、タンタルシリサイドなどの高融点金属シ
リサイドを用いてもよい。
10- In the above examples, At was used as the electrode, but instead of At-St, At-Cu, At-81-C
A/= alloy such as u or TiW r Mo + Ta
High melting point metals such as molybdenum silicide, tungsten silicide, tantalum silicide, and other high melting point metal silicides may also be used.

本発明は上記実施例の如きn−チャンネルMO8)ラン
ジスタの製造のみに限らず、pチャンネルMO8)ラン
ジスタ、0MO8等の製造にも同様に適用できる。また
、ノマルクシリコン上にMOS )ランジスタを製造す
る場合に限らず、SO8等の半導体膜上にMOS )ラ
ンジスタを製造してもよい。
The present invention is applicable not only to the manufacture of n-channel MO8) transistors as in the above embodiments, but also to the manufacture of p-channel MO8) transistors, 0MO8 transistors, etc. Furthermore, the present invention is not limited to manufacturing a MOS transistor on normal silicon, but may also be manufactured on a semiconductor film such as SO8.

〔発明の効果〕〔Effect of the invention〕

以上詳述した如く、本発明はダート電極とソース、ドレ
イン領域とをセルファラインで形成できると共に、ダー
ト電極とソース、ドレイン電極をセルファラインで形成
できることによシサブミクロンの電極形成が可能な高集
積度の半導体装置を製造し得る方法を提供できる。
As described in detail above, the present invention has a high degree of integration that allows formation of submicron electrodes by forming dirt electrodes and source and drain regions using self-aligned lines, and by forming dirt electrodes and source and drain electrodes using self-aligned lines. A method for manufacturing a semiconductor device can be provided.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来法により製造されたnチャンネルMO8)
ランジスタの断面図、第2図(、)〜(、)は本発明の
実施例におけるnチャンネルMO8)ランジスタの製造
工程を示す断面図である。 11・・・p型シリコン基板、12・・・素子分離領域
、13・・・ダート酸化膜、14・・・多結晶シリコン
パターン、16・・・壁体、17.18・・・n型拡散
領域、191.19.・・・溝部、20・・・n+型ソ
ースi域、21・・・層型ドレイン領域、23・・・A
tダート電極、24.25・・・取出しAt電極。
Figure 1 shows an n-channel MO8 manufactured by the conventional method)
Cross-sectional views of transistors FIGS. 2(,) to (,) are cross-sectional views showing the manufacturing process of an n-channel MO8) transistor in an embodiment of the present invention. DESCRIPTION OF SYMBOLS 11... P-type silicon substrate, 12... Element isolation region, 13... Dirt oxide film, 14... Polycrystalline silicon pattern, 16... Wall body, 17.18... N-type diffusion Area, 191.19. ...Groove portion, 20...N+ type source i region, 21...Layered drain region, 23...A
t dirt electrode, 24.25... take-out At electrode.

Claims (5)

【特許請求の範囲】[Claims] (1)第1導電型の半導体基板もしくは半導体層に素子
分離領域を形成する工程と、この素子分離領域で分離さ
れた半導体基板もしくは半導体層の島状領域にダート絶
縁膜を介して両端が素子分離領域上に延びる被膜パター
ンを選択的に形成する工程と、この被膜ノ4ターンの側
面のみに該ノfターンに対して選択エツチング性を有す
る壁体を形成した後、該パターン及び壁体をマスクとし
て第2導電型の不純物を半導体基板もしくは半導体層に
ドーピングして第2導電の半導体領域を形成する工程と
、前記被膜パターン及び露出した半導体領域の一部をエ
ツチング除去して半導体基板もしくは半導体層に溝部を
形成すると共に、前記壁体を残存させる工程と、全面に
金属膜又は金属シリサイド膜を堆積した後、残存壁体を
除去してその上の金属又は金属シリサイドをリフトオン
することにより電極の形成を行なう工程とを具備したこ
とを特徴とする半導体装置の製造方法。
(1) A step of forming an element isolation region in a semiconductor substrate or a semiconductor layer of a first conductivity type, and an island-shaped region of the semiconductor substrate or semiconductor layer separated by this element isolation region is connected to an element at both ends via a dirt insulating film. After selectively forming a film pattern extending over the separation region and forming a wall body having selective etching properties with respect to the f-turns only on the side faces of the fourth turn of the film, the pattern and the wall body are A step of doping a semiconductor substrate or a semiconductor layer with a second conductivity type impurity as a mask to form a second conductivity semiconductor region, and etching away a portion of the film pattern and the exposed semiconductor region to form a semiconductor substrate or semiconductor layer. The electrode is formed by forming a groove in the layer and leaving the wall, and after depositing a metal film or metal silicide film on the entire surface, removing the remaining wall and lifting the metal or metal silicide thereon. 1. A method for manufacturing a semiconductor device, comprising the step of forming a semiconductor device.
(2) 非単結晶シリコンパターンが多結晶シリコンパ
ターンであることを特徴とする特許請求の範囲第1項記
載の半導体装置の製造方法。
(2) The method for manufacturing a semiconductor device according to claim 1, wherein the non-monocrystalline silicon pattern is a polycrystalline silicon pattern.
(3)壁体力CvD−8iO2又はS i 、N4から
なることを特徴とする特許請求の範囲第1項記載の半導
体装置の製造方法。
(3) Wall strength The method for manufacturing a semiconductor device according to claim 1, characterized in that it is made of CvD-8iO2, Si, or N4.
(4)金属膜がTi膜、 Mo膜、W膜、 Ta膜。 At合金膜であることを特徴とする特許請求の範囲第1
項記載の半導体装置の製造方法。
(4) The metal film is a Ti film, Mo film, W film, or Ta film. Claim 1 characterized in that it is an At alloy film.
A method for manufacturing a semiconductor device according to section 1.
(5)金属シリサイド膜がチタンシリサイド膜。 モリブデンシリサイド膜、タングステンシリサイド膜、
タンタルシリサイド膜であることを特徴とする特許請求
の範囲第1項記載の半導体装置の製造方法。
(5) The metal silicide film is a titanium silicide film. Molybdenum silicide film, tungsten silicide film,
2. The method of manufacturing a semiconductor device according to claim 1, wherein the semiconductor device is a tantalum silicide film.
JP18271583A 1983-09-30 1983-09-30 Manufacture of semiconductor device Granted JPS6074682A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18271583A JPS6074682A (en) 1983-09-30 1983-09-30 Manufacture of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18271583A JPS6074682A (en) 1983-09-30 1983-09-30 Manufacture of semiconductor device

Publications (2)

Publication Number Publication Date
JPS6074682A true JPS6074682A (en) 1985-04-26
JPH056345B2 JPH056345B2 (en) 1993-01-26

Family

ID=16123166

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18271583A Granted JPS6074682A (en) 1983-09-30 1983-09-30 Manufacture of semiconductor device

Country Status (1)

Country Link
JP (1) JPS6074682A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61292678A (en) * 1985-06-21 1986-12-23 株式会社日立製作所 Display controller
US5051805A (en) * 1987-07-15 1991-09-24 Rockwell International Corporation Sub-micron bipolar devices with sub-micron contacts
JPH04278385A (en) * 1991-03-07 1992-10-02 Oji Paper Co Ltd Thermal recording material

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5379378A (en) * 1976-12-23 1978-07-13 Matsushita Electric Ind Co Ltd Semoconductor davice and its production
JPS58130569A (en) * 1982-01-28 1983-08-04 Toshiba Corp Manufacture of semiconductor device
JPS58158972A (en) * 1982-03-16 1983-09-21 Toshiba Corp Manufacture of semiconductor device
JPS58162064A (en) * 1982-03-23 1983-09-26 Nippon Telegr & Teleph Corp <Ntt> Manufacture of semiconductor device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5379378A (en) * 1976-12-23 1978-07-13 Matsushita Electric Ind Co Ltd Semoconductor davice and its production
JPS58130569A (en) * 1982-01-28 1983-08-04 Toshiba Corp Manufacture of semiconductor device
JPS58158972A (en) * 1982-03-16 1983-09-21 Toshiba Corp Manufacture of semiconductor device
JPS58162064A (en) * 1982-03-23 1983-09-26 Nippon Telegr & Teleph Corp <Ntt> Manufacture of semiconductor device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61292678A (en) * 1985-06-21 1986-12-23 株式会社日立製作所 Display controller
US5051805A (en) * 1987-07-15 1991-09-24 Rockwell International Corporation Sub-micron bipolar devices with sub-micron contacts
JPH04278385A (en) * 1991-03-07 1992-10-02 Oji Paper Co Ltd Thermal recording material

Also Published As

Publication number Publication date
JPH056345B2 (en) 1993-01-26

Similar Documents

Publication Publication Date Title
JP2804539B2 (en) Semiconductor device and manufacturing method thereof
JPH05206451A (en) Mosfet and its manufacture
JP2675713B2 (en) Semiconductor device and manufacturing method thereof
JP3450262B2 (en) Circuit manufacturing method and circuit device
JPH04348077A (en) Thin-film transistor
JPS5846193B2 (en) semiconductor equipment
JPS6074682A (en) Manufacture of semiconductor device
JPH06333944A (en) Semiconductor device
JPS59195870A (en) Semiconductor device
JPH10144918A (en) Semiconductor device and its manufacturing method
JP2971085B2 (en) Method for manufacturing semiconductor device
JPH08181223A (en) Manufacture of semiconductor device
JP3037100B2 (en) Method for manufacturing semiconductor device
JPH05218439A (en) Semiconductor device and manufacture thereof
JP2870131B2 (en) Method for manufacturing semiconductor device
JPH06132292A (en) Semiconductor device and manufacture thereof
JPH10284438A (en) Semiconductor integrated circuit and its manufacture
JPS60120570A (en) Manufacture of semiconductor device
JPH0290569A (en) Manufacture of semiconductor device
JPH0113230B2 (en)
JPS5975653A (en) Manufacture of semiconductor integrated circuit device
JPH02201932A (en) Mos field-effect transistor with high withstand voltage
JPH03175676A (en) Semiconductor device
JPS61185974A (en) Manufacture of semiconductor device
JPS5810857A (en) Complementary type mos semiconductor device