JPS6074272A - Manufacture of fused carbonate type fuel cell - Google Patents

Manufacture of fused carbonate type fuel cell

Info

Publication number
JPS6074272A
JPS6074272A JP58180615A JP18061583A JPS6074272A JP S6074272 A JPS6074272 A JP S6074272A JP 58180615 A JP58180615 A JP 58180615A JP 18061583 A JP18061583 A JP 18061583A JP S6074272 A JPS6074272 A JP S6074272A
Authority
JP
Japan
Prior art keywords
layer
sintered body
nickel
electrode
porous sintered
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP58180615A
Other languages
Japanese (ja)
Other versions
JPH02822B2 (en
Inventor
Yoichi Seta
瀬田 曜一
Kenji Murata
謙二 村田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP58180615A priority Critical patent/JPS6074272A/en
Publication of JPS6074272A publication Critical patent/JPS6074272A/en
Publication of JPH02822B2 publication Critical patent/JPH02822B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/88Processes of manufacture
    • H01M4/8878Treatment steps after deposition of the catalytic active composition or after shaping of the electrode being free-standing body
    • H01M4/8882Heat treatment, e.g. drying, baking
    • H01M4/8885Sintering or firing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/8605Porous electrodes
    • H01M4/8621Porous electrodes containing only metallic or ceramic material, e.g. made by sintering or sputtering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/88Processes of manufacture
    • H01M4/8825Methods for deposition of the catalytic active composition
    • H01M4/8853Electrodeposition
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M2004/8678Inert electrodes with catalytic activity, e.g. for fuel cells characterised by the polarity
    • H01M2004/8689Positive electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/14Fuel cells with fused electrolytes
    • H01M2008/147Fuel cells with molten carbonates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0048Molten electrolytes used at high temperature
    • H01M2300/0051Carbonates
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

PURPOSE:To obtain a captioned cell whose preset performance can be obtained in a short time and whose characteristic deterioration hardly occurs with a variation per hour by forming an Li containing metal hydroxide layer on the surface of a porous sintering body and converting it to an oxide layer, then forming an oxydizing agent electrode. CONSTITUTION:A metal hydroxide layer such as nickel hydoxide that contains Li is formed on the surface of a porous sintering body made of conductive metal material such as Ni by the electrochemical method. Then the layer is electrolytically oxidized and is converted to an oxide layer such as nickel oxide that contains Li to obtain an oxidizing agent electrode. A unit cell is formed by inserting a fused carbonate electrolytic layer between this oxidizing agent electrode and a fuel electrode. Since the oxide layer of this unit cell excellently diffuses Li and has high electronic conductivity and high elasticity there hardly occurs exfoliation in thermal stress at temperature rise. As a result, a fused carbonate type fuel cell with ever-stable performance can be manufactured.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は、経時的な特性劣化が少なく、長期に亙って安
定した出力特性を得ることかできるようにした溶融炭酸
症型燃料電池の製造方法に関する。
[Detailed Description of the Invention] [Technical Field of the Invention] The present invention relates to the production of a molten carbonation fuel cell that exhibits little deterioration of characteristics over time and can obtain stable output characteristics over a long period of time. Regarding the method.

〔発明の技術的背景とその問題点] 従来、高能率のエネルギー変換装置mとして燃料電池が
広く知られている。燃yet電池は、使用する電解質に
よって、リン酸塩型、溶ハ1!疾酸塩型、固体電解質型
に分類される。なかでも、溶融炭酸塩型燃料電池は、動
作温度が高いため、電極反応が起り易く、高価な貴金属
触媒を必要どしないこと、まlこ、発電熱効率が高いこ
となどの大きな特徴をイラしている。
[Technical background of the invention and its problems] Fuel cells have been widely known as a highly efficient energy conversion device m. Depending on the electrolyte used, combustion batteries can be of the phosphate type or molten metal. It is classified into salt type and solid electrolyte type. Among these, molten carbonate fuel cells have major characteristics such as high operating temperature, easy electrode reactions, no need for expensive precious metal catalysts, high heat generation efficiency, and high operating temperature. There is.

溶削;炭酸塩型燃斜電池は、対向配置された一対の多孔
質電極板、づなわら、酸化剤極および燃わ1通常、イン
タコネクタを介して複数積層して構成′1 ・ぎれている。そして、運転時においては、上記アルカ
リ虜酸塩を600〜700℃の高温下で溶融状態にし、
この炭酸」ハと、各電極板に1+7. fiりされた酸
化剤ガスおよび燃斜刀スとを反応ざlIC’ 電気化学
的プロセスによ・)で、直流出力を1!7るJ、う(、
ニしている。
Cutting: A carbonate-type fuel combustion battery consists of a pair of porous electrode plates placed opposite each other, a wire, an oxidizer electrode, and a burner electrode. . During operation, the alkali caprate is molten at a high temperature of 600 to 700°C,
Add this carbonic acid and 1+7 to each electrode plate. The reacted oxidant gas and the combustion gas are reacted by an electrochemical process to produce a DC output of 1.7%.
I'm doing it.

ところで、このような溶融M酸塙型燃利電池から常に安
定した出ツノ電流を得るためには、少41′<ども酸化
剤極が以下の条f1を渦だしくいることが必要とされる
。すなわち、 ■導電性が高いこと、 ■炭酸塩と、酸化剤カスとか存在する高)品−トにおい
て、炭酸塩に胃されにくいこと、 ■負な止剤カスと、溶融炭酸塩と、電極との、気相−液
相−同相の共存する、いわゆる3相W而が多く、酸素の
還元反応がスムース゛に進〒1し、また酸化剤ガスの供
給と生成きれる炭酸イオンの除去がスムースに行なえる
ように、孔径b・〜10μTI+、空孔率60−ε30
%の多孔質形状を形成しjI?ること、 。5、■燃料電池の稼動−停止時のリーマルリイクル・
、j に、!伴う電解質層の熱膨張率と電極の熱膨張率との差
に起因した熱応力によって、多孔質構造か破壊されない
強度を有づること、 上記の条件を損わせないことも必要である。
By the way, in order to always obtain a stable output current from such a molten M acid bunker type fuel cell, it is necessary that the oxidizer electrode swirls the following lines f1. . In other words, 1) it has high conductivity, 2) it is difficult to be digested by carbonate in high-grade products that contain carbonate and oxidizing agent scum, and 2) it is difficult to absorb negative inhibitor scum, molten carbonate, and electrodes. There are many so-called 3-phase W where the gas phase, liquid phase, and same phase coexist, so that the oxygen reduction reaction proceeds smoothly, and the supply of oxidizing gas and the removal of the carbonate ions that are generated can be carried out smoothly. As shown, pore diameter b・~10μTI+, porosity 60−ε30
Form a porous shape of %jI? That. 5. ■ Fuel cell operation - normal recycle when stopped
,j to,! It is also necessary that the porous structure has a strength that will not be destroyed by thermal stress caused by the difference between the coefficient of thermal expansion of the electrolyte layer and the coefficient of thermal expansion of the electrode, and that the above conditions are not impaired.

、1このような要求を満たづため、従来の酸化剤極伝導
性に優れたニラクル金属を用い、このニツク−ル金属の
粒径2−10μmの粉末、望J、しくはアスペク1〜(
粒子の長さ対直径の比)が2〜5の粉末と、結着剤等と
を混合してスラリーを生成り−る。
, 1 In order to meet such requirements, a conventional nickel metal with excellent oxidizing electrode conductivity is used, and powder of this nickel metal with a particle size of 2 to 10 μm, Desired J or Aspect 1 to (
A slurry is produced by mixing a powder having a particle length-to-diameter ratio of 2 to 5 with a binder and the like.

このスラリーをステンレス鋼製の金網またはエキスパン
デッドシー1〜に塗布した後、これを水素ガスを含む雰
囲気中において850〜950 ’Cで焼結し、平均空
孔孔径か8=10μ次の多孔質焼結体を形成づる。この
多孔質焼結体を仮の酸化剤極どして、炭酸リヂウムおよ
び炭酸カリウムの混合粉末を加圧成形して1qた電解質
板と、Ni−Cr合金粉末の多孔質Vl結体からなる燃
第1忰ど其に″面池内に組込む。そして、この電池を6
C’) O−700℃で作動させることによって、酸化
剤極のニッケル表面に酸化物層を形成し、これと同時に
電解質に含有されたリヂウム成分を」二記酸化物層へ拡
散させる。これにより、酸化物層の導電性かmf(尿I リチェーション」と呼ぶことC=刀る、。
After applying this slurry to a stainless steel wire mesh or expanded sea 1~, it is sintered at 850~950'C in an atmosphere containing hydrogen gas to form a porous material with an average pore diameter of 8 = 10μ. Form a sintered body. This porous sintered body was used as a temporary oxidizing agent electrode, and a fuel consisting of an electrolyte plate made by press-molding 1q of mixed powder of lithium carbonate and potassium carbonate, and a porous Vl aggregate of Ni-Cr alloy powder Insert the battery into the first battery.
C') By operating at O-700°C, an oxide layer is formed on the nickel surface of the oxidizer electrode, and at the same time, the lithium component contained in the electrolyte is diffused into the oxide layer. This increases the conductivity of the oxide layer, which is called mf (conductivity).

しかしなから、このJン)な方法によ・〉C’ N n
k化止剤を形成すると、酸化が行われる際に、電(4シ
の厚めが増大し、燃料電池昇温後に、インク−1ネ′ツ
タ端部と、電解質層の端部ど1.=形成さ411;、い
わゆるウエツ1〜シール部の気密1!Iを低トさせ、反
fi、1カスの漏洩を生しさせることかあ)だ。このI
tめ、この方法により形成された燃わ1電池(よ運転初
期の出力を安定して維持−Cきないという問題があつI
s、しかも、リチェーションが徐々に進むため、賓記f
変100時間程度経過しないと、十分な性能を出ブーこ
とができなかった。
However, this Jn) method...>C' N n
When the oxidation inhibitor is formed, the thickness of the electrolyte (4) increases during oxidation, and after the temperature of the fuel cell is raised, the ink 1' ivy end and the end of the electrolyte layer 1.= Formation 411; may lower the airtightness of the so-called wet 1~seal part and cause leakage of filtrate. This I
Second, the combustion battery formed by this method has the problem of not being able to maintain stable output at the initial stage of operation.
s, moreover, as the renewal progresses gradually, guest notes f
It took about 100 hours to reach full performance.

また、このような製造方法では、酸化とリチェーション
進行時にニッケル金属表面の結晶格子構造が変化し、こ
れに伴い、割れを生じ、0.3〜0.5μ■の微孔か形
成される。この割れ部は、電極の表面積を増し、3相界
面の反応点をjllj t’) 71という観点からは
望ましいが、反面、形成されたhり化物層が剥則しやす
く、また、割れ部に形成された酸化物層は、金属相互の
結合力を弱め、酸化つ式 1、分、1が電極内に取り込まれてしまうので、電解質
の濡れ方が不均一の場合には、均一なリチェーションが
行われないという不具合などもあった、このような、不
具合は、全て経時的に生起されるものであるため、この
種の方法で製造された燃′!A電池は、電池特性の経時
的な劣化をまぬがれ得ない。
In addition, in such a manufacturing method, the crystal lattice structure of the nickel metal surface changes as oxidation and retation proceed, resulting in cracks and the formation of micropores of 0.3 to 0.5 .mu.m. These cracks are desirable from the viewpoint of increasing the surface area of the electrode and increasing the reaction points at the three-phase interface, but on the other hand, the formed hydride layer is likely to peel off, and the cracks may The formed oxide layer weakens the bonding force between metals, and the oxide layer is incorporated into the electrode, so if the electrolyte is unevenly wetted, uniform retation cannot be achieved. There were also problems such as failure to carry out the process.All such problems occur over time, so the fuel produced by this type of method should not be used. Battery A cannot avoid deterioration of battery characteristics over time.

そこで、このような問題点を解決づ−るため;J秤々の
提案がなされている。以下、これらを順に説明する。
Therefore, in order to solve these problems, a proposal for J-balance has been made. These will be explained in order below.

■空気酸化法 前述と同様の方法にでニッケル金@均末からイアる多孔
質焼結体を形成さける。この焼結体を600〜800°
Cの空気中に/i5を置し、ニッケル金属表面にち密な
酸化物層を形成させる。しかる後、水酸化リチウムの水
溶液または炭市りf−ウ/\を、I+(に分散させた液
に浸漬し、乾燥させた後、500−=−750’Cの空
気中で熱処理を施し、リチT−シ]、しかしながら、こ
の様な空気酸化法で得られた( ゛・酸化物層は薄いため、電解質と金属粒子との間の電
場の集中が問題となる。また、酸化物層は、ち密で薄層
であるが故に弾力性に欠(プ、酸化物層が薄いと高温度
状態での酸化物層の熱膨張率とニラクル金属の熱膨張率
との差に起因した応力集中にJ:って、酸化物層が破壊
づることがあった。
■Air oxidation method A porous sintered body is formed from nickel gold powder by the same method as described above. This sintered body is heated at 600~800°
/i5 is placed in the air of C to form a dense oxide layer on the nickel metal surface. After that, an aqueous solution of lithium hydroxide or charcoal f-u/\ was immersed in a liquid dispersed in I+(, dried, and then heat-treated in air at 500-=-750'C, However, since the oxide layer is thin, concentration of the electric field between the electrolyte and the metal particles becomes a problem. Because it is a dense and thin layer, it lacks elasticity (P).If the oxide layer is thin, stress concentration due to the difference between the coefficient of thermal expansion of the oxide layer and the coefficient of thermal expansion of the Niracle metal at high temperatures will occur. J: Well, sometimes the oxide layer was destroyed.

■空気中rVη化すチェーション法 前)!ISと同様の方法にてニッケル金属粉末からなる
多孔質焼結体を形成させる。この焼結体を水酸化リチウ
ムの水溶液または炭酸リチウムを水に含有させた液に浸
漬し、乾燥さけた後、500〜750℃の空気中で熱処
理を施し、酸化処理とリチェーンヨンとを同時に行なう
■Before the Cation method that converts rVη in the air)! A porous sintered body made of nickel metal powder is formed using a method similar to IS. This sintered body is immersed in an aqueous solution of lithium hydroxide or a solution containing lithium carbonate in water, and after avoiding drying, is heat-treated in air at 500 to 750°C to perform oxidation treatment and rechaining at the same time. Let's do it.

しかしながら、この方法ではやはり酸化物層の剥離が生
じ易く、結局、前述の電池内酸化すチェーション法と同
様、電極の機械的強度に劣るという問題があった。
However, this method still tends to cause peeling of the oxide layer, and as with the above-described in-cell oxidation method, there is a problem that the mechanical strength of the electrode is inferior.

■Ni○の焼結法 酸化ニッケルの粉末と、水酸化リチウムまたはづる。こ
のとぎ同時にリチェーションが行なわれる。この多孔質
焼結体を軽く粉砕し、200メツシユの金網を透過し、
かつ300メツシー+17)金網を透過しない関東粉末
のみを集めて加If成形し2、i ooo℃て焼結づ゛
ることにより関東わ)未聞に孔径10〜30μmの孔を
有する多孔冒焼N・+11体の酸化剤極を形成する。こ
れにより、ot化止剤のには0゜3〜111mの微孔が
形成されるの−C,jsζ応部チ、’l (f)面積か
向上し電池特性が向−Lづる1、また、同11’l +
、。
■Ni○ sintering method Nickel oxide powder and lithium hydroxide or silver. At the same time, retation is performed. This porous sintered body was lightly crushed and passed through a 200-mesh wire mesh.
And 300 mesh + 17) Only the Kanto powder that does not pass through the wire mesh is collected, processed and molded, and then sintered at 100°C to produce Kanto powder with unprecedented pore diameters of 10 to 30 μm. - Forms an oxidant electrode of +11 bodies. As a result, micropores of 0°3 to 111 m are formed in the oxidation inhibitor. , same 11'l +
,.

酸化剤極には10−・30 u mの細孔が形成される
ので、電解質が酸化剤カスの通流をト11害づることか
ない。
Since pores of 10-.30 μm are formed in the oxidizer electrode, the electrolyte does not interfere with the flow of oxidant scum.

しかしながら、この様に形成された多孔質焼結体は、1
幾械的強度に劣り、これを増りI、:め(4二焼j−;
温度を向上さぜるど、リヂウム分か逸1)シしC,電極
の導電性か低下づるという不具合だあ−)だ。
However, the porous sintered body formed in this way is
The mechanical strength is poor, and this is increased.
Even if the temperature is raised, the lithium dissipates (1) and the conductivity of the electrode decreases (-).

以上のように、これらどの方法によっCもI−分に必定
てきる酸化剤極を1qることか−(きづ゛、結局、経時
的な特性劣化の少ない溶融炭酸塩型燃料iへ池を実現す
ることができなかった。
As mentioned above, by any of these methods, it is possible to obtain 1 q of oxidizer electrode, which is necessary for C as well as I. could not be realized.

〔発明の目的〕[Purpose of the invention]

本発明はこのような事情を考慮してなされたもので、そ
の目的とするところは、運転開始後、短時間に所定の電
池性能を得ることができ、経時的な特性劣化が少なく、
常に安定した電池性能を得ることかできる溶融炭酸塩型
燃料電池の製造方法を提供づることにある。
The present invention has been made in consideration of these circumstances, and its purpose is to be able to obtain a predetermined battery performance in a short period of time after the start of operation, with little deterioration of characteristics over time,
It is an object of the present invention to provide a method for manufacturing a molten carbonate fuel cell that can always obtain stable cell performance.

〔弁明の概要〕[Summary of defense]

本発明は、導電性金属材料からなる多孔質焼結体の表面
に、電気化学的工程によりリチウムを含イ1づろ水酸化
金属層を形成した後、上記水酸化金属層をリチウムを含
有する酸化物層に転化させて酸化剤極を形成し、この酸
化剤極と、燃料極どの間に溶融炭酸jん電解質層を介在
させて単位電池を形成覆ることを特徴としている。
The present invention involves forming a metal hydroxide layer containing lithium on the surface of a porous sintered body made of a conductive metal material by an electrochemical process, and then converting the metal hydroxide layer to a metal hydroxide layer containing lithium. The oxidizer electrode is converted into an oxide layer, and a molten carbonate electrolyte layer is interposed between the oxidizer electrode and the fuel electrode to form a unit cell.

〔発明の効果〕〔Effect of the invention〕

本発明の方法ににり得られた酸化物層(ま、リチウムが
良好に拡散された、電子伝導性で厚くて弾力性の高いも
のであるため、昇)届時の熱応力による酸化物層の剥離
や、電解質に接した際の電場の集中による酸化物層の剥
離が生じ難い。このため、長期に亙って導電性を損うこ
とかない。したがって、孔径および空孔率を適度に調整
した多孔質1本1 ;゛亙り安定した出力を得ることかiiJ能となる。し
かも、酸化剤極に予め酸化物層を形成し−(iB <の
(、運転初期の電極の厚さの増大に伴うつ]−ツトシー
ル部の気密性低下による重油特性の低下か無く、速やか
に定格運転に移行させることがCきる。
The oxide layer obtained by the method of the present invention (well, it is thick and elastic with good lithium diffusion) due to thermal stress at the time of delivery. It is difficult for the oxide layer to peel off due to the concentration of the electric field when it comes into contact with the electrolyte. Therefore, conductivity is not impaired over a long period of time. Therefore, it is possible to obtain stable output over a single porous material whose pore diameter and porosity are appropriately adjusted. In addition, an oxide layer is formed on the oxidizer electrode in advance, so that the heavy oil properties are not deteriorated due to a decrease in the airtightness of the seal part, and the oil can be quickly removed. It is possible to shift to rated operation.

〔発明の実7Il!i例〕 実施例1 平均粒径が5μ711のニラクル金属わ)末と、拮1゛
を剤どを主成分とする水溶液スラリーを100メツシコ
のステンレス・スクリーン(SUS3’16)に塗布し
、乾燥さけた。これを水素カス雰囲気中において、90
0″Cl2O分間で焼結処理し、ニッケル多孔質焼結体
を形成ぎせた。この焼結体の細孔分布を水銀圧入法で測
定した結果、平均孔径は7±1μm、空孔率は70%て
あっ7j 。
[Fruit of invention 7Il! i Example] Example 1 An aqueous slurry containing Niracle metal powder with an average particle size of 5μ711 as the main ingredients and an aqueous solution slurry of 1゛ as the main ingredients was applied to a 100 mesh stainless steel screen (SUS3'16) and kept to avoid drying. Ta. This was heated to 90°C in a hydrogen gas atmosphere.
A nickel porous sintered body was formed by sintering for 0'' Cl2O minutes.The pore distribution of this sintered body was measured by mercury intrusion method, and the average pore diameter was 7±1 μm and the porosity was 70. %tea7j.

この多孔質焼結体を0.2M/lの硝酸ニッケル水溶液
中に浸漬し、浴温50℃、電流密度12Tn、A/cr
A<面積は見掛は上の面積)で3分間の電解処理を行な
い、上記多孔質焼結体の表面に1゜6mg/cn(0,
5μ瓦の厚みに相当)の水酸化ニッケル層を生成させた
This porous sintered body was immersed in a 0.2 M/l nickel nitrate aqueous solution at a bath temperature of 50°C, a current density of 12 Tn, and A/cr.
Electrolytic treatment was performed for 3 minutes at A<area (apparent area above), and 1°6 mg/cn (0,
A nickel hydroxide layer with a thickness of 5 μm (equivalent to the thickness of a roof tile) was formed.

この多孔質焼結体を水洗後、1Nノ1/lの水酸化リチ
ウム水溶液中に浸漬し、電流密度10+IIA/cm 
(同」二)で電解酸化して、リチウムの含有した水酸化
ニッケル層に転化させた。これを水洗後、末の多孔質焼
結体からなる燃料極と、炭酸リチウム:炭酸カリウムニ
アルミン酸リチウムが、それぞれ重量比で28:32:
40となる混合粉末を加圧成形してなる電解質板ととし
に絹込み、単位電池を形成した。
After washing this porous sintered body with water, it was immersed in a 1N to 1/L lithium hydroxide aqueous solution, and the current density was 10+IIA/cm.
It was electrolytically oxidized in (2) and converted into a nickel hydroxide layer containing lithium. After washing this with water, the fuel electrode made of the final porous sintered body and the lithium carbonate:potassium carbonate lithium nialinate were mixed in a weight ratio of 28:32:
The mixed powder of No. 40 was pressed into an electrolyte plate, and the electrolyte plate was packed in silk to form a unit battery.

この電池を650℃に臂温し、酸化剤極側に空気d5よ
び二酸化使累が容量化r70:30である酸化剤カスを
通流させ、また燃11 tt側に水素J51、O・二酸
化炭素が容昂比で80 : 20である燃料カスを通流
させ、定電流負荷を接続さI! f、−際の電イ1!!
の端子電圧を測定した。その結果、運転初期11、Yか
ら定常状態における電池の電月−電流特性は第1図中1
で示づ特性が得られた。J、た、電流密度150m△y
’ ciの電流を流したときの、臂洛11着の経過時間
に対する端子電圧の変化は第2図中4で小ず通りてあっ
た。なお、比較のために従来の電池第1図から明らかな
如く、実施例1に係わる燃料電池は比較例のものに比へ
、ffi+−の電流密度(も、高い出力電圧を1!7る
ことができる。また、第2図に承り−如く、両電池に1
50 mA 70mの定電流負荷を与えた場合、比較例
では4j品後定格電11:である0、75Vに達するま
で゛に約120詩間川・かリ、かつ約360時間経過後
に電圧が急激に低下したが、実施例1ではR温後約5時
間足らずで定常電圧であるO、aVに達し、かつ100
0時間経過した後も電圧低下は0.03=0.08Vと
極めて少なかった。このように本実施例によれは、運転
開始後から長時間に亙って、常に安定した出力電圧を得
ることのできる溶融炭酸塩型燃料電池のV遣方法を提供
できる。
This battery was warmed to 650°C, and air d5 and oxidizer scum with a capacity ratio of 70:30 were passed through the oxidizer electrode side, and hydrogen J51, O and carbon dioxide were passed through the oxidizer electrode side, and hydrogen J51, O and carbon dioxide were passed through the oxidizer electrode side. A fuel sludge with a volume ratio of 80:20 is passed through, and a constant current load is connected to I! f, - the electric current 1! !
The terminal voltage was measured. As a result, the electric current-current characteristics of the battery in the steady state from 11, Y in the initial operation are 1 in Fig. 1.
The characteristics shown are obtained. J, ta, current density 150m△y
When a current of 'ci was applied, the change in the terminal voltage with respect to the elapsed time of the 11th round was slightly passed at 4 in Figure 2. As is clear from FIG. 1 of a conventional battery for comparison, the fuel cell according to Example 1 has a higher current density of ffi+- (also has a higher output voltage of 1!7) than that of the comparative example. Also, as shown in Figure 2, one battery is connected to both batteries.
When a constant current load of 50 mA 70 m is applied, in the comparative example, it takes about 120 meters to reach 0.75 V, which is the rated voltage after 4J products, and the voltage suddenly drops after about 360 hours. However, in Example 1, the steady voltage O, aV was reached in less than 5 hours after the R temperature, and the voltage was 100
Even after 0 hours had passed, the voltage drop was extremely small at 0.03=0.08V. As described above, this embodiment can provide a V-operation method for a molten carbonate fuel cell that can always obtain a stable output voltage for a long period of time after the start of operation.

実施例2 上記実施例1にお(プるニッケル多孔質焼結体を1M/
lの水酸化リチウム+I M、#の水酸化カリウムの水
溶液中に浸漬して、常温て電流密疫100m、A/cm
(面積は見掛り上の面積)、24時間の電解酸化を行な
い、上記多孔質焼結体の表面゛′^i化ニッケル層を形
成させ、酸化剤極とした。
Example 2 In Example 1 above, a porous nickel sintered body of 1M/1
Immersed in an aqueous solution of 1 lithium hydroxide + 1 M, potassium hydroxide, at room temperature, current tightness 100 m, A/cm
(Area is an apparent area) Electrolytic oxidation was performed for 24 hours to form a nickel oxide layer on the surface of the porous sintered body, which was used as an oxidizer electrode.

、4・、、・楊の酸化剤極を前述と同様に単位電池に絹
込み、前述と同様の条件で稼動さけ、同様の測定を行く
1つだところ、第1図中3て示づように実施例2に係わ
る燃ね電池は比較例のものよりも良好な電池特性を光揮
することか分かった。ま1.:、第2図中6で示すよう
に実施例2ては昇)晶後約10助間)Cらずで定常電圧
である0、78Vに達し、かつ1000時間経過した後
も電[E低下)、1.0.03−・008Vと極めて少
なかった。このJ、うに、」−ツクル多孔質焼結体を水
酸化リチウムを含イjりる水話j液中で、電気化学姶理
を行ない、リチウム化さIiた水酸化ニッケル層を一度
に生成さけても、良Orな結果を1qることかできる。
, 4. In the same way as above, insert Yang's oxidizer electrode into a unit cell, operate it under the same conditions as above, and perform the same measurements, as shown by 3 in Figure 1. It was found that the fuel cell according to Example 2 exhibited better battery characteristics than those of the comparative example. 1. : As shown by 6 in FIG. 2, in Example 2, the steady voltage of 0.78 V was reached within about 10 hours after crystallization, and the voltage did not decrease even after 1000 hours. ), it was extremely low at 1.0.03-.008V. The porous sintered body is electrochemically treated in a water solution containing lithium hydroxide to generate a lithiated nickel hydroxide layer at once. Even if you avoid it, you can still get 1q of good results.

なお、これら二つの実施例ζIは、水酸化ニラ/フル層
の厚みを約0.5t、tmとしたが、1?iに、この厚
みに限定される訳ではない。しかし、この厚、/Jを0
.2t1m以下に覆ると、安定した電11!!性能の維
持時間が知くなり、また、311 m以上になると、焼
結体を浸漬して、電解1稈を行ない、この多孔質焼結体
の表面に水酸化リチウムの・を含有する水0)化物を生
成しても良い。また、多孔質焼結体はニッケル金属粉末
の焼結体に限らず、たとえば、ニラクル繊維焼結体、ス
テンレス繊維焼結体、銅粉末焼結体、N1系合金粉末ま
たCま繊維焼結体などを使用しても本発明の効果を呈す
ることかできる。
In addition, in these two examples ζI, the thickness of the chive hydroxide/full layer was about 0.5t, tm, but 1? i is not limited to this thickness. However, this thickness, /J is 0
.. Stable electricity 11 when covered below 2t1m! ! When the performance maintenance time becomes known and the temperature exceeds 311 m, the sintered body is immersed and electrolyzed for one culm, and the surface of this porous sintered body is soaked with water containing lithium hydroxide. ) compounds may be produced. Furthermore, the porous sintered body is not limited to a sintered body of nickel metal powder, but includes, for example, a sintered body of Niracle fiber, a sintered body of stainless steel, a sintered body of copper powder, a sintered body of N1 alloy powder, and a sintered body of carbon fiber. The effects of the present invention can also be obtained using the following methods.

性を示す図、第2図は電池電圧の経時特性を示づ図であ
る。
FIG. 2 is a diagram showing the characteristics of battery voltage over time.

1.4・・・実施例1の特性、2,5・・・比較例の特
性、3,6・・・実施例2の特性。
1.4...Characteristics of Example 1, 2,5...Characteristics of Comparative Example, 3,6...Characteristics of Example 2.

出願人 工業技術院長 川田裕部Applicant: Director of the Agency of Industrial Science and Technology Hirobe Kawada

Claims (1)

【特許請求の範囲】 く1)導電性金属材オ゛ミ1からなる多孔質焼結体の表
面に、リチウムを含有する水酸化金属層を電気化学的に
形成した後、上記水lIu化金属層をリチウムを含有す
る酸化物層に転化させて酸化剤極を形成し、この酸化剤
極と燃お1極との閂に溶融炭酸塩電解質層を介在させて
単位電池を形成づることを特徴とづる溶融炭酸jM型燃
料電池の製造方法。 (2)前記多孔質焼結体は、ニッケルまたはニラ゛\。 ゛ケル系合金からな6るものであることを特徴とする特
許 ・′1 池の製造方法。 (3)前記多孔質焼結体は、ステンレスまたは銅からな
るものであるこどを特徴どずる特許請求の範囲第1項記
載の溶融炭酸塩型燃料電池の製造方法。 (4)前記リチウムを含有する水酸化金属層は、硝酸ニ
ッケルを含イ1する水溶液中に前記多孔7′{焼結体を
浸漬し、電解工程によー)て前記多孔r′(焼結体の表
面Cこ水酸化ニッケル層を形成した後、t’+Ft記多
孔質焼結体を水酸化リチウムを含む水溶}{シ中{ご浸
漬し、電解T稈で前記水酸化ニッケル層をり1ウムを含
有づる水酸化金属層に転化さUだしの(゛あることを特
徴どづる特許請求の範囲第1 ]、i’i4’i (−
’し第3項記載の溶融炭酸塩空燃′f:1電池の製j;
5,万法,。 (5)前記リチウムを含有づ−ろ水酸化金属層(、工。 少なくとも水酸化リヂウ1、を含有1jろ水}dイη中
に前記多孔質焼結体を浸漬し7、電解二]ー稈で前記多
?Lリヂウムを含有する水酸化金属層の形成さ11 /
,:κ孔質焼結体を水洗後、熱処理を施し(得たものC
あることを特徴とづる特許請求の範囲第4JOまたは第
5項記載の溶融炭酸塩型燃料電池の製造ブj2)、。
[Scope of Claims] (1) After electrochemically forming a metal hydroxide layer containing lithium on the surface of a porous sintered body made of a conductive metal material OMI 1, A unit cell is formed by converting the layer into an oxide layer containing lithium to form an oxidizing agent electrode, and interposing a molten carbonate electrolyte layer between the oxidizing agent electrode and the combustion electrode. Method for manufacturing a molten carbonate JM fuel cell. (2) The porous sintered body is nickel or chili. 1. A method for manufacturing a pond, characterized in that the pond is made of a clay-based alloy. (3) The method for manufacturing a molten carbonate fuel cell according to claim 1, wherein the porous sintered body is made of stainless steel or copper. (4) The lithium-containing metal hydroxide layer is formed by forming the pores r' (by immersing the sintered body in an aqueous solution containing nickel nitrate and performing an electrolytic process). After forming the nickel hydroxide layer on the surface of C, the porous sintered body at t'+Ft is immersed in an aqueous solution containing lithium hydroxide, and the nickel hydroxide layer is removed using an electrolytic tube. The first claim is characterized in that U is converted into a metal hydroxide layer containing U.
'The molten carbonate air combustion described in item 3' f: Production of one battery;
5. 10,000 laws. (5) The porous sintered body is immersed in the lithium-containing hydroxide metal layer (containing at least 1 hydroxide); Formation of the metal hydroxide layer containing the above-mentioned polyhydridium in the culm 11/
,: After washing the κ porous sintered body with water, heat treatment was performed (obtained C
A method for producing a molten carbonate fuel cell according to claim 4 or claim 5, characterized in that:
JP58180615A 1983-09-30 1983-09-30 Manufacture of fused carbonate type fuel cell Granted JPS6074272A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58180615A JPS6074272A (en) 1983-09-30 1983-09-30 Manufacture of fused carbonate type fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58180615A JPS6074272A (en) 1983-09-30 1983-09-30 Manufacture of fused carbonate type fuel cell

Publications (2)

Publication Number Publication Date
JPS6074272A true JPS6074272A (en) 1985-04-26
JPH02822B2 JPH02822B2 (en) 1990-01-09

Family

ID=16086325

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58180615A Granted JPS6074272A (en) 1983-09-30 1983-09-30 Manufacture of fused carbonate type fuel cell

Country Status (1)

Country Link
JP (1) JPS6074272A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1994009521A1 (en) * 1992-10-21 1994-04-28 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. High-temperature fuel cell
EP0702421A1 (en) 1990-07-23 1996-03-20 Moli Energy (1990) Limited Lithiated nickel dioxide and secondary cells prepared therefrom
WO1997033332A1 (en) * 1996-03-09 1997-09-12 Mtu Motoren- Und Turbinen-Union Friedrichshafen Gmbh Method of producing a cathode by oxidation in a molten carbonate fuel cell
WO2006008012A3 (en) * 2004-07-19 2006-06-22 Uhde Gmbh Method for the production of nickel oxide surfaces having increased conductivity
JP2010044934A (en) * 2008-08-12 2010-02-25 Casio Comput Co Ltd Fuel cell, and manufacturing method for fuel cell

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0702421A1 (en) 1990-07-23 1996-03-20 Moli Energy (1990) Limited Lithiated nickel dioxide and secondary cells prepared therefrom
WO1994009521A1 (en) * 1992-10-21 1994-04-28 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. High-temperature fuel cell
WO1997033332A1 (en) * 1996-03-09 1997-09-12 Mtu Motoren- Und Turbinen-Union Friedrichshafen Gmbh Method of producing a cathode by oxidation in a molten carbonate fuel cell
WO2006008012A3 (en) * 2004-07-19 2006-06-22 Uhde Gmbh Method for the production of nickel oxide surfaces having increased conductivity
JP2008506845A (en) * 2004-07-19 2008-03-06 ウーデ ゲゼルシャフト ミット ベシュレンクテル ハフツング Method for producing nickel oxide surface with improved conductivity
JP4746618B2 (en) * 2004-07-19 2011-08-10 ウーデ ゲゼルシャフト ミット ベシュレンクテル ハフツング Method for producing nickel oxide surface with improved conductivity
US8057713B2 (en) 2004-07-19 2011-11-15 Uhde Gmbh Method for the production of nickel oxide surfaces having increase conductivity
JP2010044934A (en) * 2008-08-12 2010-02-25 Casio Comput Co Ltd Fuel cell, and manufacturing method for fuel cell

Also Published As

Publication number Publication date
JPH02822B2 (en) 1990-01-09

Similar Documents

Publication Publication Date Title
US7820339B2 (en) Gas diffusion electrode for electrochemical oxygen reduction
US20070045106A1 (en) Method for preparing solid-state polymer zinc-air battery
CN101583420A (en) Porous clusters of silver powder promoted by zirconium oxide for use as a catalyst in gas diffusion electrodes, and method for the production thereof
JP2015511876A (en) Use of mesoporous graphite particles for electrochemical applications
JP2006155921A (en) Electrode for solid polymer type fuel cell
JPS6322023B2 (en)
JP2016505716A (en) Gas diffusion electrode and preparation method thereof
JP4321997B2 (en) Positive electrode active material for alkaline storage battery, and positive electrode and alkaline storage battery using the same
US3668014A (en) Electrode and method of producing same
JPS6074272A (en) Manufacture of fused carbonate type fuel cell
JPS5963666A (en) Gas diffusion electrode for porous quality
JP2009158131A (en) Electrocatalyst and method of manufacturing the same
JPS6224565A (en) Gas diffusion electrode of fuel cell and the like
JPH02821B2 (en)
JP5119486B2 (en) Electrode for polymer electrolyte fuel cell
JPH0551150B2 (en)
JPH0520872B2 (en)
JPH0311503B2 (en)
JP4366722B2 (en) Nickel hydroxide active material for alkaline storage battery
JPH06150905A (en) Composite metal electrode and manufacture thereof
JP2003077468A (en) Manufacturing method of nickel electrode material
JPH10154508A (en) Alkaline storage battery, its nickel electrode, and its manufacture
JPS59169069A (en) Electrode for fuel cell
JP3414184B2 (en) Method for producing positive electrode plate for alkaline storage battery
JP2616061B2 (en) Phosphoric acid fuel cell