JPS6074270A - Solid fuel cell - Google Patents

Solid fuel cell

Info

Publication number
JPS6074270A
JPS6074270A JP58180422A JP18042283A JPS6074270A JP S6074270 A JPS6074270 A JP S6074270A JP 58180422 A JP58180422 A JP 58180422A JP 18042283 A JP18042283 A JP 18042283A JP S6074270 A JPS6074270 A JP S6074270A
Authority
JP
Japan
Prior art keywords
fuel cell
solid electrolyte
solid fuel
zro2
ion conductive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58180422A
Other languages
Japanese (ja)
Inventor
Takeshi Morimoto
剛 森本
Shinsuke Morikawa
森川 真介
Yasuhiro Sanada
恭宏 真田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd filed Critical Asahi Glass Co Ltd
Priority to JP58180422A priority Critical patent/JPS6074270A/en
Publication of JPS6074270A publication Critical patent/JPS6074270A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/12Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
    • H01M8/124Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte characterised by the process of manufacturing or by the material of the electrolyte
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

PURPOSE:To retain high electromotive force in a solid fuel cell by using an ion conductive solid electrolyte made of oxide fluoride in which ZrO2 and YF3 are blended at a specific proportion. CONSTITUTION:This solid fuel cell uses an oxygen ion conductive solid electrolyte with the composition indicated by (ZrO2)100-x(MF3)x, (where M=Y, X=13- 25, or M=Yb, x=65-25, and x is mol%). This solid electrolyte has almost stable or constant conductivity and sintering and full practicability. The shaping of the solid electrolyte is performed by the plasma method, hot press method, etc.

Description

【発明の詳細な説明】 本発明は固体燃料電池、特に高)Xk起電力有する新規
な酸素イオン導電性固体電解質を用いた燃料電池に係る
ものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a solid fuel cell, particularly a fuel cell using a novel oxygen ion conductive solid electrolyte having a high)Xk electromotive force.

燃料電池はオンサイト型の発電設備として以外に各種エ
レクトロニクスの発展に伴ない種々の用途が期待され、
又宇宙開発が進むにつれ、これへの利用も拡けつつある
In addition to on-site power generation equipment, fuel cells are expected to have a variety of uses as electronics develops.
Also, as space development progresses, its use for this purpose is also expanding.

燃料電池は電解質として燐酸を用いるものが当初提案さ
れた。このものは約2006C程度の比較的低温で使用
し得るので用いる材料が比較的広範囲から選択し得る利
点がある反面、電極には高価な白金を用いねばならない
。また起′セカがやや小さい欠点を有している。
Fuel cells were originally proposed that used phosphoric acid as the electrolyte. This device can be used at a relatively low temperature of about 2006 C, so it has the advantage that the materials used can be selected from a relatively wide range, but on the other hand, expensive platinum must be used for the electrodes. It also has a rather small drawback.

又、Li2 CO3拳Na2 CO3、Li7003 
IIK2 GOH4等のアルカリ炭酸塩の溶融塩を電解
質として用いる方法が提案されている。この方法は[1
00’C程度の高温を用いるのでこの点では1i11記
り段より材料面等で不利ではあるが、起電力は曲名より
大きく、実用性の高いものとして注目されている。しか
しながら溶融塩を用いるのと高温での使用を余儀なくさ
れる為、特に各部のシールが困難であり、実際これの解
決がなされない為、未だ実用に供されていない。
Also, Li2 CO3 fist Na2 CO3, Li7003
A method has been proposed in which a molten salt of an alkali carbonate such as IIK2 GOH4 is used as an electrolyte. This method is [1
Since it uses a high temperature of about 00'C, it is disadvantageous in terms of materials and the like compared to the 1i11 stage, but the electromotive force is larger than the title of the song, and it is attracting attention as a highly practical method. However, since it uses molten salt and must be used at high temperatures, it is particularly difficult to seal each part, and since no solution to this problem has been found, it has not yet been put into practical use.

他方、電解質としてY2O3やCaOを含有した安定化
ジルコニアが提案されている。これは固体であり取り扱
い等は前記三者に比してはるかに容易であり、又起電力
も実用に供し得る程度ではあるが、使用温度が約100
0 ’Cと極めて高く、これに耐えられる材料が極めて
限られ、この意味で実用に供し難い欠点がある。
On the other hand, stabilized zirconia containing Y2O3 or CaO has been proposed as an electrolyte. This is a solid and is much easier to handle than the three mentioned above, and the electromotive force is at a level that can be used practically, but the operating temperature is about 100%.
0'C, which is extremely high, and materials that can withstand this temperature are extremely limited, and in this sense, it has the disadvantage of being difficult to put to practical use.

本発明者は、これら従来から提案されている酸素イオン
導電性固体電解質が有する諸欠点を克服した材料を見い
出すことを目的として種々研究、検討した結果、特定組
成を有する弗化酸化物が前記目的を達成し得ることを見
出した。
As a result of various studies and examinations aimed at finding a material that overcomes the various drawbacks of these conventionally proposed oxygen ion conductive solid electrolytes, the present inventor discovered that a fluorinated oxide having a specific composition was found for the purpose of the above-mentioned purpose. We found that it is possible to achieve this.

かくして本発明は、一般式(ZrO2)+00− X(
MF:] )X (但し M=Yであって、x=13〜
25、或いはM=Ybであッテz= IEi−25、X
はモル%)で示される酸素イオン導電性固体電解質を用
いた燃料電池を提供するにある。
Thus, the present invention provides the general formula (ZrO2)+00-X(
MF:] )X (However, M=Y and x=13~
25, or M=Yb and z=IEi-25,X
The object of the present invention is to provide a fuel cell using an oxygen ion conductive solid electrolyte expressed in mol %).

本発明において上記組成を逸脱する場合には導電性の低
下が著しくなったり、不均一組成を示し熱衝撃性が低下
するので実用的でない。
In the present invention, if the composition deviates from the above-mentioned range, the conductivity will be significantly lowered, the composition will be non-uniform, and the thermal shock resistance will be lowered, which is not practical.

l二足組成範囲を有する場合には導電性や焼結性がほぼ
安定又は一定しており、実用性を十分有している。そし
て材料の特性や経済性の点から阿かイツトリウム(Y)
の場合x−14〜16、 Xかインテルビウム(Yb)
の場合にはx=17〜19を採用するのが特に好ましい
In the case where the composition has a two-legged composition range, the conductivity and sinterability are almost stable or constant, and the material has sufficient practicality. And from the point of view of material properties and economic efficiency, yztrium (Y)
In the case of x-14 to 16, X or Interbium (Yb)
In this case, it is particularly preferable to use x=17 to 19.

本発明による導電性物質の製法は、酸化ジルコニウムと
弗化イツトリウム又は弗化イッテルビウムを夫々粉砕混
合し、不活性ガス雰囲気下1100〜1400°Cに3
時間程度保持することにより得ることが出来る。例えば
(Zr02 )85 +’、YF:()15を得る場合
には0.85モルのZr07と0.15モルのYF3を
粉砕混合し、アルゴン雰囲気下に1200 ’Cにおい
て3時間程度焼成せしめることにより容易に得ることが
出来る。又Zr07 、ZrF4とY2O3やYb2〔
]3の混合物を同様に焼成焼結せしめることにより製造
し得る。世しこの場合、ZrF4が比較的揮発性である
為、ZrF4の損失や[」標組成に正確に達しないこと
があるので注意を要する。
The method for producing a conductive material according to the present invention involves pulverizing and mixing zirconium oxide and yttrium fluoride or ytterbium fluoride, respectively, and heating the mixture at 1100 to 1400°C in an inert gas atmosphere for 30 minutes.
It can be obtained by holding it for about an hour. For example, to obtain (Zr02)85 +', YF: ()15, 0.85 mol of Zr07 and 0.15 mol of YF3 are pulverized and mixed, and then calcined at 1200'C for about 3 hours in an argon atmosphere. It can be easily obtained by Also, Zr07, ZrF4, Y2O3 and Yb2 [
] 3 can be produced by firing and sintering the mixture in the same manner. In this case, since ZrF4 is relatively volatile, care must be taken because ZrF4 loss and the target composition may not be achieved accurately.

又これら固体電解質の形状イ・j与は、例えば薄IIり
状物を得る際にはプラズマ溶射法、真空法着法、スパッ
タリング法等を、比較的厚い形状の場合にはホyl・プ
レス法、ラバープレス法、熱間静水圧焼結法等を適宜採
用することが出来る。
In addition, the shape of these solid electrolytes can be determined by, for example, plasma spraying, vacuum deposition, sputtering, etc. when obtaining a thin film, and foil/pressing when obtaining a relatively thick shape. , a rubber press method, a hot isostatic sintering method, etc. can be appropriately employed.

本発明に用いられる固体電解質の厚さは一般に1μ〜5
mm程度が適当である。厚さが前記範囲に満たない場合
には、不均一でガス漏れが起り易くなり、逆に前記範囲
を超える場合には抵抗損失か著しく大きくなる虞れがあ
るので何れも好ましくない。
The thickness of the solid electrolyte used in the present invention is generally 1μ to 5μ.
A value of about mm is appropriate. If the thickness is less than the above range, gas leakage is likely to occur due to non-uniformity, while if it exceeds the above range, the resistance loss may increase significantly, which is not preferable.

又、本発明に用いられる陽極の材質としては、例−えば
白金、銀、コバルトなどの金属材料、 LaCoO3な
どのペロブスカイト系材料等が又陰極の材質としては例
えば白金、銀、二・ンヶルなと金属材料、 LaCoO
3などのペロブスカイト系酸化物材料等を適宜採用する
ことが出来る。
Further, the material for the anode used in the present invention includes, for example, metal materials such as platinum, silver, and cobalt, and perovskite materials such as LaCoO3, and the material for the cathode includes, for example, platinum, silver, and nickel. Metal material, LaCoO
Perovskite-based oxide materials such as No. 3 can be appropriately employed.

又これら陰、陽極は何れもガスが透過することか必要で
あり、この為これら電極の有する物性としては、多孔質
で半融しにくく固体電解質との電着性がよいものを採用
するのが適当である。又、これら電極の厚さは一般に数
千人〜100 g程度を採用するのが適当である。
In addition, both the anode and cathode must be permeable to gas, and for this reason, it is recommended that these electrodes have physical properties that are porous, difficult to semi-melt, and have good electrodepositivity with the solid electrolyte. Appropriate. Further, it is generally appropriate to adopt the thickness of these electrodes from several thousand to about 100 g.

これら電極は固体電解質に対しスクリーン印刷法、スパ
ッタリング法等の手段により設けることが出来る。
These electrodes can be provided on the solid electrolyte by means such as screen printing or sputtering.

次に本発明を実施例により説明する。Next, the present invention will be explained by examples.

実施例1 0.86モルのZ[02と0.14モルのYF、を粉砕
lI?。
Example 1 0.86 mol of Z[02 and 0.14 mol of YF, lI? .

合し、ラバープレス法により直径20 +n m、厚さ
 1mmのペレットに成型した。さらにこのペレットを
アルゴンガス雰囲気中1200’(!で3時間焼結した
。このペレットをX線回折にかけた結果は第1図に示す
通りであり1組成は(Zr07 )。86(YF3)o
]4であった。このペレントの両面にpt粉粉末焼き伺
は更にpt線を取り利は全体をアルミナチューブの一端
にアルミナセメントで装着し、燃料電池を作製した。こ
の燃料電池を電気炉中に挿入し、 700°Cに加熱し
、内側には1気圧H2ガスをm M 50mM /分で
供給し、外側には1気圧02ガスを流量25m又/分で
供給した。この状態で約1時間放置した後、定゛屯流放
電し電圧−電流曲線を測定した。
The mixture was molded into pellets with a diameter of 20 nm and a thickness of 1 mm by a rubber press method. Further, this pellet was sintered for 3 hours at 1200' (!) in an argon gas atmosphere.The result of subjecting this pellet to X-ray diffraction is as shown in Figure 1, and the composition is (Zr07).86(YF3)o
] It was 4. A PT wire was further removed from both sides of the pellet, and the whole was attached to one end of an alumina tube with alumina cement to fabricate a fuel cell. This fuel cell was inserted into an electric furnace and heated to 700°C, and 1 atm H2 gas was supplied to the inside at a rate of 50 mm/min, and 1 atm 02 gas was supplied to the outside at a flow rate of 25 m/min. did. After being left in this state for about 1 hour, constant current discharge was performed and the voltage-current curve was measured.

この結果電流密度100mA/cn+のときの端子電圧
は0.88Vであった。
As a result, the terminal voltage was 0.88V when the current density was 100mA/cn+.

実施例2 0.84モルのZrO2と0.16モルのYbF3を粉
砕1jQ合し、以下実施例1と同様にしてペレットを作
成し、焼成した。このペレットのX線回折図は252図
に示した通りであり、組成は(ZrO2) (YbF3
)0.16テあった。コノぺ84 レットを用い、実施例1と同様な方法で燃料電池を作製
した。
Example 2 0.84 moles of ZrO2 and 0.16 moles of YbF3 were ground and combined to form pellets in the same manner as in Example 1, and fired. The X-ray diffraction pattern of this pellet is as shown in Figure 252, and the composition is (ZrO2) (YbF3
) There was 0.16 te. A fuel cell was produced in the same manner as in Example 1 using Konope 84.

実施例1と同様な条件で燃料ガス、酸素ガスを供給し、
約I 114間放置した後、定電流放電し、電圧−電流
曲線を測定した。
Fuel gas and oxygen gas were supplied under the same conditions as in Example 1,
After being left for about I 114 minutes, a constant current was discharged and the voltage-current curve was measured.

この結果、電流冨度100mA/cnのときの端子電圧
は0.88Vであった。
As a result, the terminal voltage was 0.88V when the current density was 100mA/cn.

【図面の簡単な説明】[Brief explanation of the drawing]

第1.2図は実施例中に示された本発明に用いられた組
成物のX線回折図である。 手糸九η旧j、Eゼ外(ブ〕式) 昭和59年 2月七芒日 特i′l’ I’J−艮官若杉和夫殿 」111イメ1の表示 昭和58特訂屑I第1.80422号 2発明の名称 固体俗才l′王池 3、袖市なする治 事イ11との関係 特31出願人 住 所 東京都T代1111区九の内ニー14111m
2鴇名称 (004)旭硝−r株式会ンI 4代理人 〒+bs 住 所 東京7111 ?ij lメJ、Q )閂 −
r’1llE4 2号虎ノ門千代1)1ヒル 5袖II命令の11伺 昭和59イ「1月311」 (発送13)6、補(口こ
より増加する発明の数 なし7袖IIの対象 明細書 8補11−の内容 明細書の浄書(内容に変更な1.)
(−)、1−
Figure 1.2 is an X-ray diffraction diagram of the composition used in the present invention shown in the Examples. Teito 9 η old j, Eze outside (bu) style February 1981 Seven-day special i'l'I'J-Ryōkan Kazuo Wakasugi" 111 image 1 display Showa 58 special edition scrap I No. 1. 80422 No. 2 Name of the Invention Solid Popularity l' Oike 3, Relationship with Sodeichi Nasu Jiji I 11 Patent No. 31 Applicant Address 14111m, Kunouchi-nee, 1111-ku, T-dai, Tokyo
2 Name (004) Asahi Glass Co., Ltd. 4 Agent 〒+BS Address Tokyo 7111 ? ij lme J, Q) bar -
r'1llE4 No. 2 Toranomon Chiyo 1) 1 Hill 5 Sode II Order 11 Visit 1984 "January 311" (Delivery 13) 6, Supplementary (Number of inventions increased by word of mouth None 7 Subject of Sode II Specification 8 Supplement 11 - Contents: Engraving of the specification (1. No changes to the contents)
(-), 1-

Claims (1)

【特許請求の範囲】[Claims] 1、一般式(ZrO2)、(,0−x (MF3 )x
 (但しM=Yであって、x−13〜25、或いはに−
Ybであってx=16〜25、Xはモル%)で示される
酸素イオン導電性固体電解質を用いた燃料電池。
1. General formula (ZrO2), (,0-x (MF3)x
(However, M=Y, and x-13 to 25, or -
A fuel cell using an oxygen ion conductive solid electrolyte of Yb, where x=16 to 25, where X is mol%.
JP58180422A 1983-09-30 1983-09-30 Solid fuel cell Pending JPS6074270A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58180422A JPS6074270A (en) 1983-09-30 1983-09-30 Solid fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58180422A JPS6074270A (en) 1983-09-30 1983-09-30 Solid fuel cell

Publications (1)

Publication Number Publication Date
JPS6074270A true JPS6074270A (en) 1985-04-26

Family

ID=16082982

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58180422A Pending JPS6074270A (en) 1983-09-30 1983-09-30 Solid fuel cell

Country Status (1)

Country Link
JP (1) JPS6074270A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999065098A1 (en) * 1998-06-12 1999-12-16 Bin Zhu A fuel cell

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999065098A1 (en) * 1998-06-12 1999-12-16 Bin Zhu A fuel cell

Similar Documents

Publication Publication Date Title
JP2927339B2 (en) High temperature electrochemical battery
Bao et al. Effect of NiO/YSZ compositions on the co-sintering process of anode-supported fuel cell
JPH06107462A (en) Oxide ion conductive body and solid fuel cell
US5916700A (en) Lanthanum manganite-based air electrode for solid oxide fuel cells
WO2006098272A1 (en) Ion conductor
JPS6074270A (en) Solid fuel cell
JP3233807B2 (en) Substrate material for solid oxide fuel cells
JPH08236138A (en) Cell of solid electrolyte fuel cell and manufacture thereof
JPH05294629A (en) Oxygen ionic conductor and solid fuel cell
JP2000044340A (en) Sintered lanthanum gallate, its production and fuel cell produced by using the gallate as solid electrolyte
JP2002053374A (en) Multiple oxide for air pole of solid electrolytic fuel cell and for electric collector raw material, its manufacturing method and solid electrolytic fuel cell
JP3351865B2 (en) Fuel electrode for solid oxide fuel cell and self-standing membrane flat solid electrolyte fuel cell using this fuel electrode
JP2870126B2 (en) Solid oxide fuel cell
JPH09147876A (en) Fuel electrode material of solid electrolyte type electrochemical cell
JPH05234604A (en) Solid electrolyte type fuel cell
JPS60250565A (en) Fuel cell
JPS6077102A (en) Production of hydrogen
JPH0785875A (en) Solid electrolytic fuel cell
JP2004171997A (en) Membrane electrode complex, and fuel cell
JPH10172578A (en) Fuel electrode material of solid electrolyte type electrochemical cell
JPH08264187A (en) Solid electrolyte type fuel cell
JPH10247498A (en) Fuel electrode material
JP3091064B2 (en) Method for producing conductive ceramics and method for producing solid oxide fuel cell
CN105789635A (en) Application of Aurivillius structural material in cathode material of medium-high temperature solid oxide fuel cell
JPH06181064A (en) Solid-electrolyte fuel cell