JP2000044340A - Lanthanum gallate-based sintered body, method for producing the same, and fuel cell using the same as solid electrolyte - Google Patents
Lanthanum gallate-based sintered body, method for producing the same, and fuel cell using the same as solid electrolyteInfo
- Publication number
- JP2000044340A JP2000044340A JP10225251A JP22525198A JP2000044340A JP 2000044340 A JP2000044340 A JP 2000044340A JP 10225251 A JP10225251 A JP 10225251A JP 22525198 A JP22525198 A JP 22525198A JP 2000044340 A JP2000044340 A JP 2000044340A
- Authority
- JP
- Japan
- Prior art keywords
- lanthanum gallate
- sintered body
- alumina
- weight
- based sintered
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/50—Fuel cells
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P70/00—Climate change mitigation technologies in the production process for final industrial or consumer products
- Y02P70/50—Manufacturing or production processes characterised by the final manufactured product
Landscapes
- Compositions Of Oxide Ceramics (AREA)
- Fuel Cell (AREA)
Abstract
(57)【要約】
【課題】 強度を大幅に向上することができ、低温域で
高い導電性を有し、熱膨張係数が実質的に増加しないラ
ンタンガレート系焼結体およびその製造方法、ならびに
それを固体電解質として用いた燃料電池を提供するこ
と。
【解決手段】 ランタンガレート系酸化物の粉末100
重量部に対して1.5重量部以上、6重量部以下のアル
ミナ粉末を添加した原料を成形および焼成し、ランタン
ガレート系酸化物組成を変化させずに、アルミナが添加
された焼結体を得る。PROBLEM TO BE SOLVED: To provide a lanthanum gallate-based sintered body whose strength can be greatly improved, which has high conductivity in a low temperature range and whose thermal expansion coefficient does not substantially increase, and a method for producing the same. To provide a fuel cell using the same as a solid electrolyte. SOLUTION: Lanthanum gallate oxide powder 100
The raw material to which 1.5 to 6 parts by weight of alumina powder is added to the parts by weight is molded and fired, and the sintered body to which alumina is added is changed without changing the lanthanum gallate-based oxide composition. obtain.
Description
【0001】[0001]
【発明の属する技術分野】本発明は固体電解質として好
適なランタンガレート系焼結体およびその製造方法、な
らびにそれを固体電解質として用いた燃料電池に関す
る。The present invention relates to a lanthanum gallate-based sintered body suitable as a solid electrolyte, a method for producing the same, and a fuel cell using the same as a solid electrolyte.
【0002】[0002]
【従来の技術】燃料電池は、水素または炭化水素燃料類
を改質して得られる燃料と、空気を代表とする酸化剤と
の電気化学反応により、燃料の持つ化学エネルギーを直
接電気エネルギーに変換できる発電システムである。こ
のため、近時、この燃料電池が、高効率なエネルギー変
換機器として、省エネルギー、環境保護の観点から注目
されている。2. Description of the Related Art Fuel cells directly convert the chemical energy of fuel into electric energy by an electrochemical reaction between a fuel obtained by reforming hydrogen or hydrocarbon fuels and an oxidant represented by air. It is a power generation system that can. For this reason, recently, this fuel cell has attracted attention as a highly efficient energy conversion device from the viewpoint of energy saving and environmental protection.
【0003】このような燃料電池の中で、固体酸化物型
燃料電池(Solid OxideFuel Cel
l:以下SOFCと記す)は、以下のような特長を有す
ることから、次世代の燃料電池としてオンサイト小型コ
ージェネレーションシステムから大規模電源に至る幅広
い応用が期待され、国内外で積極的に研究開発が行われ
ている。[0003] Among such fuel cells, a solid oxide fuel cell (Solid Oxide Fuel Cell) has been proposed.
l: SOFC) has the following features, and is expected to be used in a wide range of applications from on-site small-scale cogeneration systems to large-scale power sources as next-generation fuel cells, and is actively researched in Japan and overseas. Development is taking place.
【0004】(1)動作温度が典型的には900〜10
00℃と高く、したがって、電極における電気化学反応
が円滑に進行するためにエネルギーロスが少なく、発電
効率が高い。 (2)動作温度が高いことにより、排熱温度も高いの
で、多段に利用すること(ボトミングサイクル)によ
り、さらに発電効率を高めることが可能であり、60〜
70%もの高効率を得ることができる。 (3)作動温度が、天然ガスなどの炭化水素燃料を改質
(つまり水素と一酸化炭素に分解)させるのに十分なほ
ど高いので、改質反応を電池内部で行うことができる
(内部改質)。したがって、従来のリン酸塩型やポリマ
ー型のような低温作動型燃料電池システムにおいて炭化
水素燃料の改質に用いられていた燃料処理系(改質器+
シフトコンバーター)を大幅に簡素化することができ
る。 (4)従来の低温作動型燃料電池システムにおいては利
用することができなかったCOも発電反応に関与させる
ことができる(燃料の多様性)。 (5)全固体により構成されるので、リン酸塩型や溶融
炭酸塩型のように部材の腐食や電解質の揮発および流出
の心配がない。(1) The operating temperature is typically 900 to 10
Since the temperature is as high as 00 ° C., the electrochemical reaction at the electrode proceeds smoothly, so that energy loss is small and power generation efficiency is high. (2) Since the exhaust heat temperature is high due to the high operating temperature, it is possible to further increase the power generation efficiency by using it in multiple stages (bottoming cycle).
As high as 70% efficiency can be obtained. (3) Since the operating temperature is high enough to reform hydrocarbon fuels such as natural gas (that is, decompose into hydrogen and carbon monoxide), the reforming reaction can be performed inside the battery (internal reforming). quality). Therefore, the fuel processing system (reformer + reformer) used for reforming hydrocarbon fuel in a conventional low temperature operation type fuel cell system such as a phosphate type or a polymer type.
Shift converter) can be greatly simplified. (4) CO that could not be used in the conventional low-temperature operation type fuel cell system can also be involved in the power generation reaction (diversity of fuel). (5) Since it is composed of all solids, there is no need to worry about corrosion of the members and volatilization and outflow of the electrolyte unlike the phosphate type and the molten carbonate type.
【0005】これまでにSOFCの電解質として検討さ
れた材料系には、イットリア安定化ジルコ二ア(以下Y
SZと示す)、安定化セリア、酸化ビスマスなどが挙げ
られる。これらの中では、主に還元雰囲気に対する安定
性や取り扱いの容易さなどから、YSZが最も優れるこ
とが知られている。既に、YSZを電解質とした燃料電
池では数万時間の実証試験により、高い発電効率が得ら
れている。[0005] Materials that have been studied as electrolytes for SOFCs include yttria-stabilized zirconia (hereinafter referred to as Y).
SZ), stabilized ceria, bismuth oxide, and the like. Among these, it is known that YSZ is the most excellent mainly because of its stability against a reducing atmosphere and ease of handling. High power generation efficiency has already been obtained in a fuel cell using YSZ as an electrolyte through tens of thousands of hours of verification tests.
【0006】しかし、YSZを電解質として用いる場
合、動作温度は約1000℃を要するために、上述した
ように効率が高いという利点がある反面、燃料電池を含
む発電装置全体を高価なセラミックスで作製しなければ
ならないという間題がある。また、YSZ電解質膜の厚
みを薄くすることで、動作温度を下げることは可能であ
るが、そのような薄い電解質膜を欠陥を含まないように
作製するには未だ課題が多い。However, when YSZ is used as the electrolyte, the operating temperature needs to be about 1000 ° C., which has the advantage of high efficiency as described above. On the other hand, the entire power generator including the fuel cell is made of expensive ceramics. There is a problem that must be done. Although the operating temperature can be reduced by reducing the thickness of the YSZ electrolyte membrane, there are still many problems in manufacturing such a thin electrolyte membrane without defects.
【0007】そこで、YSZよりも低温での酸化物イオ
ン伝導が可能で、酸化物イオン伝導の活性化工ネルギー
が低く、YSZと同等以上の導電率を有する電解質材料
を用いることにより、電解質の厚みを薄くすることに伴
う問題を解消することが検討されている。この目的に適
した材料としてはベロブスカイト型酸化物、特に、ラン
タンガレート系酸化物(La1-sSrsGa1-mMg
mOx:以下LSGMと示す)が優れることが知られてい
る。[0007] Therefore, the oxide thickness can be reduced by using an electrolyte material that can conduct oxide ions at a lower temperature than YSZ, has low activation energy for oxide ion conduction, and has a conductivity equal to or higher than that of YSZ. Eliminating the problems associated with thinning is being considered. Perovskite-type oxide as a material suitable for this purpose, in particular, lanthanum gallate-based oxide (La 1-s Sr s Ga 1-m Mg
m O x : hereinafter referred to as LSGM).
【0008】[0008]
【発明が解決すべき課題】しかし、LSGMは材料強度
が低いために、使用に際しては電解質膜の厚みを薄く出
来ない問題があり、結局、動作温度を下げることが因難
であるのが現状である。強度を改善する目的で、Gaの
5および10%をAlに置換した場合には、強度の向上
はわずかに10%程度であるばかりか、導電率が低下す
る間題があることが報告されている。さらに、熱膨張係
数が増加するという不都合もある。However, since LSGM has a low material strength, there is a problem that the thickness of the electrolyte membrane cannot be reduced when used, and it is difficult to lower the operating temperature after all. is there. It has been reported that when Al is substituted for 5 and 10% of Ga for the purpose of improving the strength, the improvement of the strength is only about 10% and there is a problem that the conductivity decreases. I have. Further, there is a disadvantage that the thermal expansion coefficient increases.
【0009】本発明はかかる事情に鑑みてなされたもの
であって、強度を大幅に向上することができ、低温域で
高い導電性を有し、熱膨張係数が実質的に増加しないラ
ンタンガレート系焼結体およびその製造方法、ならびに
それを固体電解質として用いた燃料電池を提供すること
を目的とする。SUMMARY OF THE INVENTION The present invention has been made in view of the above circumstances, and a lanthanum gallate system which can greatly improve strength, has high conductivity in a low temperature range, and does not substantially increase a thermal expansion coefficient. It is an object of the present invention to provide a sintered body, a method for producing the same, and a fuel cell using the same as a solid electrolyte.
【0010】[0010]
【課題を解決するための手段】本発明者らは、LSGM
の高強度化について鋭意研究した結果、LSGMの組成
(陽イオン構成比)を維持した酸化物に所定量のアルミ
ナを添加することにより、熱膨張係数を殆ど変化させず
に、強度を大幅に向上することができ、さらに、イオン
伝導の活性化エネルギーが低下し、従来よりも低温域で
高いイオン導電率を示すことを見出し、本発明を完成す
るに至った。Means for Solving the Problems The present inventors have proposed LSGM.
As a result of diligent research into the enhancement of strength, the addition of a predetermined amount of alumina to an oxide that maintains the LSGM composition (cation composition ratio) significantly improves the strength without substantially changing the thermal expansion coefficient. Further, the inventors have found that the activation energy of ionic conduction is reduced, and the ionic conductivity is higher in a lower temperature range than in the past, and the present invention has been completed.
【0011】すなわち、本発明は、ランタンガレート系
酸化物100重量部に対して1.5重量部以上、6重量
部以下のアルミナを添加してなることを特徴とするラン
タンガレート系焼結体を提供する。That is, the present invention provides a lanthanum gallate-based sintered body characterized in that 1.5 to 6 parts by weight of alumina is added to 100 parts by weight of a lanthanum gallate-based oxide. provide.
【0012】また、上記ランタンガレート系焼結体にお
いて、アルミナ粒子がランタンガレート系酸化物粒子の
粒界に分散していることを特徴とするランタンガレート
系焼結体を提供する。Further, the present invention provides a lanthanum gallate-based sintered body characterized in that alumina particles are dispersed at the grain boundaries of the lanthanum gallate-based oxide particles.
【0013】さらに、上記いずれかのランタンガレート
系焼結体において、ランタンガレート系酸化物のX線回
折ピークが分離していないことにより確認される範囲内
で、ランタンガレート系酸化物の陽イオン構成比、格子
間隔および対称性が維持されているランタンガレート系
焼結体を提供する。Further, in any of the above lanthanum gallate-based sintered bodies, the cation composition of the lanthanum gallate-based oxide is within a range confirmed by the fact that the X-ray diffraction peak of the lanthanum gallate-based oxide is not separated. Provided is a lanthanum gallate-based sintered body in which the ratio, lattice spacing, and symmetry are maintained.
【0014】さらに、上記いずかのランタンガレート系
焼結体において、ランタンガレート系酸化物粒子の平均
粒径が3μm以下であることを特徴とするランタンガレ
ート系焼結体を提供する。Further, in any of the above lanthanum gallate-based sintered bodies, there is provided a lanthanum gallate-based sintered body, wherein the average particle size of the lanthanum gallate-based oxide particles is 3 μm or less.
【0015】さらにまた、上記いずれかのランタンガレ
ート系焼結体において、アルミナ粒子の平均粒径がラン
タンガレート系酸化物粒子の平均粒径の1/3以下であ
ることを特徴とするランタンガレート系焼結体を提供す
る。Further, in any of the above lanthanum gallate-based sintered bodies, the average particle diameter of the alumina particles is one third or less of the average particle diameter of the lanthanum gallate-based oxide particles. Provide a sintered body.
【0016】さらにまた、ランタンガレート系酸化物の
粉末100重量部に対して1.5重量部以上、6重量部
以下のアルミナ粉末を添加した原料を成形および焼成
し、ランタンガレート系酸化物組成を変化させずに、ア
ルミナが添加された焼結体を得ることを特徴とするラン
タンガレート系焼結体の製造方法を提供する。Further, a raw material in which 1.5 to 6 parts by weight of alumina powder is added to 100 parts by weight of the lanthanum gallate-based oxide powder is molded and fired to obtain a lanthanum gallate-based oxide composition. Provided is a method for producing a lanthanum gallate-based sintered body, characterized in that a sintered body to which alumina is added is obtained without any change.
【0017】さらにまた、上記いずれかのランタンガレ
ート系焼結体を固体電解質として用いたことを特徴とす
る燃料電池を提供する。Further, the present invention provides a fuel cell characterized in that any one of the above lanthanum gallate-based sintered bodies is used as a solid electrolyte.
【0018】[0018]
【発明の実施の形態】以下、本発明について具体的に説
明する。本発明に係るランタンガレート系焼結体は、L
SGM100重量部に対して1.5重量部以上、6重量
部以下のアルミナを添加した組成を有する。つまり、L
SGMがその組成を変化させずに存在し、さらに1.5
〜6重量部のアルミナが添加されている。この場合に、
アルミナ粒子がランタンガレート系酸化物粒子の粒界に
分散している状態となっていることが好ましい。BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, the present invention will be described specifically. The lanthanum gallate-based sintered body according to the present invention has L
It has a composition in which 1.5 to 6 parts by weight of alumina is added to 100 parts by weight of SGM. That is, L
SGM is present without changing its composition, and an additional 1.5
66 parts by weight of alumina is added. In this case,
It is preferable that the alumina particles are in a state of being dispersed at the grain boundaries of the lanthanum gallate-based oxide particles.
【0019】本発明で用いるLSGMの組成(陽イオン
構成比)はLa1-sSrsGa1-mMgmOxの組成比を満
たしていれば特に限定されるものではないが、導電率や
雰囲気に対する安定性などの各特性を考慮すると、La
0.9Sr0.1Ga0.8Mg0.2Ox、あるいはLa0.8Sr
0.2Ga0.8Mg0.2Oxのような組成を有するものが好適
である。The composition of LSGM used in the present invention (cation composition ratio) is not particularly limited if they meet the composition ratio of La 1-s Sr s Ga 1 -m Mg m O x but conductivity Considering each property such as stability against atmosphere and atmosphere, La
0.9 Sr 0.1 Ga 0.8 Mg 0.2 Ox or La 0.8 Sr
Those having a composition such as 0.2 Ga 0.8 Mg 0.2 O x are preferable.
【0020】アルミナの添加量は、使用するLSGMの
組成(陽イオン構成比)や粒径の他、添加するアルミナ
の粒径や純度、さらには調製条件などにもよるが、LS
GM100重量部に対して1.5重量部以上、6重量部
以下であることが好ましい。アルミナが1.5重量部未
満では、強度向上などのアルミナの添加効果が十分に認
められず、6重量部を超えるとLSGM中のGaをAl
が置換してGaが排出されたり、Alと他の陽イオンと
が反応して、イオン導電性を示さない化合物を形成する
ことから好ましくない。アルミナ添加量のさらに好まし
い範囲は2重量部以上、5重量部以下である。The amount of alumina to be added depends on the composition (cation composition ratio) and particle size of the LSGM used, the particle size and purity of the alumina to be added, and the preparation conditions.
It is preferable that the amount is 1.5 parts by weight or more and 6 parts by weight or less based on 100 parts by weight of GM. If the amount of alumina is less than 1.5 parts by weight, the effect of adding alumina, such as improvement in strength, is not sufficiently recognized. If the amount exceeds 6 parts by weight, Ga in LSGM is converted to Al.
Is not preferred because Ga is exhausted due to substitution, or Al reacts with another cation to form a compound having no ionic conductivity. A more preferable range of the amount of added alumina is 2 parts by weight or more and 5 parts by weight or less.
【0021】LSGMの組成(陽イオン構成比)が変化
するのに応じて、格子間隔や結晶の対称性は変化する。
その挙動と導電率などの特性との関連性については明か
ではないが、一般にイオン半径が大きな陽イオンが存在
すると導電性が高くなることが知られている。したがっ
て、SrやMgがLSGM結晶外に排出されたり、Ga
がAlで置換されて格子問隔が減少することは、導電率
の低下につながると考えられる。As the composition (cation composition ratio) of the LSGM changes, the lattice spacing and crystal symmetry change.
Although the relationship between the behavior and properties such as conductivity is not clear, it is generally known that the presence of a cation having a large ionic radius increases conductivity. Therefore, Sr and Mg are discharged out of the LSGM crystal and Ga
Is substituted by Al and the lattice spacing is reduced, which is considered to lead to a decrease in conductivity.
【0022】AlとLSGMの反応によるLSGMの組
成(陽イオン構成比)の変化、あるいは、LSGM中へ
のAlの固溶は、LSGM結晶の対称性や格子間隔の変
化をもたらす。また、LSGMは結晶構造が安定なベロ
プスカイト型化合物に属するから、上述の各反応やAl
の固溶などによる結晶構造の変化は、X線回折において
は、回折ピーク位置のずれのほかに、回折ピークの分離
により知ることができる。回折ピーク位置のずれは、例
えば焼結体表面では上述の原因以外の原因によっても生
じることから、ピークの分離に注目することが必要であ
る。すなわち、ランタンガレート系酸化物のX線回折ピ
ークが分離していないことにより確認される範囲内で、
ランタンガレート系酸化物の陽イオン構成比、格子間隔
および対称性が維持されていることが望ましい。A change in the composition (cation composition ratio) of LSGM due to the reaction between Al and LSGM or a solid solution of Al in LSGM causes a change in the symmetry and lattice spacing of the LSGM crystal. Further, since LSGM belongs to a perovskite-type compound having a stable crystal structure, each of the above-described reactions and Al
In X-ray diffraction, a change in the crystal structure due to solid solution or the like can be known from the shift of the diffraction peak position and the separation of the diffraction peak. Since the shift of the diffraction peak position is caused, for example, by a cause other than the above-mentioned cause on the surface of the sintered body, it is necessary to pay attention to the separation of the peak. That is, within the range confirmed by the fact that the X-ray diffraction peak of the lanthanum gallate-based oxide is not separated,
It is desirable that the cation composition ratio, lattice spacing, and symmetry of the lanthanum gallate-based oxide be maintained.
【0023】焼結体におけるLSGM粒子の平均粒径は
3μm以下であることが好ましい。LSGM粒子の平均
粒径が3μmを超えると、強度が低くなるため好ましく
ない。The average particle size of the LSGM particles in the sintered body is preferably 3 μm or less. If the average particle size of the LSGM particles exceeds 3 μm, the strength is undesirably reduced.
【0024】また、焼結体におけるアルミナ粒子の平均
粒径がランタンガレート系酸化物粒子の平均粒径の1/
3以下であることが好ましい。アルミナ粒子の平均粒径
がランタンガレート系酸化物粒子の平均粒径の1/3を
超えると、母相の粒成長を抑制する効果が弱く、低強度
となることに加え、母相粒子間の酸化物イオンの移動を
妨げ、イオン導電率が低くなるため好ましくない。The average particle size of the alumina particles in the sintered body is 1/1 / the average particle size of the lanthanum gallate-based oxide particles.
It is preferably 3 or less. When the average particle size of the alumina particles exceeds one-third of the average particle size of the lanthanum gallate-based oxide particles, the effect of suppressing the grain growth of the matrix is weak, and in addition to the low strength, the This is not preferable because it hinders the movement of oxide ions and lowers the ionic conductivity.
【0025】なお、以上の平均粒径は、インターセプト
法により、単位線分長さを横切る粒子数Pを用いて、次
式で算出するものとする。 平均粒径〈L〉=1/PThe above average particle diameter is calculated by the following equation using the number P of particles crossing the length of a unit line segment by the intercept method. Average particle size <L> = 1 / P
【0026】以上のようなランタンガレート系焼結体
は、ランタンガレート系酸化物の粉末100重量部に対
して1.5重量部以上、6重量部以下、好ましくは2重
量部以上、5重量部以下のアルミナ粉末を添加した原料
を成形および焼成することにより得られる。The lanthanum gallate-based sintered body described above is used in an amount of 1.5 to 6 parts by weight, preferably 2 to 5 parts by weight, based on 100 parts by weight of the lanthanum gallate-based oxide powder. It is obtained by molding and firing a raw material to which the following alumina powder is added.
【0027】ランタンガレート系酸化物の粉末の平均一
次粒径は、0.2μm以上、5μm以下であることが望
ましい。0.2μm未満では粉体の取り扱い性が悪くな
り、5μmを超えると焼結に高温を要するために分解を
生じる。The average primary particle size of the lanthanum gallate-based oxide powder is desirably 0.2 μm or more and 5 μm or less. If it is less than 0.2 μm, the powder will be poor in handleability, and if it exceeds 5 μm, sintering will require a high temperature and decomposition will occur.
【0028】アルミナ粉末については、その平均一次粒
径は0.2μm以上、3μm以下、純度99%以上が望
ましい。アルミナ粉末の粒径が0.2μm未満と微細に
なると、粉体の取り扱い性が困難になり、成形体および
焼結体の内部に欠陥が含まれて強度の向上が妨げられる
他、LSGM中へのAlの固溶が容易となることでGa
の置換および排出が生じ、導電率が低下する。一方、3
μmを超えると粒径が大きく、または純度99%未満の
低純度のアルミナを用いると、緻密化が阻害されて強度
の向上が困難になる他、不純物が電気抵抗の高い絶縁粒
界を形成するなどの問題が生じる。The alumina powder preferably has an average primary particle size of 0.2 μm or more and 3 μm or less and a purity of 99% or more. If the particle size of the alumina powder is as fine as less than 0.2 μm, it becomes difficult to handle the powder, and defects are included in the inside of the molded body and the sintered body, which hinders the improvement of the strength. Ga can be easily dissolved in Al
Occurs and the conductivity is reduced. Meanwhile, 3
If the particle size exceeds μm, the use of low-purity alumina having a large particle size or a purity of less than 99% impairs densification, making it difficult to improve the strength. In addition, impurities form insulating grain boundaries having high electric resistance. And other problems.
【0029】原料粉末の成形および焼成は、常法に従っ
て行えばよく、その条件は特に限定されない。例えば、
冷間静水圧プレス(CIP)した後、1300〜140
0℃程度の範囲で焼成する。焼成雰囲気は空気中でもよ
いし、還元雰囲気であってもよい。このようにして、上
述のような、LSGM組成(陽イオン構成比)を変化さ
せずに、アルミナが添加されたランタンガレート系焼結
体が得られる。The molding and firing of the raw material powder may be performed according to a conventional method, and the conditions are not particularly limited. For example,
After cold isostatic pressing (CIP), 1300-140
It is fired in a range of about 0 ° C. The firing atmosphere may be air or a reducing atmosphere. In this manner, a lanthanum gallate-based sintered body to which alumina is added can be obtained without changing the LSGM composition (cation composition ratio) as described above.
【0030】上記ランタンガレート系焼結体は、従来の
ランタンガレート系焼結体と比較して強度が高く、かつ
固体電解質として優れた特性を有する。シート状の上記
ランタンガレート系焼結体の両面に空気極材料と燃料極
材料とを焼き付けたものを固体電解質として燃料電池を
構成すれば、動作温度が従来よりも低い、優れた特性を
得ることができる。The lanthanum gallate-based sintered body has higher strength than a conventional lanthanum gallate-based sintered body and has excellent characteristics as a solid electrolyte. If a fuel cell is constituted by baking an air electrode material and a fuel electrode material on both sides of the sheet-shaped lanthanum gallate-based sintered body as a solid electrolyte, the operating temperature is lower than before, and excellent characteristics can be obtained. Can be.
【0031】[0031]
【実施例】以下に、本発明の実施例を比較例とともに説
明する。なお、本発明は以下の例に限定されるものでは
ない。 (実施例1ないし4)表1に示す配合に従い、LSGM
粉末とアルミナ粉末を工タノール中で粉砕・混合した。
これを乾燥後、CIPして得られた成形体を、空気中、
1300℃ないし1400℃で焼成して、緻密な焼結体
とした。得られた焼結体について、(i)相対比重、(ii)
空気中および4%H2−N2中(実際の燃料ガスと類似の
酸素分圧)、室温から800℃での熱膨張係数、(iii)
X線回折、(iv)空気中、室温および800℃での曲げ強
度、および、(v)酸素雰囲気中、600℃ないし100
0℃での導電率、(vi)酸素分圧102ないし10-18kP
a(1ないし10-20atm)、800℃での導電率を
測定した。これらを代表する結果を表1に示す。また、
導電率の温度依存性を図1に、導電率の酸素分圧依存性
を図2にそれぞれ示す。EXAMPLES Examples of the present invention will be described below together with comparative examples. The present invention is not limited to the following examples. (Examples 1 to 4) According to the composition shown in Table 1, LSGM
The powder and the alumina powder were ground and mixed in ethanol.
After drying this, the molded product obtained by CIP is placed in the air,
It was fired at 1300 ° C. to 1400 ° C. to obtain a dense sintered body. About the obtained sintered body, (i) relative specific gravity, (ii)
Thermal expansion coefficient from room temperature to 800 ° C. in air and 4% H 2 —N 2 (oxygen partial pressure similar to actual fuel gas), (iii)
X-ray diffraction, (iv) bending strength in air at room temperature and 800 ° C., and (v) 600 ° C. to 100 ° C. in an oxygen atmosphere.
Conductivity at 0 ° C., (vi) oxygen partial pressure of 10 2 to 10 −18 kP
a (1 to 10 −20 atm), the conductivity at 800 ° C. was measured. Table 1 shows the representative results. Also,
FIG. 1 shows the temperature dependency of the conductivity, and FIG. 2 shows the oxygen partial pressure dependency of the conductivity.
【0032】なお、相対比重は、1400℃で焼成した
アルミナ無添加試料(比較例9)を基準とし、それぞれ
の試料についてアルキメデス法により求めた嵩比重を用
いて算出した。アルミナを添加した場合は、これによる
組成の変化がないものとして算出した。また、熱膨張係
数は焼結アルミナを標準試料とする示差熱膨張測定によ
り求めた。曲げ強度は、JISR1601/1604準
拠の3点曲げ試験法によって測定した。さらに導電率
は、直流4端子法により測定した。The relative specific gravity was calculated using the bulk specific gravity determined by the Archimedes method for each sample based on the sample without alumina added (comparative example 9) fired at 1400 ° C. When alumina was added, the calculation was performed on the assumption that there was no change in the composition due to this. The coefficient of thermal expansion was determined by differential thermal expansion measurement using sintered alumina as a standard sample. The bending strength was measured by a three-point bending test method based on JISR1601 / 1604. Further, the conductivity was measured by a DC four-terminal method.
【0033】以上の結果から、アルミナを添加しない場
合(以下の比較例7、8)と比較して、以下のような特
長を有することが確認された。 (i)熱膨張率の差異は酸化・還元両雰囲気下において実
質的に認められず、雰囲気の変動に対する材料の寸法安
定性が確認された。 (ii)強度は室温および高温ともに大幅に向上した。 (iii)図1の導電率の温度依存性の結果から明らかなよ
うに、導電率の温度依存性が弱く、酸化物イオン導電性
の活性化エネルギが低下した。このため、導電率は80
0℃(1073K)ではアルミナ添加によるわずかな低
下が認められるが、それ以下の温度ではむしろ向上し
た。 (iv)図2の導電率の酸素分圧依存性の結果から、酸素分
圧による導電性の変化は認められず、実際の燃料電池に
おいて起こりうる幅広い酸素分圧範囲において、酸化物
イオン伝導支配となっていることが確認された。また、
焼結性はアルミナ無添加の場合と同等以上であり、X線
回析のピークに分離は認められなかった。From the above results, it was confirmed that the following advantages were obtained as compared with the case where alumina was not added (Comparative Examples 7 and 8 described below). (i) The difference in the coefficient of thermal expansion was not substantially observed under both the oxidizing and reducing atmospheres, confirming the dimensional stability of the material with respect to the fluctuation of the atmosphere. (ii) Strength was greatly improved at both room temperature and high temperature. (iii) As is clear from the results of the temperature dependence of the conductivity in FIG. 1, the temperature dependence of the conductivity was weak, and the activation energy of the oxide ion conductivity was reduced. Therefore, the conductivity is 80
At 0 ° C. (1073 K), a slight decrease was observed due to the addition of alumina. (iv) From the result of the dependence of the conductivity on the oxygen partial pressure in FIG. 2, no change in the conductivity due to the oxygen partial pressure was observed, and the oxide ion conduction dominated in a wide range of oxygen partial pressures that could occur in an actual fuel cell. Was confirmed. Also,
The sinterability was equal to or higher than the case where alumina was not added, and no separation was observed in the peak of X-ray diffraction.
【0034】さらに、実施例1に記載の原料を用いてシ
ート成型を行い、1400℃で焼成することにより、6
0xl0-3m角、0.15xl0-3m厚の焼結体シート
を作製した。このシートの両面に、空気極材料と燃料極
材料とを焼き付け、酸化剤に空気、燃料に3%加湿水素
を用いて、800℃で発電試験を行ったところ、電圧が
定格0.7V、最大0.5Vにおいて、電流密度が定格
0.3A/cm2、最大0.6A/cm2の性能が得られ
た。Further, a sheet was formed using the raw materials described in Example 1 and calcined at 1400 ° C.
0xl0 -3 m square, to produce a sintered body sheet of 0.15xl0 -3 m thick. An air electrode material and a fuel electrode material were baked on both sides of this sheet, and a power generation test was performed at 800 ° C. using air as the oxidizing agent and 3% humidified hydrogen as the fuel. At 0.5 V, the current density was rated at 0.3 A / cm 2 , and the maximum performance was 0.6 A / cm 2 .
【0035】(比較例1ないし4)表1に示す配合に従
い、アルミナ添加量を本発明の範囲外とする以外は、上
記実施例1ないし4と同様の方法により調製した試験片
を用いて物性を測定した。その結果を表1に示す。表1
に示すように、アルミナ添加量が本発明の範囲を外れた
場合には、LSGMと比較して、強度の向上が認められ
ない(比較例1および2)、導電率が大きく低下する
(比較例3および4)など、アルミナ添加の効果が認め
られなかった。また、本発明の範囲以上のアルミナを添
加した場合(比較例3および4)では、AlによるGa
の置換・排出によるX線回折ピークの分離が認められ
た。(Comparative Examples 1 to 4) Physical properties were measured using test pieces prepared in the same manner as in Examples 1 to 4 above, except that the amount of alumina added was out of the range of the present invention in accordance with the formulation shown in Table 1. Was measured. Table 1 shows the results. Table 1
As shown in Table 2, when the amount of added alumina was out of the range of the present invention, no improvement in strength was observed compared to LSGM (Comparative Examples 1 and 2), and the conductivity was significantly reduced (Comparative Example). No effect of adding alumina, such as 3 and 4), was observed. In addition, in the case where alumina more than the range of the present invention was added (Comparative Examples 3 and 4), Ga
Separation of the X-ray diffraction peak due to the substitution and discharge of the compound was observed.
【0036】(比較例5および6)表1に示す配合に従
い、LSGM中のGaの一部をAlで置換した配合とす
る以外は、上記実施例1ないし4と同様の方法により調
製した試験片を用いて物性を測定した。その結果を表1
に示す。表1に示すように、GaをAlで置換した配合
では、LSGMと比較して、熱膨張係数が増大する、強
度の向上がわずかであるなど、アルミナ添加の効果が得
られなかった。(Comparative Examples 5 and 6) Specimens prepared in the same manner as in Examples 1 to 4 except that a part of Ga in LSGM was replaced with Al in accordance with the composition shown in Table 1. Was used to measure the physical properties. Table 1 shows the results.
Shown in As shown in Table 1, in the composition in which Ga was replaced with Al, the effects of adding alumina were not obtained, such as an increase in the thermal expansion coefficient and a slight improvement in strength, as compared with LSGM.
【0037】(比較例7ないし9)表1に示す配合に従
い、アルミナを添加せず、LSGM単味とする以外は、
実施例1ないし4と同様の方法により調製した試験片を
用いて物性を測定した。その結果を表1に示す。表1に
示すように、アルミナを添加しない場合には、強度が低
く、実用的な電解質膜を得ることはできないことが確認
された。(Comparative Examples 7 to 9) According to the formulation shown in Table 1, except that alumina was not added and LSGM was plain,
Physical properties were measured using test pieces prepared in the same manner as in Examples 1 to 4. Table 1 shows the results. As shown in Table 1, it was confirmed that when alumina was not added, the strength was low and a practical electrolyte membrane could not be obtained.
【0038】次に、上述のようにLSGMに添加するア
ルミナの量を変化させたサンプルの走査型電子顕微鏡
(SEM)写真を図3ないし図11に示す。なお、図3
ないし図5は倍率が2000倍であり、図6ないし図1
1は倍率が5000倍である。図3はアルミナ無添加の
サンプル(比較例7)であり、粒径が10μm程度の大
きなLSGM結晶粒が存在しているのがわかる。図4お
よび図5はそれぞれアルミナを0.5重量部、1重量部
添加したサンプル(比較例1,2)であり、アルミナが
0.5重量部でもLSGM結晶粒の粒成長が抑制されて
いるのが確認される。ただし、LSGM結晶粒界にアル
ミナ結晶の存在は確認されない。図6、図7、図8およ
び図9は、それぞれアルミナを2重量部、3重量部、4
重量部および5重量部添加したサンプル(実施例1ない
し4)であり、アルミナの量が増加するに従って結晶粒
が一層微細になっているのが確認される。また、いずれ
もLSGM結晶粒界に微細なアルミナ結晶粒(黒い結晶
粒)が分散していることが確認される。図10および図
11は、それぞれアルミナを7.5重量部、10重量部
添加したサンプル(比較例3,4)であり、アルミナの
増加にともなってさらに一層LSGM結晶粒径が微細に
なっていることが確認される。ただし、それと同時にL
SGM結晶粒界に析出するアルミナの量が多く、かつそ
の結晶粒径が大きくなっていることがわかる。この状態
ではむしろアルミナ結晶がLSGM結晶の導電性を阻害
していると考えられる。Next, FIGS. 3 to 11 show scanning electron microscope (SEM) photographs of the samples in which the amount of alumina added to the LSGM was changed as described above. Note that FIG.
5 to FIG. 5 have a magnification of 2000 times, and FIGS.
1 is 5000 times magnification. FIG. 3 shows a sample containing no alumina (Comparative Example 7), and it can be seen that large LSGM crystal grains having a particle size of about 10 μm are present. FIGS. 4 and 5 show samples (Comparative Examples 1 and 2) to which 0.5 part by weight and 1 part by weight of alumina were added, respectively, and the grain growth of LSGM crystal grains was suppressed even with 0.5 part by weight of alumina. Is confirmed. However, the presence of alumina crystals at the LSGM crystal grain boundaries is not confirmed. 6, 7, 8 and 9 show 2 parts by weight of alumina, 3 parts by weight and 4 parts by weight of alumina, respectively.
In the samples (Examples 1 to 4) to which parts by weight and 5 parts by weight were added, it was confirmed that the crystal grains became finer as the amount of alumina increased. In each case, it is confirmed that fine alumina crystal grains (black crystal grains) are dispersed in the LSGM crystal grain boundaries. FIG. 10 and FIG. 11 are samples to which 7.5 parts by weight and 10 parts by weight of alumina were added, respectively (Comparative Examples 3 and 4), and the LSGM crystal grain size became further finer as the amount of alumina increased. It is confirmed that. However, at the same time, L
It can be seen that the amount of alumina precipitated at the SGM crystal grain boundary is large and the crystal grain size is large. In this state, it is considered that the alumina crystal rather hinders the conductivity of the LSGM crystal.
【0039】[0039]
【表1】 [Table 1]
【0040】[0040]
【発明の効果】以上説明したように、本発明によれば、
強度を大幅に向上することができ、低温域で高い導電率
を示し、熱膨張係数が実質的に増加しないランタンガレ
ート系焼結体が得られる。また、この焼結体を固体電解
質として用いた燃料電池は低温(800℃以下)におい
て優れた性能を示す。As described above, according to the present invention,
It is possible to obtain a lanthanum gallate-based sintered body whose strength can be greatly improved, shows high electrical conductivity in a low temperature range, and whose thermal expansion coefficient does not substantially increase. A fuel cell using this sintered body as a solid electrolyte exhibits excellent performance at low temperatures (800 ° C. or lower).
【図1】ランタンガレート系焼結体の導電率の温度依存
性を示す図。FIG. 1 is a diagram showing the temperature dependence of the conductivity of a lanthanum gallate-based sintered body.
【図2】ランタンガレート系焼結体の導電率の酸素分圧
依存性を示す図。FIG. 2 is a view showing the oxygen partial pressure dependence of the conductivity of a lanthanum gallate-based sintered body.
【図3】アルミナ無添加のランタンガレート系焼結体サ
ンプル(比較例7)の走査型電子顕微鏡写真。FIG. 3 is a scanning electron micrograph of a lanthanum gallate-based sintered body sample containing no alumina (Comparative Example 7).
【図4】アルミナを0.5重量部添加したランタンガレ
ート系焼結体サンプル(比較例1)の走査型電子顕微鏡
写真。FIG. 4 is a scanning electron micrograph of a lanthanum gallate-based sintered body sample in which 0.5 part by weight of alumina is added (Comparative Example 1).
【図5】アルミナを1.0重量部添加したランタンガレ
ート系焼結体サンプル(比較例2)の走査型電子顕微鏡
写真。FIG. 5 is a scanning electron micrograph of a lanthanum gallate-based sintered sample to which 1.0 part by weight of alumina has been added (Comparative Example 2).
【図6】アルミナを2重量部添加したランタンガレート
系焼結体サンプル(実施例1)の走査型電子顕微鏡写
真。FIG. 6 is a scanning electron microscope photograph of a lanthanum gallate-based sintered body sample (Example 1) to which 2 parts by weight of alumina was added.
【図7】アルミナを3重量部添加したランタンガレート
系焼結体サンプル(実施例2)の走査型電子顕微鏡写
真。FIG. 7 is a scanning electron micrograph of a lanthanum gallate-based sintered body sample (Example 2) to which 3 parts by weight of alumina was added.
【図8】アルミナを4重量部添加したランタンガレート
系焼結体サンプル(実施例3)の走査型電子顕微鏡写
真。FIG. 8 is a scanning electron micrograph of a lanthanum gallate-based sintered body sample (Example 3) to which 4 parts by weight of alumina was added.
【図9】アルミナを5重量部添加したランタンガレート
系焼結体サンプル(実施例4)の走査型電子顕微鏡写
真。FIG. 9 is a scanning electron micrograph of a lanthanum gallate-based sintered body sample (Example 4) to which 5 parts by weight of alumina has been added.
【図10】アルミナを7.5重量部添加したランタンガ
レート系焼結体サンプル(比較例3)の走査型電子顕微
鏡写真。FIG. 10 is a scanning electron micrograph of a lanthanum gallate-based sintered body sample containing 7.5 parts by weight of alumina (Comparative Example 3).
【図11】アルミナを10重量部添加したランタンガレ
ート系焼結体サンプル(比較例4)の走査型電子顕微鏡
写真。FIG. 11 is a scanning electron micrograph of a lanthanum gallate-based sintered sample to which 10 parts by weight of alumina has been added (Comparative Example 4).
───────────────────────────────────────────────────── フロントページの続き (72)発明者 松崎 良雄 東京都荒川区南千住3−28−70−901 (72)発明者 小山 利幸 東京都練馬区小竹町2−40−1−302 (72)発明者 山川 孝宏 埼玉県鴻巣市寺谷835−11 (72)発明者 塚本 惠三 千葉県船橋市習志野台1−32−22−301 Fターム(参考) 4G030 AA07 AA09 AA13 AA34 AA36 BA03 GA03 GA04 GA19 GA25 5H026 AA06 BB00 BB01 EE12 HH01 HH05 ──────────────────────────────────────────────────続 き Continued on the front page (72) Inventor Yoshio Matsuzaki 3-28-70-901 Minamisenju, Arakawa-ku, Tokyo (72) Inventor Toshiyuki Koyama 2-40-1-302, Kotake-cho, Nerima-ku, Tokyo (72) Inventor Takahiro Yamakawa 835-11 Teratani, Konosu City, Saitama Prefecture (72) Inventor Keizo Tsukamoto 1-32-22-301 Narashinodai, Funabashi City, Chiba Prefecture F term (reference) 4G030 AA07 AA09 AA13 AA34 AA36 BA03 GA03 GA04 GA19 GA25 5H026 AA06 BB00 BB01 EE12 HH01 HH05
Claims (7)
に対して1.5重量部以上、6重量部以下のアルミナを
添加してなることを特徴とするランタンガレート系焼結
体。1. A lanthanum gallate-based sintered body comprising 1.5 to 6 parts by weight of alumina added to 100 parts by weight of a lanthanum gallate-based oxide.
物粒子の粒界に分散していることを特徴とする請求項1
に記載のランタンガレート系焼結体。2. The method according to claim 1, wherein the alumina particles are dispersed at the grain boundaries of the lanthanum gallate-based oxide particles.
2. A lanthanum gallate-based sintered body according to item 1.
ークが分離していないことにより確認される範囲内で、
ランタンガレート系酸化物の陽イオン構成比、格子間隔
および対称性が維持されていることを特徴とする請求項
1または請求項2に記載のランタンガレート系焼結体。3. An X-ray diffraction peak of a lanthanum gallate-based oxide within a range confirmed by not being separated,
The lanthanum gallate-based sintered body according to claim 1 or 2, wherein the cation composition ratio, lattice spacing, and symmetry of the lanthanum gallate-based oxide are maintained.
径が3μm以下であることを特徴とする請求項1ないし
請求項3のいずれか1項に記載のランタンガレート系焼
結体。4. The lanthanum gallate-based sintered body according to claim 1, wherein the average particle size of the lanthanum gallate-based oxide particles is 3 μm or less.
ート系酸化物粒子の平均粒径の1/3以下であることを
特徴とする請求項1ないし請求項4のいずれか1項に記
載のランタンガレート系焼結体。5. The lanthanum according to claim 1, wherein the average particle size of the alumina particles is one third or less of the average particle size of the lanthanum gallate-based oxide particles. Gallate-based sintered body.
重量部に対して1.5重量部以上、6重量部以下のアル
ミナ粉末を添加した原料を成形および焼成し、ランタン
ガレート系酸化物組成を変化させずに、アルミナが添加
された焼結体を得ることを特徴とするランタンガレート
系焼結体の製造方法。6. A lanthanum gallate-based oxide powder 100.
The raw material to which 1.5 to 6 parts by weight of alumina powder is added to the parts by weight is molded and fired, and the sintered body to which alumina is added is changed without changing the lanthanum gallate-based oxide composition. A method for producing a lanthanum gallate-based sintered body, characterized by being obtained.
に記載のランタンガレート系焼結体を固体電解質として
用いたことを特徴とする燃料電池。7. A fuel cell using the lanthanum gallate-based sintered body according to claim 1 as a solid electrolyte.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP22525198A JP4191821B2 (en) | 1998-07-24 | 1998-07-24 | Lanthanum gallate sintered body for solid electrolyte, method for producing the same, and fuel cell using the same as solid electrolyte |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP22525198A JP4191821B2 (en) | 1998-07-24 | 1998-07-24 | Lanthanum gallate sintered body for solid electrolyte, method for producing the same, and fuel cell using the same as solid electrolyte |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2000044340A true JP2000044340A (en) | 2000-02-15 |
JP4191821B2 JP4191821B2 (en) | 2008-12-03 |
Family
ID=16826388
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP22525198A Expired - Fee Related JP4191821B2 (en) | 1998-07-24 | 1998-07-24 | Lanthanum gallate sintered body for solid electrolyte, method for producing the same, and fuel cell using the same as solid electrolyte |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4191821B2 (en) |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2003043111A1 (en) * | 2001-11-15 | 2003-05-22 | Seimi Chemical Co., Ltd. | Composite oxide for solid oxide fuel cell and method for preparation thereof |
US6803140B2 (en) | 2000-08-28 | 2004-10-12 | Nissan Motor Co., Ltd. | Gallate based complex oxide electrolyte material |
JP2006059703A (en) * | 2004-08-20 | 2006-03-02 | Mitsubishi Materials Corp | Electrochemical cell |
JP2006082040A (en) * | 2004-09-17 | 2006-03-30 | Noritake Co Ltd | Oxide ion conductor and oxygen separation membrane element |
JP2007073272A (en) * | 2005-09-05 | 2007-03-22 | Noritake Co Ltd | Non-electron conductive composition graded solid electrolyte membrane |
US7205063B2 (en) | 2002-06-28 | 2007-04-17 | Nissan Motor Co., Ltd. | Lanthanum gallate-based sintered body, manufacturing method thereof, and solid oxide fuel cell using the same as solid electrolyte |
JP2009245628A (en) * | 2008-03-28 | 2009-10-22 | Mitsubishi Materials Corp | Solid electrolye and flat-type solid-oxide fuel cell |
JP2014082194A (en) * | 2012-09-28 | 2014-05-08 | Toto Ltd | Solid oxide fuel battery cell |
WO2025005186A1 (en) * | 2023-06-29 | 2025-01-02 | 京セラ株式会社 | Solid electrolyte layer, electrochemical cell, electrochemical cell device, module, and module storage device |
-
1998
- 1998-07-24 JP JP22525198A patent/JP4191821B2/en not_active Expired - Fee Related
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6803140B2 (en) | 2000-08-28 | 2004-10-12 | Nissan Motor Co., Ltd. | Gallate based complex oxide electrolyte material |
WO2003043111A1 (en) * | 2001-11-15 | 2003-05-22 | Seimi Chemical Co., Ltd. | Composite oxide for solid oxide fuel cell and method for preparation thereof |
US7368095B2 (en) | 2001-11-15 | 2008-05-06 | Seimi Chemical Co., Ltd. | Composite oxide for solid oxide fuel cell and method for preparation thereof |
US7205063B2 (en) | 2002-06-28 | 2007-04-17 | Nissan Motor Co., Ltd. | Lanthanum gallate-based sintered body, manufacturing method thereof, and solid oxide fuel cell using the same as solid electrolyte |
JP2006059703A (en) * | 2004-08-20 | 2006-03-02 | Mitsubishi Materials Corp | Electrochemical cell |
JP2006082040A (en) * | 2004-09-17 | 2006-03-30 | Noritake Co Ltd | Oxide ion conductor and oxygen separation membrane element |
JP2007073272A (en) * | 2005-09-05 | 2007-03-22 | Noritake Co Ltd | Non-electron conductive composition graded solid electrolyte membrane |
JP2009245628A (en) * | 2008-03-28 | 2009-10-22 | Mitsubishi Materials Corp | Solid electrolye and flat-type solid-oxide fuel cell |
JP2014082194A (en) * | 2012-09-28 | 2014-05-08 | Toto Ltd | Solid oxide fuel battery cell |
WO2025005186A1 (en) * | 2023-06-29 | 2025-01-02 | 京セラ株式会社 | Solid electrolyte layer, electrochemical cell, electrochemical cell device, module, and module storage device |
JP7657386B1 (en) | 2023-06-29 | 2025-04-04 | 京セラ株式会社 | Solid electrolyte layer, electrochemical cell, electrochemical cell device, module, and module housing device |
Also Published As
Publication number | Publication date |
---|---|
JP4191821B2 (en) | 2008-12-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Cao et al. | High performance low-temperature tubular protonic ceramic fuel cells based on barium cerate-zirconate electrolyte | |
JP2572883B2 (en) | Solid electrolyte membrane, solid electrolyte fuel cell having the same, and methods of manufacturing these | |
JP2719049B2 (en) | Method for producing lanthanum chromite membrane and method for producing interconnector for solid oxide fuel cell | |
Tu et al. | Preparation and performance of Na-doped La2Ce2O7 electrolytes for protonic ceramic fuel cells | |
CN113506905A (en) | A proton-conducting half-cell, proton-conducting solid oxide battery, and preparation method and application thereof | |
JP4383092B2 (en) | Electrochemical element | |
Solovyev et al. | Effect of sintering temperature on the performance of composite La 0.6 Sr 0.4 Co 0.2 Fe 0.8 O 3–Ce 0.9 Gd 0.1 O 2 cathode for solid oxide fuel cells | |
JP4191821B2 (en) | Lanthanum gallate sintered body for solid electrolyte, method for producing the same, and fuel cell using the same as solid electrolyte | |
Xin et al. | Fabrication of dense YSZ electrolyte membranes by a modified dry-pressing using nanocrystalline powders | |
JP3661676B2 (en) | Solid oxide fuel cell | |
JP5596594B2 (en) | FUEL ELECTRODE MATERIAL FOR SOLID OXIDE FUEL CELL, FUEL ELECTRODE, SOLID OXIDE FUEL CELL AND METHOD FOR PRODUCING FUEL ELECTRODE | |
JP3339983B2 (en) | Solid oxide fuel cell and method of manufacturing the same | |
JPH076622A (en) | Crystalline phase stabilized solid electrolyte material | |
Chen et al. | The structures, morphologies and intermediate-temperature electrochemical properties of CuO aided sintering Gd3+ and Ho3+ co-doped ceria electrolytes | |
JP4889166B2 (en) | Low-temperature sinterable solid electrolyte material, electrolyte electrode assembly and solid oxide fuel cell using the same | |
JP2003217597A (en) | Solid electrolyte type fuel cell | |
Tian et al. | Low-temperature co-sintering of co-ionic conducting solid oxide fuel cells based on Ce 0.8 Sm 0.2 O 1.9-BaCe 0.8 Sm 0.2 O 2.9 composite electrolyte | |
JP2008234915A (en) | Current collector material of solid oxide fuel cell, cathode current collector, and solid oxide fuel cell | |
KR100836060B1 (en) | Highly Conductive Scandia Stabilized Zirconia and Manufacturing Method of Electrolyte Using the Same | |
JP3501409B2 (en) | Self-supporting flat-plate solid electrolyte fuel cell | |
JP3351865B2 (en) | Fuel electrode for solid oxide fuel cell and self-standing membrane flat solid electrolyte fuel cell using this fuel electrode | |
JP6717331B2 (en) | Solid oxide fuel cell | |
JP4184039B2 (en) | Oxygen ion conductive solid electrolyte, electrochemical device using the same, and solid oxide fuel cell | |
JPH0365517A (en) | Lanthanum chromite-based compound oxide and use thereof | |
JP2771090B2 (en) | Solid oxide fuel cell |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20050411 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20080310 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20080408 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20080609 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20080902 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20080919 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110926 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110926 Year of fee payment: 3 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110926 Year of fee payment: 3 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110926 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120926 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120926 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130926 Year of fee payment: 5 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313117 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |