JPH0785875A - Solid electrolytic fuel cell - Google Patents

Solid electrolytic fuel cell

Info

Publication number
JPH0785875A
JPH0785875A JP5227460A JP22746093A JPH0785875A JP H0785875 A JPH0785875 A JP H0785875A JP 5227460 A JP5227460 A JP 5227460A JP 22746093 A JP22746093 A JP 22746093A JP H0785875 A JPH0785875 A JP H0785875A
Authority
JP
Japan
Prior art keywords
air electrode
cell
crystal phase
fuel cell
shrinkage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5227460A
Other languages
Japanese (ja)
Other versions
JP3342541B2 (en
Inventor
Masahide Akiyama
雅英 秋山
Shoji Yamashita
祥二 山下
Masahito Nishihara
雅人 西原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP22746093A priority Critical patent/JP3342541B2/en
Publication of JPH0785875A publication Critical patent/JPH0785875A/en
Application granted granted Critical
Publication of JP3342541B2 publication Critical patent/JP3342541B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

PURPOSE:To prevent the generation of breakdown of a cell with growth of grain of an air electrode and shrinkage due to burning at the time of manufacturing cell, or to prevent the generation of connection error between cells at the time of power generation due to the breakdown of the cell, and to obtain a cell having stability for a long time. CONSTITUTION:In a fuel cell, an air electrode is provided on one surface of a solid electrolyte, and a fuel electrode is provided on the other surface thereof. The air electrode is expressed by a formula (La1-x-yAx.By)z(Mn1-pCp)O3+ or -8. In the formula, an element A means 3a group elements of periodic table except for La such as Ti, Zn, Zr, Ce, Sn, Cu, and an element B means Ca, Sr, Ba or the like, and an element C means Cr, Co, Ni, Zr, Ce, Fe or the like. The air electrode is composed of a main crystal phase, in which (x), (y), (z) and (p) respectively satisfy a specified range, and a secondary crystal phase made of oxide of metals such as Ce, Zr, Ti, Ni and Cr, and crystal grains at 0.1-7mum of mean grain diameter as the secondary crystal phase exist at 0.05-20% by weight.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、固体電解質型燃料電池
セルに関し、詳細には、導電性を有する空気極材料の改
良に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a solid oxide fuel cell, and more particularly to improvement of a cathode material having conductivity.

【0002】[0002]

【従来技術】固体電解質型燃料電池においては、円筒型
と平板型の2種類の燃料電池について研究開発が行われ
ている。平板型燃料電池セルは、発電の単位体積当り出
力密度が高いという特長を有するが、実用化に関しては
ガスシ−ル不完全性やセル内の温度分布の不均一性など
の問題がある。それに対して、円筒型燃料電池セルで
は、出力密度は低いものの、セルの機械的強度が高く、
またセル内の温度の均一性が保てるという特長がある。
両形状の固体電解質燃料電池セルとも、それぞれの特長
を生かして積極的に研究開発が進められている。
2. Description of the Related Art In solid oxide fuel cells, research and development have been conducted on two types of fuel cells, a cylindrical type and a flat type. The flat plate type fuel cell has a feature that the power density per unit volume of power generation is high, but when it is put into practical use, there are problems such as incomplete gas seal and uneven temperature distribution in the cell. On the other hand, in the cylindrical fuel cell, although the power density is low, the mechanical strength of the cell is high,
Another advantage is that the temperature uniformity inside the cell can be maintained.
Both types of solid electrolyte fuel cells are being actively researched and developed by taking advantage of their respective characteristics.

【0003】円筒型燃料電池の単セルは、図1に示した
ように開気孔率40%程度のCaO安定化ZrO2 を支
持管1とし、その上にスラリ−ディップ法により多孔性
の空気極としてLaMnO3 系材料2を塗布し、その表
面に気相合成法(EVD)や、あるいは溶射法により固
体電解質3であるY2 3 安定化ZrO2 膜を被覆し、
さらにこの表面に多孔性のNi−ジルコニアの燃料極4
を設けられている。燃料電池のモジュ−ルにおいては、
各単セルはLaCrO3 系のインタ−コネクタ5を介し
て接続される。発電は、支持管1内部に空気(酸素)
を、セル外部に燃料(水素)を流し、1000〜105
0℃の温度で行われる。近年、このセル作製の工程にお
いてプロセスを単純化するため、空気極材料であるLa
MnO3 系材料を直接多孔性の支持管として使用する試
みがなされている。空気極としての機能を合せ持つ支持
管材料としては、LaをCaで20%またはSrで10
〜15%置換したLaMnO3 固溶体材料が用いられて
いる。
As shown in FIG. 1, a single cell of a cylindrical fuel cell has a support tube 1 made of CaO-stabilized ZrO 2 having an open porosity of about 40%, on which a porous air electrode is formed by a slurry-dip method. LaMnO 3 based material 2 is applied as the above, and its surface is coated with a Y 2 O 3 stabilized ZrO 2 film which is a solid electrolyte 3 by a vapor phase synthesis method (EVD) or a thermal spraying method,
Furthermore, a porous Ni-zirconia fuel electrode 4 is formed on this surface.
Is provided. In the fuel cell module,
The individual cells are connected via the LaCrO 3 system interconnector 5. Power is generated by air (oxygen) inside the support tube 1.
Fuel (hydrogen) to the outside of the cell,
It is carried out at a temperature of 0 ° C. In recent years, in order to simplify the process in the cell manufacturing process, the air electrode material, La, is used.
Attempts have been made to use MnO 3 based materials directly as a porous support tube. As a supporting tube material that also has a function as an air electrode, La is 20% in Ca or 10% in Sr.
A LaMnO 3 solid solution material with ~ 15% substitution is used.

【0004】また、平板型燃料電池の単セルは、円筒型
と同じ材料系を用いて、図2に示したように電解質6の
一方に多孔性の空気極7を、他方に多孔性の燃料極8を
設けられている。単セル間の接続には、セパレ−タ9と
呼ばれる緻密質のMgOやCaOを添加した緻密質のL
aCrO3 固溶体材料が用いられる。発電はセルの空気
極側に空気(酸素)、燃料極側に燃料(水素)を供給し
て1000〜1050℃の温度で行われる。
Further, the unit cell of the flat plate type fuel cell uses the same material system as the cylindrical type, and as shown in FIG. 2, one of the electrolyte 6 has a porous air electrode 7 and the other has a porous fuel electrode. A pole 8 is provided. For the connection between the single cells, a dense L called a separator 9 to which a dense MgO or CaO is added is used.
An aCrO 3 solid solution material is used. Power generation is performed at a temperature of 1000 to 1050 ° C. by supplying air (oxygen) to the air electrode side of the cell and fuel (hydrogen) to the fuel electrode side.

【0005】[0005]

【発明が解決しようとする問題点】しかしながら、前記
のCaO安定化ZrO2 を支持管とし、これにCaOや
SrOを固溶したLaMnO3 材料を空気極として設け
た構造のセルや、空気極を直接支持管として使用した構
造からなる円筒型燃料電池セルを作製する際、空気極は
通常1200〜1500℃の温度で焼成される。このた
め、上述のEVD法により固体電解質を形成する場合に
は1300℃の高温に、また溶射法においてもそれに近
い温度に空気極が保持される。そのため、この間に空気
極が焼結して収縮しセルそのものが破壊される現象が起
こり、これがセル作製の歩留まりを悪くしているのが現
状である。また、1000〜1050℃で長時間の発電
を行うと空気極が焼結して収縮しセル間の接続が悪くな
り出力が除々に低下するという問題もあった。また、平
板型燃料電池においても、同様に空気極が焼結して収縮
し剥離したり、あるいは固体電解質が破損したりする。
However, a cell having a structure in which the above-mentioned CaO-stabilized ZrO 2 is used as a support tube and a LaMnO 3 material in which CaO or SrO is formed as a solid solution is provided as an air electrode or an air electrode is used. When producing a cylindrical fuel cell having a structure used as a direct support tube, the air electrode is usually fired at a temperature of 1200 to 1500 ° C. Therefore, the air electrode is maintained at a high temperature of 1300 ° C. when the solid electrolyte is formed by the above-mentioned EVD method, and at a temperature close to that in the thermal spraying method. Therefore, during this period, a phenomenon occurs in which the air electrode sinters and shrinks, and the cell itself is destroyed, which adversely affects the yield of cell production. In addition, when power generation is performed at 1000 to 1050 ° C. for a long time, the air electrode sinters and shrinks, the connection between cells deteriorates, and the output gradually decreases. Also in the flat plate fuel cell, the air electrode also sinters and contracts and peels off, or the solid electrolyte is damaged.

【0006】また、この問題に加えて、従来の空気極材
料はセル作製時や発電中に電解質とに反応し、その両者
の界面に電気的に高抵抗の物質を生成し発電出力が時間
とともに低下したり、あるいは空気極が剥離するという
問題もある。
In addition to this problem, the conventional air electrode material reacts with the electrolyte at the time of cell production or during power generation, and an electrically high resistance substance is generated at the interface between the both, so that the power generation output changes with time. There is also a problem that it is lowered or the air electrode is peeled off.

【0007】本発明は、上記の複数の問題を同時に解決
し発電出力の安定した長寿命の固体電解質型燃料電池セ
ルを提供することを目的とした。
An object of the present invention is to solve the above-mentioned problems at the same time and to provide a solid oxide fuel cell unit having a stable power generation output and a long life.

【0008】[0008]

【課題を解決するための手段】発明者は上述の目的を達
成するために、燃料電池セルの空気極を構成する材質に
着目し検討を重ねた結果、主結晶相としてLaMnO3
(ランタンマンガナイト)系のペロブスカイト型主結晶
相以外に、Ce、Zr、Ti、NiおよびCrなどの金
属の酸化物結晶を第2結晶相として焼結体中に存在させ
たところ、空気極の焼成収縮を抑制し、発電出力の安定
した長寿命の燃料電池セルが得られることを知見した。
In order to achieve the above-mentioned object, the inventor has paid attention to the material forming the air electrode of the fuel cell and has made repeated studies. As a result, LaMnO 3 is used as the main crystalline phase.
In addition to the (lanthanum manganite) -based perovskite-type main crystal phase, when an oxide crystal of a metal such as Ce, Zr, Ti, Ni, and Cr was allowed to exist in the sintered body as the second crystal phase, It was found that a long-life fuel cell with stable firing output can be obtained by suppressing firing shrinkage.

【0009】即ち、本発明の固体電解質型燃料電池セル
は、固体電解質の一方の面に空気極を、他方の面に燃料
極を設けた燃料電池セルにおいて、前記空気極が少なく
ともLaとMnを含むペロブスカイト型複合酸化物から
なる主結晶相と、Ce、Zr、Ti、NiおよびCrの
群から選ばれる少なくとも1種の金属の酸化物からなる
第2結晶相からなり、前記ペロブスカイト型複合酸化物
が、下記化1
That is, the solid oxide fuel cell of the present invention is a fuel cell in which an air electrode is provided on one surface of a solid electrolyte and a fuel electrode is provided on the other surface, and the air electrode has at least La and Mn. A main crystal phase composed of a perovskite-type composite oxide and a second crystal phase composed of an oxide of at least one metal selected from the group of Ce, Zr, Ti, Ni, and Cr. However, the following

【0010】[0010]

【化1】 [Chemical 1]

【0011】で表される組成の酸化物で、化1中、元素
AはLa以外の周期律表第3a族元素、Ti、Zn、Z
r、Ce、Sn、Cuの群から選ばれる少なくとも1
種、元素Bはアルカリ土類元素から選ばれる少なくとも
1種と、元素CはCr、Co、Ni、Zr、Ceおよび
Feの群から選ばれた少なくとも1種であり、x、y、
zおよびpが、0.01≦x≦0.40、0.10≦y
≦0.60、0.88≦z≦1.05、0≦p≦0.3
0を満足し、且つ前記第2結晶相が0.01〜20重量
%の割合で、平均粒子径が0.1〜7μmの大きさの結
晶粒子として存在することを特徴とするものである。
In the chemical formula 1, the element A is an oxide having a composition represented by the following, and the element A is an element other than La in the 3a group of the periodic table, Ti, Zn, and Z.
at least 1 selected from the group consisting of r, Ce, Sn, and Cu
The element, element B is at least one element selected from alkaline earth elements, and the element C is at least one element selected from the group of Cr, Co, Ni, Zr, Ce and Fe, and x, y,
z and p are 0.01 ≦ x ≦ 0.40, 0.10 ≦ y
≦ 0.60, 0.88 ≦ z ≦ 1.05, 0 ≦ p ≦ 0.3
0, and the second crystal phase is present in the form of crystal particles having an average particle size of 0.1 to 7 μm in a proportion of 0.01 to 20% by weight.

【0012】以下、本発明を詳述する。本発明の固体電
解質型燃料電池セルは、図1に示されるような円筒状、
あるいは図2に示されるような平板型のいずれの形態に
も適用することができる。また、空気極は通常、導電性
の多孔質により構成され、場合によっては、空気極は支
持管としても利用される。
The present invention will be described in detail below. The solid oxide fuel cell of the present invention has a cylindrical shape as shown in FIG.
Alternatively, the present invention can be applied to any flat plate type as shown in FIG. Further, the air electrode is usually composed of a conductive porous material, and in some cases, the air electrode is also used as a support tube.

【0013】本発明に燃料電池セルにおける空気極は、
LaMnO3 系ペロブスカイト型結晶を主結晶相として
含むものであるが、本発明における大きな特徴は、前記
主結晶以外に、少なくともCe、Zr、Ti、Niおよ
びCrの群から選ばれる少なくとも1種の金属の酸化物
からなる第2結晶相を含む点にあり、かかる構成により
空気極の焼成収縮を抑制することができる。
In the present invention, the air electrode in the fuel cell is
Although it contains a LaMnO 3 type perovskite type crystal as a main crystal phase, a major feature of the present invention is that, in addition to the main crystal, at least one metal selected from the group consisting of Ce, Zr, Ti, Ni and Cr is oxidized. This is because it includes a second crystal phase composed of a substance, and such a configuration can suppress firing shrinkage of the air electrode.

【0014】また、この第2結晶相は主結晶相の粒界に
存在するものであって、それらは0.1〜7μmの大き
さの結晶粒子として、0.01〜20重量%の割合で存
在することも重要である。即ち、平均粒径が7μmを越
えたり、0.1μmより小さいと焼成収縮を抑制する効
果がなく、その量が0.05重量%より少ないと焼成収
縮の抑制効果がなく、また20重量%を越えると空気極
としての導電性が低下し、空気極としての機能が得られ
ないためである。好ましくは、平均粒径が2〜6μm、
量としては2〜10重量%が好ましい。
The second crystal phase exists at the grain boundaries of the main crystal phase, and they are 0.01 to 20% by weight as crystal particles having a size of 0.1 to 7 μm. Existence is also important. That is, if the average particle size exceeds 7 μm or is smaller than 0.1 μm, there is no effect of suppressing firing shrinkage, and if the amount is less than 0.05% by weight, there is no effect of suppressing firing shrinkage, and if it is 20% by weight. This is because if it exceeds, the conductivity as the air electrode is lowered and the function as the air electrode cannot be obtained. Preferably, the average particle size is 2 to 6 μm,
The amount is preferably 2 to 10% by weight.

【0015】なお、本発明における空気極を構成する主
結晶相は、LaMnO3 系ペロブスカイト型結晶である
が、望ましくは、下記化1
The main crystal phase constituting the air electrode in the present invention is a LaMnO 3 type perovskite type crystal, and preferably the following chemical formula 1

【0016】[0016]

【化1】 [Chemical 1]

【0017】で表される組成からなり、式中、元素Aは
La以外の周期律表第3a族元素、Ti、Zn、Zr、
Ce、Sn、Cuの群から選ばれる少なくとも1種で、
La以外の周期律表第3a族元素としてはY、Yb、S
c、Er、Dy、Nd、Smなどが挙げられる。また元
素BはCa、Ba、Srなどのアルカリ土類元素から選
ばれる少なくとも1種であり、元素CはCo、Ni、Z
r、Ce、Fe、Crの群から選ばれた少なくとも1種
であり、化1中のx、y、zおよびpが、 0.01≦x≦0.40 0.10≦y≦0.60 0.90≦z≦1.05 0≦p≦0.30 を満足するものである。このx、y、zおよびpの限定
理由としては、Laに対するCa、Sr、Baが置換比
率y値が原子比率で0.10より小さいと、800℃付
近のLaMnO3 固有の相変態に伴う膨張収縮が大き
く、y値が0.60より大きいと焼結性が難しく、16
50℃以上の高温でしか焼成できず実用的でない。Y、
Yb、Sc、Er等の置換比率x値が0.4より大きく
なっても収縮が大きくなる。これは、LaMnO3 への
Y、Yb、Sc、Er固溶量が大きくなるとLaイオン
の半径比の違いから結晶内に大きな格子歪みを生じ、こ
のため陽イオンの拡散の活性化エネルギーが減少して、
拡散係数が大きくなり、焼結収縮が大きくなるためと考
えられる。また、このx値が0.01より小さいと固体
電解質との熱膨張率を合わせるのが困難となり、空気極
の固体電解質との剥離を生じることがある。
In the formula, the element A is a group 3a element of the periodic table other than La, Ti, Zn, Zr,
At least one selected from the group of Ce, Sn, Cu,
As elements of Group 3a of the periodic table other than La, Y, Yb, S
c, Er, Dy, Nd, Sm and the like can be mentioned. The element B is at least one selected from alkaline earth elements such as Ca, Ba and Sr, and the element C is Co, Ni and Z.
It is at least one selected from the group consisting of r, Ce, Fe and Cr, and x, y, z and p in Chemical formula 1 are 0.01 ≦ x ≦ 0.40 0.10 ≦ y ≦ 0.60 It satisfies 0.90 ≦ z ≦ 1.050 0 ≦ p ≦ 0.30. The reason for limiting x, y, z, and p is that, when the substitution ratio y of Ca, Sr, and Ba with respect to La is smaller than 0.10 in atomic ratio, the expansion accompanying the LaMnO 3 -specific phase transformation near 800 ° C. If the shrinkage is large and the y value is larger than 0.60, the sinterability is difficult.
It is not practical because it can be fired only at a high temperature of 50 ° C. or higher. Y,
Even if the substitution ratio x value of Yb, Sc, Er, etc. becomes larger than 0.4, the shrinkage becomes large. This is because when the amount of Y, Yb, Sc, and Er solid solution in LaMnO 3 increases, a large lattice strain occurs in the crystal due to the difference in the La ion radius ratio, which reduces the activation energy for cation diffusion. hand,
It is considered that this is because the diffusion coefficient increases and the sintering shrinkage increases. Further, if this x value is smaller than 0.01, it becomes difficult to match the coefficient of thermal expansion with the solid electrolyte, and the air electrode may be separated from the solid electrolyte.

【0018】不定比性(構造中のAサイトとBサイトの
原子の存在比率)z値が0.88〜1.05の範囲を有
する系でもその格子欠陥構造が定比のLaMnO3 固溶
体のそれに類似しているため上記と同様な結果が得られ
る。しかしながら、この値が0.88より小さくなると
Mn2 3 が析出し焼成収縮が大きくなる。逆に、この
値が1.05を越えるとLa2 3 が析出して材料が短
時間に風化してしまう。
Non-stoichiometry (abundance ratio of atoms of A site and B site in the structure) Even in a system having az value in the range of 0.88 to 1.05, that of LaMnO 3 solid solution whose lattice defect structure is stoichiometric The similar results are obtained because of the similarity. However, when this value is smaller than 0.88, Mn 2 O 3 is precipitated and firing shrinkage increases. On the other hand, when this value exceeds 1.05, La 2 O 3 precipitates and the material weathers in a short time.

【0019】MnをFe、Co、Cr等で置換した場
合、その置換比率p値が、0.3を越えると焼結性が悪
くなり、1650℃以上に焼成温度を高める必要がある
ためである。x、y、zおよびpのより望ましい範囲
は、 0.05≦x≦0.20 0.20≦y≦0.40 0.95≦z≦1.00 0≦p≦0.10 の範囲である。
When Mn is replaced with Fe, Co, Cr, etc., if the replacement ratio p value exceeds 0.3, the sinterability deteriorates, and it is necessary to raise the firing temperature to 1650 ° C. or higher. . More desirable ranges of x, y, z and p are as follows: 0.05 ≦ x ≦ 0.20 0.20 ≦ y ≦ 0.40 0.95 ≦ z ≦ 1.00 0 ≦ p ≦ 0.10 is there.

【0020】本発明において、上述したような空気極を
製造する方法としては、具体的には、前記化1で示した
ようなLaMnO3 系材料の組成物を構成する金属の酸
化物や熱処理によって酸化物を形成できる炭酸塩、硝酸
塩、酢酸塩などを所定の割合で混合しその混合物を14
00℃〜1600℃の温度で仮焼処理して固溶体化処理
する。その後、この固溶体物を粉砕処理して、平均粒径
が4μm以上の固溶体粉末を得る。次に、この固溶体粉
末に対して第2結晶相を構成する金属酸化物の平均粒径
が0.1〜7μmの粉末を前記割合で混合し、その混合
物を用いて所望の成形手段、例えば、金型プレス,冷間
静水圧プレス,押出し成形等により任意の形状に成形
後、焼成する。焼成は、1100〜1600℃の酸化性
雰囲気中で2〜15時間程度行えばよい。また、第2結
晶相の析出量は、あらかじめ目的とする析出物となる酸
化物を固溶体粉末調製時に過剰に加えて調製することも
できる。
In the present invention, as a method for producing the above-mentioned air electrode, specifically, a metal oxide constituting the composition of the LaMnO 3 -based material as shown in Chemical Formula 1 or a heat treatment is used. Carbonates, nitrates, acetates, etc. capable of forming oxides are mixed in a predetermined ratio, and the mixture is mixed with 14
A calcination process is performed at a temperature of 00 ° C to 1600 ° C to form a solid solution. Then, the solid solution is pulverized to obtain a solid solution powder having an average particle size of 4 μm or more. Next, a powder having an average particle diameter of the metal oxide constituting the second crystal phase of 0.1 to 7 μm is mixed with the solid solution powder in the above proportion, and the mixture is used to form a desired molding means, for example, After being molded into an arbitrary shape by a die press, cold isostatic pressing, extrusion molding, etc., it is fired. The firing may be performed in an oxidizing atmosphere at 1100 to 1600 ° C. for about 2 to 15 hours. In addition, the amount of the second crystal phase to be precipitated can be prepared by previously adding an oxide, which is a target precipitate, in excess at the time of preparing the solid solution powder.

【0021】[0021]

【作用】従来の固体電解質型燃料電池セルの空気極材料
であるLa0.8 Ca0.2 MnO3 あるいはLa0.85Sr
0.15MnO3 中においては、下記化1
[Operation] La 0.8 Ca 0.2 MnO 3 or La 0.85 Sr which is the air electrode material of the conventional solid oxide fuel cell
In 0.15 MnO 3 ,

【0022】[0022]

【化2】 [Chemical 2]

【0023】の反応により高濃度の電子ホ−ルが生成す
る。大気中では、上記に加えて下記化2
The reaction of produces a high concentration of electron holes. In the atmosphere, in addition to the above,

【0024】[0024]

【化3】 [Chemical 3]

【0025】の反応により酸素を結晶内に取り込み、結
晶内の電気的中性条件を保持するため、LaとMnの陽
イオン空孔と電子ホ−ルが生成する。
Oxygen is taken into the crystal by the reaction of and the electrically neutral condition in the crystal is maintained, so that cation holes of La and Mn and electron holes are generated.

【0026】La0.8 Ca0.2 MnO3 あるいはLa
0.85Sr0.15MnO3 は大気中において両メカニズムに
より生成した電子ホ−ルにより大きな電気伝導を生じ
る。また、LaをさらにY、Yb等の希土類元素あるい
はMnをCr,Ni等で置換したLaMnO3 固溶体も
化1と同様な格子欠陥を生じるため、大きな電気伝導度
を有し空気極としても使用出来る。
La 0.8 Ca 0.2 MnO 3 or La
0.85 Sr 0.15 MnO 3 causes large electric conduction in the air due to the electron holes generated by both mechanisms. Further, a LaMnO 3 solid solution in which La is a rare earth element such as Y or Yb or Mn is replaced with Cr, Ni or the like also has a lattice defect similar to that of Chemical Formula 1, and thus has a large electric conductivity and can be used as an air electrode. .

【0027】両材料系とも電気特性は優れるものの、作
製時の焼成温度が1200〜1500℃と低いためにセ
ル作製時あるいは発電時に焼結して収縮しセル性能を悪
くする。LaをY、YbあるいはCe等で置換した材料
は従来のものに比較して収縮は改善されるが十分ではな
い。これに対して、作製時の焼成温度を従来より高める
と空気極として重要な機能である酸素ガスをイオン化す
る還元反応に対する触媒機能を悪くしてしまう。
Although both material systems have excellent electrical characteristics, since the firing temperature during production is as low as 1200 to 1500 ° C., they sinter and shrink during cell production or during power generation, resulting in poor cell performance. The material in which La is replaced with Y, Yb, Ce or the like improves the shrinkage as compared with the conventional material, but is not sufficient. On the other hand, if the firing temperature at the time of production is higher than that of the conventional one, the catalytic function for the reduction reaction for ionizing oxygen gas, which is an important function as an air electrode, is deteriorated.

【0028】そこで、本発明者は、空気極材料の焼成収
縮及び粒成長を焼結体中への第2結晶相の存在により抑
制しそれに伴う収縮を小さくすることを考えた。粒界に
介在物が存在する場合、経験的に粒界の移動により成長
できる粒子の限界の大きさ(D)は、近似的に下記数1
Therefore, the inventor of the present invention considered to suppress the firing shrinkage and grain growth of the air electrode material by the presence of the second crystal phase in the sintered body, and to reduce the shrinkage accompanying it. When inclusions are present at the grain boundaries, the limit size (D) of particles that can be grown empirically by the movement of the grain boundaries is approximately expressed by the following formula 1

【0029】[0029]

【数1】 [Equation 1]

【0030】の式で与えられる。この式より介在物の効
果は、粒子の大きさが小さくなるととともに、また体積
分率が増加すると増すことが分かる。
It is given by the equation: From this equation, it can be seen that the effect of inclusions increases with decreasing particle size and with increasing volume fraction.

【0031】本発明では、上記の経験式に基づき、介在
物となる第2の結晶相の種類と大きさ、その量について
種々検討を重ねた結果、第2結晶相として、CeO2
ZrO2 、TiO2 、NiOおよびCr2 3 が焼結収
縮抑制に効果があることを見出した。特に、第2結晶相
として割合が0.01〜20重量%、平均粒子径として
0.1〜7μmの範囲を有する上記組成の材料が空気極
としての機能を損なうこと無く焼成収縮を抑制できる。
In the present invention, based on the above empirical formula, various investigations have been conducted on the type, size, and amount of the second crystal phase serving as inclusions. As a result, as the second crystal phase, CeO 2 ,
It was found that ZrO 2 , TiO 2 , NiO and Cr 2 O 3 are effective in suppressing sintering shrinkage. In particular, the material having the above composition having a proportion of 0.01 to 20% by weight as the second crystal phase and an average particle diameter in the range of 0.1 to 7 μm can suppress firing shrinkage without impairing the function as an air electrode.

【0032】[0032]

【実施例】次に、本発明を実施例に基づき説明する。 実施例1 市販の純度99.9%以上のLa2 3 、Y2 3 、Y
2 3 、Sc2 3、Er2 3 、Dy2 3 、Nd
2 3 、Sm2 3 、CaCO3 、SrCO3、BaC
3 、Mn2 3 、NiO、CoO、ZrO2 、CeO
2 、FeO、Cr2 3 、SnO2 、CuO、TiO2
を出発原料として、表1、2、3に示した所定の組成に
なるように調合し、ジルコニアボ−ルを用いて10時間
混合した後、1500℃で10時間固相反応させペロブ
スカイト相からなる固溶体粉末を作製した。この粉末と
表1、2、3に示すCeO2 、TiO2 、CrO3 、Z
rO2 、NiO酸化物粉末を所定の比率になる様に混合
し、この混合粉末をジルコニアボ−ルを用いて10〜1
5時間混合粉砕した。この後、外径14mm、内径10
mm、長さ100mmに円筒状に成形して、1400〜
1500℃にて焼成し開気孔率が28〜30%の円筒状
焼結体を得た。
EXAMPLES Next, the present invention will be explained based on examples. Example 1 Commercially available La 2 O 3 , Y 2 O 3 and Y having a purity of 99.9% or more.
b 2 O 3 , Sc 2 O 3 , Er 2 O 3 , Dy 2 O 3 , Nd
2 O 3 , Sm 2 O 3 , CaCO 3 , SrCO 3 , BaC
O 3 , Mn 2 O 3 , NiO, CoO, ZrO 2 , CeO
2 , FeO, Cr 2 O 3 , SnO 2 , CuO, TiO 2
Was used as a starting material and was mixed so as to have a predetermined composition shown in Tables 1, 2, and 3 and mixed for 10 hours using a zirconia ball, and then solid-phase reacted at 1500 ° C. for 10 hours to form a perovskite phase. A solid solution powder was prepared. This powder and CeO 2 , TiO 2 , CrO 3 , and Z shown in Tables 1, 2 , and 3
rO 2 and NiO oxide powder were mixed in a predetermined ratio, and the mixed powder was mixed with a zirconia ball in an amount of 10 to 1
The mixture was ground for 5 hours. After this, outer diameter 14 mm, inner diameter 10
mm, length 100 mm, cylindrically shaped, 1400-
It was fired at 1500 ° C. to obtain a cylindrical sintered body having an open porosity of 28 to 30%.

【0033】得られた焼結体に対して、SEM観察によ
り析出物(第2結晶相)の平均粒子径を測定した。ま
た、この円筒状焼結体を電気炉を用いて、大気中120
0℃で300時間保持した後、円筒状焼結体の外径の寸
法測定を行い、熱処理前のそれと比較して数2
The average particle size of the precipitate (second crystal phase) of the obtained sintered body was measured by SEM observation. In addition, this cylindrical sintered body was heated in the atmosphere at 120
After holding at 0 ° C for 300 hours, the outer diameter of the cylindrical sintered body was measured, and it was compared with that before heat treatment by several 2

【0034】[0034]

【数2】 [Equation 2]

【0035】に従い収縮率を算出した。The shrinkage ratio was calculated according to

【0036】さらに、上記の円筒状焼結体より長さ60
mmの円筒を切り出し1000℃大気中で4端子法によ
り抵抗Rを測定し下記数3
Further, the length of the cylindrical sintered body is 60
mm cylinder was cut out and the resistance R was measured by the four-terminal method in the atmosphere at 1000 ° C.

【0037】[0037]

【数3】 [Equation 3]

【0038】に基づきシ−ト抵抗Rsを測定し、結果
は、表1、2及び3に示した。
The sheet resistance Rs was measured based on the results, and the results are shown in Tables 1, 2 and 3.

【0039】[0039]

【表1】 [Table 1]

【0040】[0040]

【表2】 [Table 2]

【0041】[0041]

【表3】 [Table 3]

【0042】表より、Laに対するCa等の置換比率、
yが0.1より小さい試料No.21、58では800℃
付近のLaMnO3 固有の相変態が抑制できずに収縮が
大きく、特に試料No.58では抵抗が高いものであっ
た。また、このyが0.6を越える試料No.28では焼
結性が悪く所定の開気孔率を有する焼結体が得られなか
った。
From the table, the substitution ratio of Ca or the like for La,
800 ° C for samples No. 21 and 58 with y smaller than 0.1
The phase transformation peculiar to LaMnO 3 in the vicinity could not be suppressed and the shrinkage was large, and the resistance was particularly high in Sample No. 58. Further, in sample No. 28 in which y exceeds 0.6, the sinterability was poor and a sintered body having a predetermined open porosity could not be obtained.

【0043】Y、Nd等のLaに対する置換比率、xが
0.4を越える試料No.47、およびxが0.01より
小さい試料No.57ではいずれも収縮が大きくなった。
不定性zについて、zが0.88より小さい試料No.2
9ではMn2 3 が析出して、収縮が大きかった。ま
た、zが1.05を越える試料No.33ではLa2 3
が析出して試料が短時間に分解した。また、Mnに対す
るCr等の置換に関して、その比率pが0.3を越える
試料No.63では焼結性が悪く所定の開気孔率を有する
焼結体を得られなかった。
In the replacement ratios of La such as Y and Nd with respect to La, sample No. 47 in which x exceeds 0.4, and sample No. 57 in which x is less than 0.01, the shrinkage is large.
For indeterminate z, sample No. 2 with z smaller than 0.88
In No. 9, Mn 2 O 3 was precipitated and the shrinkage was large. In the sample No. 33 in which z exceeds 1.05, La 2 O 3 is used.
Was deposited and the sample decomposed in a short time. Regarding substitution of Cr or the like for Mn, Sample No. 63 having a ratio p exceeding 0.3 had poor sinterability and a sintered body having a predetermined open porosity could not be obtained.

【0044】また、第2結晶相の添加に関して、比率が
20重量%を越える試料No.9、20、39では収縮が
抑制できなかった。また、第2結晶相の量が0.01重
量%より少ない試料No.1、2、3とも十分に収縮を抑
制することができなかった。
Regarding the addition of the second crystal phase, the shrinkage could not be suppressed in Sample Nos. 9, 20, and 39 in which the ratio exceeded 20% by weight. Further, in Sample Nos. 1, 2, and 3 in which the amount of the second crystal phase was less than 0.01% by weight, the shrinkage could not be sufficiently suppressed.

【0045】また、第2結晶相の粒子径が7μmを越え
る試料No.15でも同様に収縮抑制効果が認められなか
った。また、第2結晶相の平均粒子径が0.1μmより
小さい試料No.10も収縮が大きかった。これに対し
て、本発明品はいずれも導電性を維持したまま、収縮率
を2%以下に抑制することができた。
Also, in sample No. 15 in which the particle size of the second crystal phase exceeds 7 μm, the shrinkage suppressing effect was not similarly observed. Further, the sample No. 10 in which the average particle size of the second crystal phase is smaller than 0.1 μm also showed large shrinkage. On the other hand, in all the products of the present invention, the contraction rate could be suppressed to 2% or less while maintaining the conductivity.

【0046】実施例2 実施例1中のNo.1、28、44、77の材料を用いて
気孔率が34〜38%で、長さ200mm、外径16m
m、内径12mmの一端が封じた円筒状焼結体を作製
し、空気極としての機能を有するセルの支持管とした。
この後、気相合成法により1300℃で円筒状焼結体表
面に厚さ約50μmの電解質(10mol%Y2 3
90mol%ZrO2 )を被覆し、さらにこの上にスラ
リ−ディップ法により50μmの厚みに70重量%のN
iを含有したジルコニア(8mol%Y2 3 含有)の
燃料極を被覆し単セルとした。このセルを電気炉中に保
持し、セルの内側に酸素ガスを、外側に水素ガスを流
し、1000℃で400時間発電を行い、図3に発電時
間と出力密度との関係を示した。
Example 2 Using the materials No. 1, 28, 44 and 77 of Example 1, the porosity is 34 to 38%, the length is 200 mm, and the outer diameter is 16 m.
A cylindrical sintered body having an inner diameter of 12 mm and an inner diameter of 12 mm was sealed to prepare a cell supporting tube having a function as an air electrode.
After that, an electrolyte (10 mol% Y 2 O 3 −) having a thickness of about 50 μm was formed on the surface of the cylindrical sintered body at 1300 ° C. by a vapor phase synthesis method.
90 mol% ZrO 2 ), and further 70% by weight of N in a thickness of 50 μm by a slurry-dip method.
A zirconia (containing 8 mol% Y 2 O 3 ) fuel electrode containing i was coated to form a single cell. This cell was held in an electric furnace, oxygen gas was flown inside the cell, and hydrogen gas was flowed outside to generate power at 1000 ° C. for 400 hours. FIG. 3 shows the relationship between the power generation time and the output density.

【0047】図3から明らかなように、本発明のNo.4
4、77については、出力密度はほとんど変化しなかっ
た。それに対して、試料No.1,28は出力密度が低く
また時間とともに低下した。また、No.1は約300時
間後にセルが破壊した。これより、本発明の優れた性能
が認められた。
As is apparent from FIG. 3, No. 4 of the present invention is used.
With respect to Nos. 4 and 77, the power density hardly changed. On the other hand, Sample Nos. 1 and 28 had low power density and decreased with time. In No. 1, the cell broke after about 300 hours. From this, the excellent performance of the present invention was recognized.

【0048】[0048]

【発明の効果】以上詳述したように、本発明によれば、
円筒型固体電解質燃料電池セルの空気極として用いた場
合、セル作製時の空気極の粒成長および焼成収縮に伴う
セルの破損あるいはこれによる発電時のセル間の接続不
良を防ぎ、長期安定性のあるセルを提供できる。また、
平板型燃料電池セルにおいても、空気極の収縮による剥
離を防ぎ、出力低下などの問題を解決し、長期的に出力
が安定性した燃料電池セルを提供できる。
As described in detail above, according to the present invention,
When used as the air electrode of a cylindrical solid electrolyte fuel cell, it prevents damage to the cell due to grain growth and firing shrinkage of the air electrode during cell production or the resulting poor connection between cells during power generation, and long-term stability. Can provide a cell. Also,
Also in the flat plate type fuel cell, it is possible to prevent the peeling due to the contraction of the air electrode, solve the problems such as output reduction, and provide the fuel cell with stable output for a long period of time.

【図面の簡単な説明】[Brief description of drawings]

【図1】円筒型燃料電池セルの構造を示す図である。FIG. 1 is a diagram showing a structure of a cylindrical fuel cell unit.

【図2】平板型燃料電池セルの構造を示す図である。FIG. 2 is a view showing a structure of a flat plate type fuel cell unit.

【図3】実施例2の各試料の発電時間と出力密度との関
係を示した図である。
FIG. 3 is a diagram showing the relationship between the power generation time and the output density of each sample of Example 2.

【符号の説明】[Explanation of symbols]

1 支持管 2,7 空気極 3,6 固体電解質 4,8 燃料極 5 インタ−コネクタ 9 セパレータ 1 Support tube 2,7 Air electrode 3,6 Solid electrolyte 4,8 Fuel electrode 5 Inter-connector 9 Separator

【手続補正書】[Procedure amendment]

【提出日】平成5年10月7日[Submission date] October 7, 1993

【手続補正1】[Procedure Amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0014[Correction target item name] 0014

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0014】また、この第2結晶相は主結晶相の粒界に
存在するものであって、それらは0.1〜7μm の大き
さの結晶粒子として、0.01〜20重量%の割合で存
在することも重要である。即ち、平均粒径が7μm を越
えたり、0.1μm より小さいと焼成収縮を抑制する効
果がなく、その量が0.01重量%より少ないと焼成収
縮の抑制効果がなく、また20重量%を越えると空気極
としての導電性が低下し、空気極としての機能が得られ
ないためである。好ましくは、平均粒径が2〜6μm 、
量としては2〜10重量%が好ましい。
The second crystal phase is present at the grain boundaries of the main crystal phase, and they are 0.01 to 20% by weight as crystal particles having a size of 0.1 to 7 μm. Existence is also important. That is, if the average particle size exceeds 7 μm or is smaller than 0.1 μm, there is no effect of suppressing firing shrinkage, and if the amount is less than 0.01 wt%, there is no effect of inhibiting firing shrinkage, and if it is 20 wt%. This is because if it exceeds, the conductivity as the air electrode is lowered and the function as the air electrode cannot be obtained. Preferably, the average particle size is 2 to 6 μm,
The amount is preferably 2 to 10% by weight.

【手続補正2】[Procedure Amendment 2]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0017[Correction target item name] 0017

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0017】で表される組成からなり、式中、元素Aは
La以外の周期律表第3a族元素、Ti、Zn、Zr、
Ce、Sn、Cuの群から選ばれる少なくとも1種で、
La以外の周期律表第3a族元素としてはY、Yb、S
c、Er、Dy、Nd、Smなどが挙げられる。また元
素BはCa、Ba、Srなどのアルカリ土類元素から選
ばれる少なくとも1種であり、元素CはCo、Ni、Z
r、Ce、Fe、Crの群から選ばれた少なくとも1種
であり、化1中のx、y、zおよびpが、 0.01≦x≦0.40 0.10≦y≦0.60 0.88≦z≦1.05 0≦p≦0.30 を満足するものである。このx、y、zおよびpの限定
理由としては、Laに対するCa、Sr、Baが置換比
率y値が原子比率で0.10より小さいと、800℃付
近のLaMnO3 固有の相変態に伴う膨張収縮が大き
く、y値が0.60より大きいと焼結性が難しく、16
50℃以上の高温でしか焼成できず実用的でない。Y、
Yb、Sc、Er等の置換比率x値が0.4より大きく
なっても収縮が大きくなる。これは、LaMnO3 への
Y、Yb、Sc、Er固溶量が大きくなるとLaイオン
の半径比の違いから結晶内に大きな格子歪みを生じ、こ
のため陽イオンの拡散の活性化エネルギーが減少して、
拡散係数が大きくなり、焼結収縮が大きくなるためと考
えられる。また、このx値が0.01より小さいと固体
電解質との熱膨張率を合わせるのが困難となり、空気極
の固体電解質との剥離を生じることがある。
In the formula, the element A is a group 3a element of the periodic table other than La, Ti, Zn, Zr,
At least one selected from the group of Ce, Sn, Cu,
As elements of Group 3a of the periodic table other than La, Y, Yb, S
c, Er, Dy, Nd, Sm and the like can be mentioned. The element B is at least one selected from alkaline earth elements such as Ca, Ba and Sr, and the element C is Co, Ni and Z.
It is at least one selected from the group consisting of r, Ce, Fe and Cr, and x, y, z and p in Chemical formula 1 are 0.01 ≦ x ≦ 0.40 0.10 ≦ y ≦ 0.60 It satisfies 0.88 ≦ z ≦ 1.050 0 ≦ p ≦ 0.30. The reason for limiting x, y, z, and p is that, when the substitution ratio y of Ca, Sr, and Ba with respect to La is smaller than 0.10 in atomic ratio, the expansion accompanying the LaMnO 3 -specific phase transformation near 800 ° C. If the shrinkage is large and the y value is larger than 0.60, the sinterability is difficult.
It is not practical because it can be fired only at a high temperature of 50 ° C or higher. Y,
Even if the substitution ratio x value of Yb, Sc, Er, etc. becomes larger than 0.4, the shrinkage becomes large. This is because when the amount of Y, Yb, Sc, and Er solid solution in LaMnO 3 increases, a large lattice strain occurs in the crystal due to the difference in the La ion radius ratio, which reduces the activation energy for cation diffusion. hand,
It is considered that this is because the diffusion coefficient increases and the sintering shrinkage increases. Further, if this x value is smaller than 0.01, it becomes difficult to match the coefficient of thermal expansion with the solid electrolyte, and the air electrode may be separated from the solid electrolyte.

【手続補正3】[Procedure 3]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0022[Name of item to be corrected] 0022

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0022】[0022]

【化2】 [Chemical 2]

【手続補正4】[Procedure amendment 4]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0032[Name of item to be corrected] 0032

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0032】[0032]

【実施例】次に、本発明を実施例に基づき説明する。 実施例1 市販の純度99.9%以上のLa2 3 、Y2 3 、Y
2 3 、Sc2 3、Er2 3 、Dy2 3 、Nd
2 3 、Sm2 3 、CaCO3 、SrCO3、BaC
3 、Mn2 3 、NiO、CoO、ZrO2 、CeO
2 、FeO、Cr2 3 、SnO2 、CuO、Ti
2 、Gd2 3 を出発原料として、表1、2、3に示
した所定の組成になるように調合し、ジルコニアボール
を用いて10時間混合した後、1500℃で10時間固
相反応させペロブスカイト相からなる固溶体粉末を作製
した。この粉末と表1、2、3に示すCeO2 、TiO
2 、CrO3 、ZrO2 、NiO酸化物粉末を所定の比
率になる様に混合し、この混合粉末をジルコニアボール
を用いて10〜15時間混合粉砕した。この後、外径1
4mm、内径10mm、長さ100mmに円筒状に成形
して、1400〜1500℃にて焼成し開気孔率が28
〜30%の円筒状焼結体を得た。
EXAMPLES Next, the present invention will be explained based on examples. Example 1 Commercially available La 2 O 3 , Y 2 O 3 and Y having a purity of 99.9% or more.
b 2 O 3 , Sc 2 O 3 , Er 2 O 3 , Dy 2 O 3 , Nd
2 O 3 , Sm 2 O 3 , CaCO 3 , SrCO 3 , BaC
O 3 , Mn 2 O 3 , NiO, CoO, ZrO 2 , CeO
2 , FeO, Cr 2 O 3 , SnO 2 , CuO, Ti
O 2 and Gd 2 O 3 were used as starting materials and were mixed so as to have the predetermined compositions shown in Tables 1, 2, and 3 and mixed with zirconia balls for 10 hours, and then solid phase reaction was performed at 1500 ° C. for 10 hours. Then, a solid solution powder composed of a perovskite phase was prepared. This powder and CeO 2 and TiO shown in Tables 1, 2 and 3
2 , CrO 3 , ZrO 2 , and NiO oxide powder were mixed in a predetermined ratio, and the mixed powder was mixed and pulverized for 10 to 15 hours using zirconia balls. After this, the outer diameter 1
4 mm, inner diameter 10 mm, length 100 mm is formed into a cylindrical shape and baked at 1400 to 1500 ° C. to have an open porosity of 28.
A cylindrical sintered body of -30% was obtained.

【手続補正5】[Procedure Amendment 5]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0040[Correction target item name] 0040

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0040】[0040]

【表2】 [Table 2]

【手続補正6】[Procedure correction 6]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0041[Correction target item name] 0041

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0041】[0041]

【表3】 [Table 3]

【手続補正7】[Procedure Amendment 7]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0047[Correction target item name] 0047

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0047】図3から明らかなように、本発明のNo.4
4、77については、出力密度はほとんど変化しなかっ
た。それに対して、試料No.1、28は出力密度が低く
また時間とともに低下した。また、No.1は約350時
間後にセルが破壊した。これより、本発明の優れた性能
が認められた。
As is apparent from FIG. 3, No. 4 of the present invention is used.
With respect to Nos. 4 and 77, the power density hardly changed. On the other hand, Sample Nos. 1 and 28 had low power density and decreased with time. In No. 1, the cell broke after about 350 hours. From this, the excellent performance of the present invention was recognized.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】固体電解質の一方の面に空気極を、他方の
面に燃料極を設けた燃料電池セルにおいて、前記空気極
が少なくともLaとMnを含むペロブスカイト型複合酸
化物からなる主結晶相と、Ce、Zr、Ti、Niおよ
びCrの群から選ばれる少なくとも1種の金属の酸化物
からなる第2結晶相からなり、前記ペロブスカイト型複
合酸化物が、下記化1 【化1】 で表される組成の酸化物で、化1中、元素AはLa以外
の周期律表第3a族元素、Ti、Zn、Zr、Ce、S
n、Cuの群から選ばれる少なくとも1種、元素Bはア
ルカリ土類元素から選ばれる少なくとも1種、元素Cは
Cr、Co、Ni、Zr、CeおよびFeの群から選ば
れた少なくとも1種であり、x、y、zおよびpが、 0.01≦x≦0.40 0.10≦y≦0.60 0.88≦z≦1.05 0≦p≦0.30 を満足し、且つ前記第2結晶相が0.01〜20重量%
の割合で、平均粒子径が0.1〜7μmの大きさの結晶
粒子として存在することを特徴とする固体電解質型燃料
電池セル。
1. A fuel cell in which an air electrode is provided on one surface of a solid electrolyte and a fuel electrode is provided on the other surface, and the air electrode is a main crystalline phase composed of a perovskite complex oxide containing at least La and Mn. And a second crystal phase consisting of an oxide of at least one metal selected from the group of Ce, Zr, Ti, Ni and Cr, wherein the perovskite-type composite oxide is represented by the following chemical formula 1. In the chemical formula 1, the element A in the chemical formula 1 is a group 3a element other than La, Ti, Zn, Zr, Ce and S.
n, at least one selected from the group of Cu, element B is at least one selected from the alkaline earth elements, element C is at least one selected from the group of Cr, Co, Ni, Zr, Ce and Fe Yes, x, y, z and p satisfy 0.01 ≦ x ≦ 0.40 0.10 ≦ y ≦ 0.60 0.88 ≦ z ≦ 1.050 0 ≦ p ≦ 0.30, and 0.01 to 20% by weight of the second crystal phase
The solid electrolyte fuel cell is characterized by being present as crystal particles having an average particle size of 0.1 to 7 μm.
JP22746093A 1993-09-13 1993-09-13 Solid oxide fuel cell Expired - Fee Related JP3342541B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22746093A JP3342541B2 (en) 1993-09-13 1993-09-13 Solid oxide fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22746093A JP3342541B2 (en) 1993-09-13 1993-09-13 Solid oxide fuel cell

Publications (2)

Publication Number Publication Date
JPH0785875A true JPH0785875A (en) 1995-03-31
JP3342541B2 JP3342541B2 (en) 2002-11-11

Family

ID=16861227

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22746093A Expired - Fee Related JP3342541B2 (en) 1993-09-13 1993-09-13 Solid oxide fuel cell

Country Status (1)

Country Link
JP (1) JP3342541B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013126651A (en) * 2011-11-17 2013-06-27 Nippon Shokubai Co Ltd Catalyst for electrode, and method for manufacturing the same
JP2013143242A (en) * 2012-01-10 2013-07-22 Noritake Co Ltd Solid oxide fuel cell, and material for forming cathode for the fuel cell
CN105826602A (en) * 2016-03-17 2016-08-03 北京理工大学 Lithium-sulfur battery all-solid-state electrolyte and preparation method thereof
JP2016225036A (en) * 2015-05-27 2016-12-28 京セラ株式会社 Cell, cell stack device, module, and module accommodating device
TWI594488B (en) * 2014-07-08 2017-08-01 Univ Nat Taipei Technology Ceramic cathode material for solid oxide fuel cell and its preparation method

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013126651A (en) * 2011-11-17 2013-06-27 Nippon Shokubai Co Ltd Catalyst for electrode, and method for manufacturing the same
JP2013143242A (en) * 2012-01-10 2013-07-22 Noritake Co Ltd Solid oxide fuel cell, and material for forming cathode for the fuel cell
TWI594488B (en) * 2014-07-08 2017-08-01 Univ Nat Taipei Technology Ceramic cathode material for solid oxide fuel cell and its preparation method
JP2016225036A (en) * 2015-05-27 2016-12-28 京セラ株式会社 Cell, cell stack device, module, and module accommodating device
CN105826602A (en) * 2016-03-17 2016-08-03 北京理工大学 Lithium-sulfur battery all-solid-state electrolyte and preparation method thereof

Also Published As

Publication number Publication date
JP3342541B2 (en) 2002-11-11

Similar Documents

Publication Publication Date Title
JP3786402B2 (en) Method for introducing electrode active oxide into air electrode for solid oxide fuel cell
JPH08119732A (en) Production of solid electrolyte
JP3339983B2 (en) Solid oxide fuel cell and method of manufacturing the same
JPH09180731A (en) Solid electrolyte fuel cell
JP3342541B2 (en) Solid oxide fuel cell
JP3359413B2 (en) Solid oxide fuel cell
JP3121993B2 (en) Method for producing conductive ceramics
JPH04219364A (en) Lanthanum chromite-based oxide and its use
JP2009230929A (en) Current collector material of solid oxide fuel cell, air pole current collector, and solid oxide fuel cell
JP3342571B2 (en) Solid oxide fuel cell
JP3725997B2 (en) Method for manufacturing solid oxide fuel cell
JP3325378B2 (en) Conductive ceramics and fuel cell using the same
JP3359412B2 (en) Solid oxide fuel cell
JP3346668B2 (en) Solid oxide fuel cell
JP2771090B2 (en) Solid oxide fuel cell
JPH08130029A (en) Solid electrolyte fuel cell and its manufacture
JP3389407B2 (en) Conductive ceramics and fuel cells
JP3220320B2 (en) Fuel cell and method for producing conductive ceramics
KR101180058B1 (en) Double Perovskite Interconnect Materials and their Application Methods for Solid Oxide Fuel Cells
JP3359421B2 (en) Solid oxide fuel cell
JP3121991B2 (en) Conductive ceramics
JP4450179B2 (en) NiO-cerium-containing oxide mixed material and solid oxide fuel cell having the same
JP3725994B2 (en) Solid oxide fuel cell
JP3740342B2 (en) Solid oxide fuel cell
JP3091064B2 (en) Method for producing conductive ceramics and method for producing solid oxide fuel cell

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080823

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080823

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090823

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100823

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100823

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110823

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110823

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120823

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees