JPS6070136A - Surface treatment of work - Google Patents

Surface treatment of work

Info

Publication number
JPS6070136A
JPS6070136A JP58168405A JP16840583A JPS6070136A JP S6070136 A JPS6070136 A JP S6070136A JP 58168405 A JP58168405 A JP 58168405A JP 16840583 A JP16840583 A JP 16840583A JP S6070136 A JPS6070136 A JP S6070136A
Authority
JP
Japan
Prior art keywords
workpiece
plasma
powder
additive
work
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP58168405A
Other languages
Japanese (ja)
Other versions
JPH0353388B2 (en
Inventor
Norihiko Saga
佐賀 紀彦
Tsuyoshi Makita
蒔田 強
Hisao Hirono
広野 久雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP58168405A priority Critical patent/JPS6070136A/en
Priority to GB08423101A priority patent/GB2148166B/en
Priority to CA000463029A priority patent/CA1249038A/en
Priority to DE19843433698 priority patent/DE3433698A1/en
Priority to FR8414115A priority patent/FR2551770B1/en
Publication of JPS6070136A publication Critical patent/JPS6070136A/en
Publication of JPH0353388B2 publication Critical patent/JPH0353388B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C26/00Coating not provided for in groups C23C2/00 - C23C24/00
    • C23C26/02Coating not provided for in groups C23C2/00 - C23C24/00 applying molten material to the substrate
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/24Selection of soldering or welding materials proper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/24Selection of soldering or welding materials proper
    • B23K35/32Selection of soldering or welding materials proper with the principal constituent melting at more than 1550 degrees C
    • B23K35/327Selection of soldering or welding materials proper with the principal constituent melting at more than 1550 degrees C comprising refractory compounds, e.g. carbides

Abstract

PURPOSE:To provide high wear resistance to a work by preparing powder of a metallic different from the metallic material of the work or other material as an additive and by introducing the additive to the surface of the work together with plasma arc. CONSTITUTION:A plasma torch 2 is placed above the surface of a work 1 of a metallic material such as cast iron or an Al alloy, and mixing pipe 13 of ceramics or the like are arranged at the tip of the torch 2. A jet of plasma gas is blown on the surface of the work 1 from the torch 2, and at the same time, powder of a metallic material different from the metal of the work 1 or other material is fed as an additive 12 to the arc 10 through the pipes 13 with gaseous Ar as a carrier gas. The additive 12 is introduced into the melted part 11 together with the arc 10, and it is mixed with the metal of the part 11. The part 11 is then cooled to form a layer treated by remelting.

Description

【発明の詳細な説明】 本発明は例えばエンジンの動弁カムをワークとし、その
摺動面に高い耐摩耗性を与えるべく適用される表面処理
方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a surface treatment method that is applied to give high wear resistance to the sliding surface of a workpiece, for example, a valve operating cam of an engine.

従来この種方法として、鋳鉄その他の金属材料から成る
ワークの表面に、プラズマアークによる溶融部を生じさ
せると共に次で該溶融部を冷却凝固させてリメルト処理
層を形成させる式のものは知られるが、か\るものでは
該処理層は例えば該冷却凝固に際し、その冷却速度を増
大させてチル組織の硬化層に得られるに留まり、かくて
例えば前記した動弁カムの揚台、これに必ずしも充分な
耐摩耗性に得難い不都合を伴う。
Conventionally, as a method of this type, a method is known in which a plasma arc generates a molten part on the surface of a workpiece made of cast iron or other metal material, and then the molten part is cooled and solidified to form a remelt treatment layer. In such cases, the treated layer is merely obtained as a hardened layer of the chilled structure by increasing the cooling rate during the cooling and solidification, and thus is not necessarily sufficient for, for example, the above-mentioned lifting platform of the valve train cam. It is accompanied by disadvantages that are difficult to obtain in terms of wear resistance.

本発明はか\る不都合のない方法、即ちリメルト処理層
の各種の特性、例えば耐摩耗性を更に向上する表面処理
層を得る方法を提供することをその目的としたもので、
鋳鉄、アルミ合金その他の金属材料から成るワークの表
面に、プラズマアークによる溶融部を生じさせると共に
次で該溶融部を冷却凝固させてリメルト処理層を形成さ
せる式のものにおいて、該ワークの金属材料とは異種の
金属材料その他の材料の粉末から成る添加剤を用意し、
これを該プラズマアークに伴わせて該溶融部に導かせて
その内部に強制的に混入させることを特徴とする。
The object of the present invention is to provide a method that does not have such disadvantages, that is, a method for obtaining a surface treatment layer that further improves various properties of the remelt treatment layer, such as wear resistance.
In a method in which a plasma arc generates a molten part on the surface of a workpiece made of cast iron, aluminum alloy, or other metal material, and then the molten part is cooled and solidified to form a remelt treatment layer, the metal material of the workpiece is Prepare additives consisting of powders of metal materials and other materials different from the
It is characterized in that it is guided into the molten part along with the plasma arc and forcibly mixed into the molten part.

この場合、該添加剤は例えば、Ni、 Or、 M。In this case, the additive is, for example, Ni, Or, M.

その他の金属又はその合金、WO,Sin、 MO!O
Other metals or their alloys, WO, Sin, MO! O
.

0rlO,、B、Oその他の炭化物、BN、 TiBそ
の他の硼化惜、M o S! p WS2 、1F e
 Sその他硫化物、AltO。
0rlO,, B, O and other carbides, BN, TiB and other borides, M o S! p WS2, 1F e
S other sulfides, AltO.

5iOtその他の酸化物、等から選択される少くとも1
種類の粉末から成る。
At least one selected from 5iOt and other oxides, etc.
Consisting of different powders.

本発明方法を別紙図面にやき更に詳述するに、(1)は
鋳鉄1アルミ合金その他の金属材料から成る動弁カムそ
の他のワーク、(2)はこれに対向するプラズマトーチ
を示し、該トーチ(2)は第1図に明示するように中心
の電極(3)と、その外周に作動ガス通路(4)を介し
てノズル(5)と、その外周にシールドガス通路(6)
を介してシールドキャップ(力とを備えると共に該ノズ
ル(5]の先端に該作動ガス通路(4)に連るプラズマ
ガス通路(8)と、該ノズル(5)内に冷却水通路(9
)とを備えて成り、該プラズマガス通路(8)を介して
該ワーク(1)にプラズマガスのジェットが吹付けられ
ると共にこれを介して該ワーク(13上には該電極(3
)との間にプラズマアーク(IIが作用されて該ワーク
(1)の表面に溶融部−を生じ、かくて該トーチ(2)
を該ワーク(1)上で走査させれば、該溶融部(11)
はその走査線上に漸次連続して形成されると共にこれは
その始動側から漸次冷却凝固し、所謂リメルト処理層が
得られるもので、この点は従来のものと特に異らない。
The method of the present invention will be described in more detail with reference to the attached drawings. (1) shows a valve train cam and other workpieces made of cast iron, aluminum alloy, and other metal materials, and (2) shows a plasma torch opposing this. As clearly shown in Figure 1, (2) has a central electrode (3), a working gas passage (4) on its outer periphery, a nozzle (5), and a shielding gas passage (6) on its outer periphery.
and a plasma gas passage (8) connected to the working gas passage (4) at the tip of the nozzle (5), and a cooling water passage (9) in the nozzle (5).
), through which a jet of plasma gas is blown onto the work (1) through the plasma gas passage (8), and through which the electrode (3) is blown onto the work (13).
), a plasma arc (II) is applied between the workpiece (1) and the workpiece (1) to form a melted part on the surface thereof, and thus the torch (2)
is scanned over the workpiece (1), the melted part (11)
are gradually and continuously formed on the scanning line, and are gradually cooled and solidified from the starting side to obtain a so-called remelt treated layer, which is not particularly different from the conventional method.

本発明によれば前記したように骸ワーク(1)の金属材
料とは異種の材料の粉末を添加剤a2・とじて用意し、
これを核プラズマアーク(IQに伴わせて該溶融部−に
導かせてその内部に強制的に混入させるもので1その手
段としては例えば第1図に明示するように前記したプラ
ズマアークQO)に先端を臨ませて例えばセラミック製
の混合管Q31を用意し、前記した添加剤α2を例えば
アルゴンガスで搬送させて該混合管α9内を該アークa
c内に供給し、かくて該添加剤αりは該アークα〔に伴
われて該溶融部(illに導かれてその内部に混入され
るようにした。更に説明すれば、該プラズマトーチ(2
)におけるプラズマジェットの流速を20 m / s
ec %その外周のシールドガスの流速を033m/s
ecとし、該粉末の搬送速度を該シールドガスの流速の
1.5〜3倍以上の例えば7m/ secとし、かくて
該粉末は該シールドガス流に打勝って該プラズマジェッ
ト内に導かれるようにした。
According to the present invention, as described above, a powder of a material different from the metal material of the skeleton work (1) is prepared with additive a2,
This is caused by a nuclear plasma arc (which is guided into the molten part along with the IQ and forcibly mixed into the interior of the melted part1). A mixing tube Q31 made of ceramic, for example, is prepared with its tip facing forward, and the above-mentioned additive α2 is conveyed using, for example, argon gas, and the arc a is created inside the mixing tube α9.
In this way, the additive α was introduced into the molten zone (ill) along with the arc α and mixed into the interior of the plasma torch (ill). 2
) the flow velocity of the plasma jet at 20 m/s
ec %The flow velocity of the shielding gas around the outer circumference is 033 m/s
ec, and the conveying speed of the powder is set to 1.5 to 3 times the flow rate of the shielding gas, for example, 7 m/sec, so that the powder overcomes the shielding gas flow and is guided into the plasma jet. I made it.

本発明方法の各作動状態は例えば第2図乃至第6図示の
通りであり、即ち先づ第2図示のよ−>Kmプラズマト
ーチ(2)と該ワーク(1)との間に該プラズマアーク
αωを生じさせて該ワーク(1)側に第5図示のように
該溶融部(IIを生じさせる一方、該導入管0■内を介
して例えばアルゴンガスにより該添加剤(L7Jを搬送
させるもので、かくて第4図示のように該添加剤a21
は該プラズマアークQO1の上流側に導入されて加熱加
速されて該ア一りalと共に該溶融部−に導かれてその
内部に混入される。この際該プラズマトーチ(2)は横
方向に走査されて例えば第5図示のように該溶融部aυ
は漸次横方向に拡大すると共にその始端部は該ワーク(
1)の残部が有する大きな比熱により急速に冷却されて
凝固し、前記したリメルト処理層(11&)を作るが、
か−る作動に際し各溶融部−にはその内部に溶湯の上下
方向及び横方向の流動を生じて攪拌作用が与えられるも
ので、かくてこれに導かれた該添加剤a2は該攪拌作用
によりこの内部略均−に分散され、得られるリメルト処
理層(11a)は例えば第6図示のように内部に該添加
剤σ2が略均等に分散された状態となり1該処理層は該
添加剤(lzにより対応する特性、例えば耐摩耗性を向
上される。
Each operating state of the method of the present invention is, for example, as shown in FIGS. 2 to 6, that is, as shown in FIG. αω is generated to form the melted part (II) on the workpiece (1) side as shown in Figure 5, while the additive (L7J is conveyed by argon gas, for example, through the introduction pipe 0). Thus, as shown in the fourth diagram, the additive a21
is introduced into the upstream side of the plasma arc QO1, heated and accelerated, and guided together with the aluminum al into the molten zone and mixed therein. At this time, the plasma torch (2) is scanned in the lateral direction so that, for example, as shown in FIG.
gradually expands in the lateral direction, and its starting end reaches the workpiece (
The remainder of 1) is rapidly cooled and solidified due to the large specific heat it has, forming the remelt treatment layer (11&) described above.
During this operation, a stirring action is given to each melting part by causing the molten metal to flow vertically and horizontally within the melting part, and the additive a2 introduced therein is stirred by the stirring action. The remelt treatment layer (11a) obtained by dispersing the additive (lz Corresponding properties, such as wear resistance, are improved by this.

尚該プラズマアークa〔におけるプラズマジェットのガ
ス量は、通常のプラズマ溶融の場合と比較して少量の例
えば0.3〜’s、al7−とじ、この際該添加剤(I
2の搬送速度は例えば0.5 m /sec以上とし、
更に該アーク(10)の電流及び電圧は例えば30〜2
00 A、 20〜30Vとし、更に該添加剤a2の粉
末はそのサイズを200μ以下の例えば約100μとす
るが一般である。
The amount of gas in the plasma jet in the plasma arc a is smaller than that in normal plasma melting, for example, 0.3~'s, al7-, and at this time, the additive (I
The conveyance speed of 2 is, for example, 0.5 m/sec or more,
Further, the current and voltage of the arc (10) are, for example, 30 to 2
00 A, 20 to 30 V, and the size of the powder of additive a2 is generally 200 microns or less, for example, about 100 microns.

尚該添加剤a2は該溶融部C[1)に混入されたとき、
そのま−の粉末状態で分散され、或は少くともその一部
が溶融し或は熱分解されて該溶融部圓内にその合金或は
化合物を作るものとする。
Note that when the additive a2 is mixed into the melting zone C[1],
It may be dispersed in its original powder state, or at least a portion thereof may be melted or thermally decomposed to form the alloy or compound within the molten zone.

実施例1 第1図示の状態を使用してF030030大越試験片か
ら成るワーク(11を処理した。プラズマ[流150A
、プラズマガスの流量をα81/ mm 、プラズマト
ーチの走査速度をCL 5 In / minとし、そ
の全面にリメルト処理層を形成させ、これに添加剤α2
としてOr粉末を混入させた。
Example 1 A workpiece (11) consisting of F030030 Okoshi specimen was treated using the conditions shown in the first diagram.
, the flow rate of the plasma gas was set to α81/mm, the scanning speed of the plasma torch was set to CL5In/min, a remelt treatment layer was formed on the entire surface, and an additive α2 was added to this.
Or powder was mixed therein.

Or粉末はそのサイズを5〜100μとし、その供給速
度をα2 gr 7m1yrとした。該リメルト処理層
は表面から1.8Mの深さに形成され、これはその冷却
凝固時の急冷によりチル組成を呈した。該層内にはOr
が全域に亘り約12%の割合に略均−に分散して含有さ
れた。
The size of the Or powder was 5 to 100μ, and the feeding rate was α2 gr 7mlyr. The remelt treated layer was formed at a depth of 1.8 M from the surface, and exhibited a chill composition due to rapid cooling during cooling and solidification. In this layer, Or
were contained approximately evenly distributed over the entire area at a ratio of about 12%.

得られた製品をAとし、単なるリメルト処理層のものを
Bとして摩耗テストした結果は次の通りである。
The resulting product was designated as A and the product with a simple remelt treatment layer was designated as B. The results of the abrasion test are as follows.

01% 比摩耗量 A 1.2 a6x1o mrll/に9B O2,2
X10−?tp 該テステストけるロータはS()M420を浸炭焼入し
、次でこれにハードクロームメッキ′f:80μの肉厚
に施して成り、摩耗速度をts6m/sec 、最終荷
重を3.1 kg、摩擦距離f 200 mとした。
01% Specific wear amount A 1.2 a6x1o mrll/to 9B O2,2
X10-? tp The rotor used in the test was made of S()M420 carburized and quenched, and then hard chrome plated to a thickness of 80 μm. The wear rate was 6 m/sec, the final load was 3.1 kg, The friction distance was set to f 200 m.

実施例2 第1図示の装置を使用し、5500大越式摩耗試験片か
ら成るワーク(1)を処理した。プラズマ電流f:10
0A、プラズマガス量f 0.81 / vrinプラ
ズマトーチの走査速度′f:、0.5 m / mmと
して該試験片の全面を処理し、これに添加剤α渇として
Monoの粉末を添加した。そのサイズを2〜50μ、
搬送量を0.697閣とした。該リメルトは表面から1
.2 mmの深さに生じ、これはマルテンサイト組織を
呈した。該リメルト処理層内には全域に亘りMOが約4
6%の割合に略均等に分散して含有された。
Example 2 A workpiece (1) consisting of a 5500 Okoshi wear test piece was processed using the apparatus shown in the first figure. Plasma current f: 10
The entire surface of the specimen was treated at a plasma torch scanning speed of 0.0 A, a plasma gas amount f of 0.81/vrin, and a scanning speed of 0.5 m/mm, and Mono powder was added thereto as an additive α. Its size is 2~50μ,
The transport amount was set to 0.697 kaku. The remelt is 1 from the surface
.. It occurred at a depth of 2 mm and exhibited a martensitic structure. Within the remelt treatment layer, MO is approximately 4% over the entire area.
The content was approximately evenly distributed at a ratio of 6%.

得られる製品を0とし、単なるリメルト処理のものをD
とし、摩耗テストをした結果は次の通りである。
The resulting product is 0, and the product that is simply remelted is D.
The results of the wear test are as follows.

MO% 比摩耗量 o 5.2 7.8X1o 闘/ゆ 6 D Oa5X10 p 実施例3 第1図の装置を使用し、Ni−10%Ou合金の入超式
摩耗試験片から成るワーク(1)を処理した。プラズマ
電流を10OA、プラズマガスを0.81/min、プ
ラズマトーチの走査速度をa5m/1MLとしてその全
面を走査し、これに添加剤azとした’L’iBの粉末
を添加した。この供給量をl1lL49/iとした。該
処理層は深さ1.0 mmに生じ、この内部にはTiB
が全域に亘り約2.6%の割合に略均等に分散された。
MO% Specific wear amount o 5.2 7.8X1o Fight/Yu6 D Oa5X10 p Example 3 Using the apparatus shown in Fig. 1, a workpiece (1) consisting of a Ni-10%Ou alloy superposition wear test piece was prepared. processed. The entire surface was scanned with a plasma current of 10 OA, a plasma gas of 0.81/min, and a plasma torch scanning speed of a5 m/1 ML, and 'L'iB powder as an additive az was added thereto. This supply amount was defined as 111L49/i. The treated layer is formed to a depth of 1.0 mm, and inside this layer there is TiB.
was approximately evenly distributed over the entire area at a rate of about 2.6%.

その製品をEとし、単なるリメルト処理のものf、′I
Pとして比較した結果は次の通りである。
The product is E, and the product is simply remelted f, 'I
The results of comparison as P are as follows.

N:TiB% 比摩耗量 ’n 2.6 4.0X10 mJ/kli+6 IF Oil 7.2X10 # 実施例4 第1図の装置を使用し、FO30の入超式摩耗試験片か
ら成るワーク(1)に処理を施した。プラズマ電流を5
0A1プラズマガスを0.8ノ/酊プラズマトーチの走
査速度をa 5 m / winとし、その全面をリメ
ルトとしてこれにPeS粉末を混入させた。該粉末は5
〜30μのサイズであり、その搬送量をα3 fl /
 miRとした。該処理層は1.6胚の深さに形成され
、これはチル組織を呈したが、その内部にはFeSが全
域に亘り約2.0%の割合に略均等に分散して含有され
た。
N: TiB% Specific wear amount 'n 2.6 4.0X10 mJ/kli+6 IF Oil 7.2X10 # Example 4 Using the apparatus shown in Figure 1, a workpiece (1) consisting of an FO30 ultra-thread type wear test piece was prepared. was processed. Plasma current 5
The scanning speed of the plasma torch was set to a 5 m/win, and the entire surface of the 0A1 plasma gas was used as remelt and PeS powder was mixed therein. The powder is 5
The size is ~30μ, and the conveyance amount is α3 fl /
It was set as miR. The treated layer was formed at a depth of 1.6 embryos and exhibited a chilled tissue, but FeS was contained within the treated layer at a rate of about 2.0%, distributed approximately evenly over the entire area. .

その製品をGとし、単なるリメルト処理のものf:Hと
して摩耗テストした結果は次の通りである。
The results of an abrasion test using the product as G and a simple remelt treated product as f:H are as follows.

Fe8% 比摩耗量 G 2.0 6.9X10 nua/kgHD 2.2
X10″″ 〃 実施例5 第1図示の装置を使用し、A1合金AG2Bの入超式摩
耗試験片から成るワーク+11 f、処理した。
Fe8% Specific wear amount G 2.0 6.9X10 nua/kgHD 2.2
X10'''' 〃 Example 5 Using the apparatus shown in the first figure, a workpiece +11f consisting of an A1 alloy AG2B type wear test piece was processed.

プラズマ電流を100 A sプラズマガス量をα81
/mix、プラズマトーチの走査速度を(L8m/iと
し、その全面をリメルトしてこれにA ’l、O。
Plasma current: 100 A s Plasma gas amount: α81
/mix, the scanning speed of the plasma torch was set to (L8m/i), the entire surface was remelted, and A'l, O was applied to it.

の粉末を添加した。powder was added.

該粉末は0.5〜10μのサイズであり1その搬送量を
0.69 /+m++とした。処理層はn、am/mの
深さに形成され、その内部にはAl、O,が全域に亘り
約&0%の割合に略均等に分散して含有された。
The powder had a size of 0.5 to 10μ, and the amount of transport was 0.69/+m++. The treated layer was formed to a depth of n, am/m, and contained Al, O, and substantially uniformly dispersed over the entire area at a ratio of &0%.

得られる製品を工とし、単なるリメルト処理のものをJ
として比較テストした結果は次の通りである。
The resulting product is processed, and the product that is simply remelted is called J.
The results of a comparative test are as follows.

A:L、O,%比摩耗量 工6.0a5×10−/kg J O6,2X10−’ p 以上の各実施例に見られる通り、各ワーク(1)は添加
剤の混入により耐摩耗性を著しく向上された。
A: L, O, % specific wear weight 6.0a5×10-/kg J O6,2X10-'p As seen in the above examples, each workpiece (1) has wear resistance due to the addition of additives. has been significantly improved.

このように本発明によるときは、ワークの表面にプラズ
マアークによるリメルト処理を施すに際し、該アークに
伴わせて適宜の金属材料その他の材料の粉末を各溶融部
に導かせてこれに混入させるもので、該粉末は骸リメル
ト処理層内に分散して含有されて該層に耐摩耗性その他
の特性の向上を得ることが出来、例えばエンジンの動弁
カムの摺動面に適用した優れた耐摩耗性のものに得るこ
とが出来、その作業は比較的簡単である等の効果を有す
る。
As described above, according to the present invention, when remelting the surface of a workpiece using a plasma arc, powder of an appropriate metal material or other material is introduced into each molten part and mixed therein with the arc. The powder is dispersed and contained in the Mukuremelt treatment layer to improve the wear resistance and other properties of the layer. It has the advantage of being abrasive and relatively easy to work with.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明方法を実施する装置の1例の説明線図、
第2図乃至第6図は本発明方法の各工程の原理的な説明
線図である。 (1)・・・ワ − り (2)・・・プラズマトーチ 0Q・・・プラズマアーク αυ・・・溶融部 (12・・・添加剤 手続補正書 昭和59t″4月6 日 特許庁、宮殿 ]、事件の表示 昭和58年特許願第168405号 2、発明の名称 ワークの表面処理方法 3、補正をする者 事件との関係 特許出願人 562本田技研工業株式会社 6、 補正の対象 明細書の発明の詳細な説明の欄並に図面7、 補正の内
容 (1)明細書第2頁第14行と第15行との間に下記を
加入する。 [又従来、摺動向に耐摩耗性、耐かじり性を有する部材
として、粉末冶金法により母材金属粉と硫化物粉を混合
して圧粉成形し、焼結して製造したもの或は溶湯に、硫
化物粉を添加して攪拌したものを鋳造したものがあるが
、不要な部分にも高価な硫化物が混入されるためコスト
上から不利である。又粉末冶金法では焼結中に、鋳造法
においては、注湯凝固までの間、硫化物が比較的長時間
高温に保持されるため分解し、硫化物として残存する幇
が著しく減少し、その結果充分な耐摩耗性、耐かじり性
を有するものが得難がった。」(2)仝書仝頁第15行
の「本発明は・・・・・・即ちリメ」を「本発明は、か
−る従来の不都合なく、リメ」と訂正する。 (3)令書第7頁第3行乃至第4行の[200μ以下の
・・・・・・一般である。Ji「200μ以下が一般゛
で、就中、100μ以下が好ましい。」と訂正する。 (4) 仝書仝頁第16行の「供給速度」を「供給量」
と訂正する。 (5)仝書仝頁下から2行目の「12%」を「1.2%
」と訂正する。 (6)仝書第9頁末行及び第10頁下から5行目の「亘
り」の次に「体積比」を加入する。 (7)令書第10頁下から4行目の「FeSが全域に亘
り約J ’e rFθSとその1部と母材合金であるM
nとが反応して生成した(FeMn)Sが全域に亘り体
積比的」と訂正する。 (8)仝書第11頁第2行の「Fea%Ji[)FeS
。 (FeMn)S%」と訂正する。 (9)令書第12頁第6行の「れた。」と第7行の[こ
のように・・・・・・」との間に下記を加入する。 記 実施例6 第1図示の装Nを使用し、鋳鉄FO30大越式摩耗試験
片から成るステーター用のワークtlJを次のように再
溶融処理した。即ちプラズマアーク電流80A1プラズ
マガス量を0.81/rtμs、プラズマトーチの走査
速度を0.5m1m1nとし、軌跡を描きなから摺動面
をリメルトしてこれに2μ〜10μのOr、81粉をA
rガス中に1.29部mm含有させ溶融部に供給した。 表面より深さ1、2 mmまで溶融し、添加したOr、
S、と母材であるFe及びその合金元素であるMnとが
反応してその部分に(Or F e)!81 v (O
rF eMn)183 、 (Or ’f’e)IS4
及び(OrFsiMn)IS4等のOr硫化物の混合し
た分散組織が形成された。このOr硫化物の体積比は1
5%であった。これらOr硫化物の粒子の大きさは約1
〜8μであった。この場合、溶融後冷却は、溶融層以外
の母材によって熱を奮われ、急速凝固したため、レデブ
ライトが析出°シ、いわゆるチル組織を呈し、その中に
(OrF’e)183. (OrFe)IS、 、 (
OrFeMn)I S3゜(Or F e M 111
)s s、が分散している。処理後、摺動面を研磨し試
験片にとした。 比較のため、0rlS3粉を添加せず、単なるプラズマ
アークにより溶融硬化してチル組織を形成した。その摺
動面を研磨し試験片とした。これらにつき実施例1と同
様に摩耗テストした。その結果は下表の通りである。 分散硫化物 体積比率 比摩耗量 K Or硫化物 75% aoxlo mm/に9L 
−−2,2X10− mm/kg 実施例7 第1図示の装置を使用し、鉄・炭素−元合金(α50%
)製から成るワーク(1)を次のように再溶融処理した
。即ち、プラズマアーク電流80A1プラズマアークA
rガス量を117m1n、プラズマトーチ蛇行走査速度
f 0.3 m /―とし蛇行させなから摺動@1をリ
メルトしてこれに2μ〜10μのOr302 f 50
 wt%と5〜60μのMoh″を50 wt%の混合
粉末を、Arガス中にIllL197M含有させ、溶融
部に供給し、表面より1.4 m / mまでの溶融層
内にこれら混合粉末同志の反応でOr、FEB + O
rl s4の硫化クロム粒子が生成した分散組織が形成
された。Or硫化物の体積比は略Q、5%、その粒子の
大きさは約1〜9μであった。この製品の処理面を研磨
して試験片Mとした。比較のため無添加でリメルト処理
した試験片Nを作成し、これらにつき実施例1と同様に
摩耗テストした。その結果は下表の通りである。 試験片 分 散 物 体積比 比 摩 耗 性M Or
硫化物 0.5% 3.6:xlo mnt/kgN 
な し −asx 1 o mnt/kP実施例8 第1図示の装置を使用し、自動車用エンジンに組込まれ
るF030製カムシャフトのカムリフト部をワーク(1
)としてこれを次のように再溶融処理した。即ち、プラ
ズマアーク電流60A。 アーク用Arガス班0.517m1x、プラズマトーチ
走査速度1 m/+++m、 2 p 〜10 pのO
r S 3粉末供給JI 0.69 / mixとし、
該粉末を溶融層に供給した。かくして(OrF’ e)
I SB 、 (OrFeMn)183゜(Or F 
e)g S4及び(OrFeMn)3 s、の各種Or
硫化粉の生成分散含有する厚さ18 m / mの冷却
硬化層を得た。Or硫化物の体積比は2.2%、その粒
径は1〜8μであった。硬度はHRO5Bであった。 このカムシャフトのカム面を研摩し、実用試験に供し、
これを試験材0とした。1方同−材料のカムシャフトを
前記粉末を添加せず、前記と同一条件でプラズマ処理し
、再溶融硬化処理したものをカムシャフト試験材Pとし
た。その硬化層の厚さは1.9 m / m %硬度は
HRO51であった。 実用試験条件: エンジン回転 1ooorpi油温65℃テスト時間 
200時間 この試験の結果、試験材0のカムトップの摩耗量は10
μであった。1方試験材Pのカムトップの摩耗量は12
0μであった。 実施例9 第1図示の装置ヲ使用し、自動車用エンジンに組込まれ
る80M420製バルブロツカーアームをワーク(1)
としそのスリッパ−面を次のようr再溶融処理した。即
ち、アーク電流45A1プラズマアーク用Arガス量0
.517mm、2〜10μの0r283粉末供給量α4
97m1n、トーチスヒード0.8m/miqとし、軌
跡状に描かせスリッパ−面を溶融し、溶融層に該粉末を
添加した。 この結果、Or、Slは母材の主体であるFe及びその
合金元素であるMnとが反応して生成した(OrFa)
1 s、 s (OrlFeMn)133 、 (Or
Fe)3S4 。 (Or F e M n)B 84の混在したOr硫化
物の分散粒子を含有するチル硬化層が得られた。その層
の厚みは1.0 mlD 1そのOr硫化物の体積比は
54%であった。これを浸炭焼入れした後研摩し試験材
Qとした。1方同材質のバルブロッカーアームをプラズ
マアークによる再溶融砂硬化処理を行なわないで、単に
浸炭焼入れしたもの全試験材Rとして、その両試験材を
下記の実用試験に供した。その結果、試験材Qのスリツ
ノぐ一面の摩耗深さは3μであり、試験材Rのスリン/
り一面の摩耗深さは50μであった。 実用試験条件: エンジン回転 1000r91 油温65℃ テスト時
間 200時間 実施例10 第1図示の装置を使用し、鋳鉄FOD55大越式摩入超
験片から成るステーター用のワーク(1)ヲ次のように
再溶融処理した。即ち、プラズマアークの電m80 A
NプラズマアークArガス量1817m1x、プラズマ
トーチ走査速度o、sm/minとし、軌跡を描きなか
ら摺動面をリメルトとしそのリメルト層に5μ〜40μ
のFeS粉をArガス中に1.597 min含有させ
た供給量で供給した。 該溶融層の深さは1.2 m / mとした。この際、
その添加量の1部のFeSが、合金母材の主体であるF
eと1部のMnとに反応して(FeMn)Sを生成し、
全体としてFeSと(FeMn)Sとの混合した鉄硫化
物の分散粒子の分散したリメルト硬化層が形成された。 その分散粒子の大きさは1〜9μであった。又Fee及
び(FeMn)Sの体積比は15%であった。このよう
にして得られた処理品の摺動向を研摩し試験片Sとした
。 1方比較のため、鉄硫化物を添加せず、同じ材料のワー
ク(1)全上記と同じ条件で半固リメルト硬化処理した
ものを試験片Tとした。これらにつき、前記実施例1と
同様にして摩耗テスト全行なった。その試験結果は次の
通りであった。 試験片 分散硫化物 体積比 比 摩 耗 量実施例1
1 第1図示の装置を使用し5500製摩耗試験片ヲステー
ター用のワーク(1)とし、これを次のように再溶融処
理した。即ち、プラズマアーク電流80A1プラズマア
ークArガス量11/min、トーチ蛇行走査速度0.
3m/mとし、蛇行させなから摺動面をリメルトし、そ
の1.4 m 7mの深さの溶融層に、10μ〜40μ
のMoSをArガス中に0.15p/−含有させた供給
量で供給した。その結果、MoSと合金母材であるFe
Mnとが反応してその溶融層内にFeS及び(FeMn
)Sが生成分散した硬化層が爾後の冷却により得られる
。これら生成粒子の寸法は約1〜7μであり、その体積
比は約0.8%であった。 その処理面を研摩して試験片Uとした。比較のため1か
\る添加剤を添加しないで、同じ材料のワーク(1ノヲ
前記と同様に単にリメルト硬化処理し、これを試験片V
とした。 これら試験片につき、前記と同様に耐摩耗テスト全行な
い、下記の結果を得た。 試験片 分散硫化物 体積比 比 摩 耗 性U (F
eMn)S α8 % 4.2×10− mtfl/k
gV −−a、5×10mnl/kg 実施例12 第1図示の装置を使用し、自動車用エンジンに組込まれ
るF030製カムシャフトのカムリフト部をワーク(1
)として次のように再溶融処理した。即ち、プラズマア
ーク電流60A1アーク用Arガス量αB/=、プラズ
マトーチの走査速度1m/―とし、軌跡を描きながらカ
ムリフト部の表面を溶融し、2〜10μのWS、粉末を
ガス中の供給量α6fl/mixでその溶融部に供給し
た。溶融層の深さは、1.8 m / mであった。そ
の添加の結果、WS!と母材の組成元素であるFe、M
nと反応して生成したFeSと(FeMn)Sの混在分
散した溶融層の硬化層が得られた。その分散粒子の大き
さは約1〜10μであり、その体積比は2.8%であっ
た。又その硬化層の硬度はHRO53であった。このカ
ムシャツトラカム研磨し試験材Wとした。比較のため、
同じカムシャフトを単にリメルト処理したものを試験材
Xとした。その硬化層の硬度はHRG51であった。 これら試験材全エンジン回転100 QrpH,油温6
5°C1テスト時間200時間の試験条件で実用試験に
供した。その結果試験材Uの摩耗量は30μ、試験材■
の摩耗量は120μであった。 実施例13 第1図示の装置を使用し、自動車用エンジンに組込まれ
るS 0M420製バルブロツカーアームをワーク(1
)としてそのスリッパ−面金次のようにリメルト処理し
た。即ち、プラズマアーク電流45A1プラズマArガ
ス量0.5 l / min 。 プラズマトーチスピード[L8 m / miy+とし
、スリッパ−面を走査溶融し、その溶融部にPeSをA
rガスで搬送し0.497+m++の供給蓋で供給した
。供給量の1部のFeSは合金母材の組成元素であるM
uと反対して生成した(FeMn)SがFeSと共に混
在分散含有する溶融硬化層が冷却により得られた。Fe
S及び(FeMn)Sの大きさは約1〜8μ、その体積
比は約5.2%であった。次でこのように処理したワー
ク(1〕のスリッパ−而の強度を向上させるべく、浸炭
焼入れを施し、その硬化層に約1.2.の浸炭層を形成
し、実質的に浸炭硬化層の中匡前記硫化物が混在した耐
摩耗性組織層とした。この表面を研摩し試験材Wとした
。比較のため、同じワークtl)に単にリメルト処理を
施した後、前記と同じ浸炭焼入れを施した耐摩耗性組織
層としたものを試験材Xとした。これら試験材につき、
エンジン回転1000rI1m、油温65°C1テスト
時間200時間の条件で実用試験を行なった。その結果
、試験材Wは摩耗深さは10μ、試験材Xは摩耗深さは
50μであった。 上記実施例1〜13から明らかなように、Or。 Mo、 TiB、 A110g 、F e Sその他の
各種硫化物などを被処理物のリメルト層に分散含有させ
ることにより、その耐摩耗性を、か\る処理をしないも
のに比し著しく向上せしめることができる。特に、Or
硫化物は他の硫化物に比べて高温における安定性が高く
、1000℃以上の高温でも他のOr硫化物と異なり分
解することなく著しく安定した摩擦摺動面を与え、且つ
潤滑剤として効果を併せ有し有利である。 添加すべき粒子は、200μ以下の粒径のものを一般に
使用し、特に100μ以下のものが好ましい。これを被
処理物の表面の溶融層に添加したときは、液粒となり、
この状態でプラズマアークの走査を受けるので、融体中
に流動攪拌現象が生じ、液相粒はこれ罠より細分化され
、この状態で冷却凝固する結果、その細分化した同相粒
子が硬化層中に分散した状態の表面処理層が得られる。 硬化物の場合に例をとれば、分散粒子の径が約1〜20
μの範囲が好ましく、内部応力集中率を減らすので、耐
ピッチング性耐カジリ性等に優れ、又摩耗表面に硫化物
の潤滑効果が摺動面に均一に作用し易い。又その摩擦の
繰り返しで、その粒子は引き延ばされて、その表面に数
十〜数百1の硫化物の被覆ができ易く好ましい。 又本発明によればリメルト時間は僅か約1秒或はそれ以
下が一般であるので、例えば硫化物の熱分解による損失
が殆んどなく有利である。 第7図は、Or硫化物の体積%と処理品の摩耗量との関
係を、自動車エンジンFO30製カムシャフトにつき調
べた結果を示す。これから明らかなように、略0.2%
以上から耐摩耗性の効果を発揮し、少量の添加でその効
果が著しい。 但し、12%程度以上になると靭性が低下する傾向があ
るので、又効果の向上が少なく経済的に高価となる観点
より、12%程度までの含有量に留めることが有利であ
る。 第8図は鉄硫化物(FeEI +(PeMn)S)の体
積%と処理品の摩耗量との関係を、自動車エンジンF0
30製カムシャフトにつき調べた結果金示す。この場合
は、0.5%以上で効果を発揮する。その量の増大によ
り効果の向上が少なくなり、経済面より20%程度にと
!めることが有利である。 Q〔仝書第12頁下から4行目の「簡単である等の」を
[簡単であり、又有効分散粒子の熱分解損失がない等の
]と訂正する。 αυ仝書第13頁第1行の「・・・・・・説明線図であ
る。」を「・・・・・・説明線図、第7図及び第8図は
、硫化物の体積%と摩耗量の関係を示す曲線図である。 」と訂正する。 (121第7図及び第8図全添付側紙の通り加入する。
FIG. 1 is an explanatory diagram of an example of an apparatus for carrying out the method of the present invention;
2 to 6 are diagrams explaining the principle of each step of the method of the present invention. (1)...War (2)...Plasma torch 0Q...Plasma arc αυ...Melting part (12...Additive procedure amendment 1982) April 6, Patent Office, Palace ], Indication of the case Patent Application No. 168405 filed in 1982 2, Name of the invention Work surface treatment method 3, Person making the amendment Relationship to the case Patent applicant 562 Honda Motor Co., Ltd. 6, Description of the specification subject to the amendment The following has been added between lines 14 and 15 of page 2 of the specification in the Detailed Description of the Invention column, Drawing 7, Contents of Amendment (1) Page 2 of the specification. A member with galling resistance is produced by mixing base metal powder and sulfide powder using powder metallurgy, compacting and sintering, or by adding sulfide powder to molten metal and stirring. There are cast products, but this is disadvantageous in terms of cost because expensive sulfides are mixed into unnecessary parts.In addition, the powder metallurgy method is disadvantageous during sintering, and the casting method is During this period, the sulfides were kept at high temperatures for a relatively long period of time, decomposing them, and the amount remaining as sulfides was significantly reduced, making it difficult to obtain products with sufficient wear resistance and galling resistance. (2) On the 15th line of the second page of the book, the phrase "The present invention..., that is, the advantages" is corrected to "The present invention is effective without the disadvantages of the prior art." (3) Order On page 7, lines 3 and 4, [200μ or less...generally].Ji corrects "200μ or less is normal, and 100μ or less is particularly preferable." (4) Change “supply speed” in line 16 of this book to “supply amount”
I am corrected. (5) Change "12%" in the second line from the bottom of the page to "1.2%"
” he corrected. (6) Add "volume ratio" next to "crossing" on the last line of page 9 and the fifth line from the bottom of page 10. (7) On page 10 of the order, line 4 from the bottom, “FeS is approximately
(FeMn)S generated by the reaction with n is proportional to volume over the entire area.'' (8) “Fea%Ji[)FeS” on page 11, line 2 of the book.
. (FeMn)S%”. (9) The following is added between "Reta" in line 6 of page 12 of the order and "in this way..." in line 7. Example 6 Using the equipment N shown in the first figure, a stator workpiece tlJ consisting of a cast iron FO30 Okoshi type wear test piece was remelted as follows. That is, the plasma arc current is 80A, the plasma gas amount is 0.81/rtμs, the scanning speed of the plasma torch is 0.5m1m1n, the sliding surface is remelted without drawing a trajectory, and 2μ to 10μ of Or, 81 powder is applied to it.
1.29 parts mm of R gas was added to the melting section. Or melted and added to a depth of 1 to 2 mm from the surface,
S reacts with Fe, which is the base material, and Mn, which is its alloying element, to form (Or Fe)! 81 v (O
rF eMn)183 , (Or 'f'e)IS4
A dispersed structure containing a mixture of Or sulfides such as and (OrFsiMn)IS4 was formed. The volume ratio of this Or sulfide is 1
It was 5%. The size of these Or sulfide particles is approximately 1
It was ~8μ. In this case, the cooling after melting was heated by the base material other than the molten layer and solidified rapidly, so leadebrite was precipitated and exhibited a so-called chill structure, in which (OrF'e) 183. (OrFe)IS, , (
OrFeMn)I S3゜(OrFeMn)
)s s, are dispersed. After the treatment, the sliding surface was polished and used as a test piece. For comparison, a chill structure was formed by melting and hardening simply by plasma arc without adding 0rlS3 powder. The sliding surface was polished and used as a test piece. These were subjected to wear tests in the same manner as in Example 1. The results are shown in the table below. Dispersed sulfide volume ratio Specific wear amount K Or sulfide 75% aoxlo mm/9L
--2,2X10- mm/kg Example 7 Using the apparatus shown in the first figure, an iron-carbon alloy (α50%
) was remelted as follows. That is, plasma arc current 80A1 plasma arc A
r gas amount is 117mln, plasma torch meandering scanning speed f 0.3 m/-, and after meandering, slide @ 1 is remelted, and 2μ to 10μ Or302 f 50
A mixed powder of 50 wt% of 5-60μ MoH'' was contained in Ar gas and supplied to the melting zone, and these mixed powders were mixed together in the melted layer up to 1.4 m/m from the surface. In the reaction of Or, FEB + O
A dispersed structure containing rl s4 chromium sulfide particles was formed. The volume ratio of Or sulfide was approximately Q, 5%, and the particle size was approximately 1 to 9 μm. The treated surface of this product was polished to obtain a test piece M. For comparison, a test piece N which was remelted without any additives was prepared and subjected to the wear test in the same manner as in Example 1. The results are shown in the table below. Test piece Dispersion Volume ratio Abrasion resistance M Or
Sulfide 0.5% 3.6:xlo mnt/kgN
None - asx 1 o mnt/kP Example 8 Using the device shown in Figure 1, the cam lift part of an F030 camshaft to be incorporated into an automobile engine was inspected as a workpiece (1
) was remelted as follows. That is, the plasma arc current is 60A. Ar gas group for arc 0.517ml x, plasma torch scanning speed 1m/+++m, 2p to 10p O
r S3 powder supply JI 0.69/mix,
The powder was fed into the melt bed. Thus (OrF' e)
I SB , (OrFeMn) 183° (Or F
e) Various types of g S4 and (OrFeMn)3s,
A cooled and hardened layer with a thickness of 18 m/m containing sulfurized powder was obtained. The volume ratio of Or sulfide was 2.2%, and the particle size was 1 to 8 μm. The hardness was HRO5B. The cam surface of this camshaft was polished and subjected to practical tests.
This was designated as test material 0. On the other hand, a camshaft made of the same material was subjected to plasma treatment under the same conditions as above without adding the powder, and was subjected to remelting and hardening treatment, and this was designated as camshaft test material P. The thickness of the hardened layer was 1.9 m/m%, and the hardness was HRO51. Practical test conditions: Engine rotation 1ooorpi oil temperature 65℃ test time
As a result of this test for 200 hours, the wear amount of the cam top of test material 0 was 10
It was μ. The wear amount of the cam top of one-way test material P is 12
It was 0μ. Example 9 Using the device shown in the first figure, a valve rocker arm made of 80M420 to be incorporated into an automobile engine was worked (1)
The slipper surface of the persimmon was remelted as follows. That is, arc current 45 A1 Ar gas amount for plasma arc 0
.. 517mm, 2-10μ 0r283 powder supply amount α4
97 ml and a torch sheath of 0.8 m/miq were drawn in a trajectory to melt the slipper surface, and the powder was added to the molten layer. As a result, Or and Sl were generated by the reaction between Fe, which is the main component of the base material, and Mn, which is its alloying element (OrFa).
1 s, s (OrlFeMn) 133 , (Or
Fe)3S4. A chilled hardened layer containing dispersed particles of Or sulfide mixed with (Or Fe M n) B 84 was obtained. The thickness of the layer was 1.0 ml D1, and the volume ratio of the Or sulfide was 54%. This was carburized and quenched and then polished to give a test material Q. On the other hand, a valve rocker arm made of the same material was simply carburized and quenched without being subjected to remelting sand hardening treatment using a plasma arc, and both test materials were subjected to the following practical test. As a result, the wear depth of one surface of the test material Q was 3μ, and the wear depth of the test material R was 3μ.
The wear depth on the entire surface was 50μ. Practical test conditions: Engine rotation: 1000r91 Oil temperature: 65°C Test time: 200 hours Example 10 Using the apparatus shown in Figure 1, a workpiece for a stator (1) consisting of a cast iron FOD55 Okoshi type grinding specimen was prepared as follows. Re-melted. That is, the plasma arc electric current m80 A
N plasma arc Ar gas amount 1817mlx, plasma torch scanning speed o, sm/min, the sliding surface is remelted without drawing a trajectory, and the remelt layer is 5μ to 40μ
FeS powder was supplied in Ar gas for 1.597 min. The depth of the molten layer was 1.2 m/m. On this occasion,
Part of the added amount of FeS is F, which is the main component of the alloy base material.
Reacts with e and part of Mn to generate (FeMn)S,
As a whole, a remelt hardened layer in which dispersed particles of iron sulfide mixed with FeS and (FeMn)S were dispersed was formed. The size of the dispersed particles was 1-9μ. The volume ratio of Fee and (FeMn)S was 15%. The sliding pattern of the thus obtained treated product was polished to obtain a test piece S. For comparison, a test piece T was prepared by semi-solid remelt hardening of workpiece (1) of the same material without adding iron sulfide under the same conditions as above. All of these were subjected to wear tests in the same manner as in Example 1 above. The test results were as follows. Test piece Dispersed sulfide Volume ratio Ratio Wear amount Example 1
1 Using the apparatus shown in the first figure, a wear test piece made of 5500 was used as a workpiece (1) for a stator, and this was remelted as follows. That is, the plasma arc current is 80A, the plasma arc Ar gas amount is 11/min, and the torch meandering scanning speed is 0.
3m/m, remelt the sliding surface without meandering, and add 10μ to 40μ to the molten layer at a depth of 1.4m to 7m.
MoS was supplied in an amount of 0.15p/- in Ar gas. As a result, MoS and the alloy base material Fe
FeS and (FeMn) react with Mn in the molten layer.
) A hardened layer in which S is produced and dispersed is obtained by subsequent cooling. The size of these produced particles was about 1 to 7 microns, and their volume ratio was about 0.8%. The treated surface was polished to obtain a test piece U. For comparison, a workpiece of the same material (one piece was simply remelt hardened in the same manner as above, without adding any additives, and this was used as test piece V).
And so. These test pieces were subjected to all abrasion resistance tests in the same manner as described above, and the following results were obtained. Test piece Dispersed sulfide Volume ratio Ratio Abrasion resistance U (F
eMn)S α8% 4.2×10- mtfl/k
gV --a, 5 x 10 mnl/kg Example 12 Using the device shown in Figure 1, the cam lift part of an F030 camshaft to be incorporated into an automobile engine was fabricated as a workpiece (1
) was remelted as follows. That is, the plasma arc current is 60A1, the arc Ar gas amount αB/=, the scanning speed of the plasma torch is 1m/-, the surface of the cam lift part is melted while drawing a trajectory, and the supply amount of WS and powder of 2 to 10μ in the gas is α6fl/mix was supplied to the melting section. The depth of the melt layer was 1.8 m/m. As a result of that addition, WS! and the compositional elements of the base material Fe, M
A hardened layer of a molten layer in which FeS and (FeMn)S, which were generated by reacting with n, were mixed and dispersed was obtained. The size of the dispersed particles was about 1-10μ, and the volume ratio was 2.8%. The hardness of the hardened layer was HRO53. This cam shirt was polished to obtain a test material W. For comparison,
Test material X was obtained by simply remelting the same camshaft. The hardness of the hardened layer was HRG51. These test materials all engine revolutions 100 QrpH, oil temperature 6
A practical test was conducted under test conditions of 5°C and 200 hours of test time. As a result, the wear amount of test material U was 30 μ, test material ■
The amount of wear was 120μ. Example 13 Using the apparatus shown in the first figure, a valve rocker arm made of S 0M420 to be incorporated into an automobile engine was worked (1
) The slipper face metal was remelted as follows. That is, the plasma arc current is 45 A, and the plasma Ar gas amount is 0.5 l/min. Using a plasma torch speed [L8 m/miy+, scan and melt the slipper surface, and add PeS to the melted part.
It was transported with r gas and supplied with a 0.497+m++ supply lid. A part of the supplied amount of FeS is M, which is a constituent element of the alloy base material.
A molten hardened layer was obtained by cooling, in which (FeMn)S, which was generated in opposition to u, was mixed and dispersed together with FeS. Fe
The size of S and (FeMn)S was about 1 to 8 μ, and the volume ratio thereof was about 5.2%. Next, in order to improve the strength of the slipper of the workpiece (1) treated in this way, carburizing and quenching is performed to form a carburized layer of about 1.2 on the hardened layer. A wear-resistant structure layer containing the aforementioned sulfides was obtained.This surface was polished and used as test material W.For comparison, the same workpiece (tl) was simply remelted and then carburized and quenched in the same manner as above. The material with the applied wear-resistant structure layer was designated as test material X. For these test materials,
Practical tests were conducted under the conditions of engine rotation of 1000rI1m, oil temperature 65°C, and test time of 200 hours. As a result, the wear depth of test material W was 10μ, and the wear depth of test material X was 50μ. As is clear from Examples 1 to 13 above, Or. By dispersing Mo, TiB, A110g, FeS, and other various sulfides in the remelt layer of the workpiece, the wear resistance can be significantly improved compared to those without such treatment. can. In particular, Or
Sulfide has higher stability at high temperatures than other sulfides, and unlike other Or sulfides, it does not decompose even at high temperatures of 1000°C or higher, providing an extremely stable frictional sliding surface and being effective as a lubricant. It is advantageous to have both. The particles to be added generally have a particle size of 200 μm or less, and preferably 100 μm or less. When this is added to the molten layer on the surface of the workpiece, it becomes liquid particles,
As it is scanned by the plasma arc in this state, a fluid agitation phenomenon occurs in the melt, and the liquid phase particles are fragmented from the traps, and as a result of being cooled and solidified in this state, the fragmented in-phase particles enter the hardened layer. A surface treatment layer in which the particles are dispersed is obtained. For example, in the case of a cured product, the diameter of the dispersed particles is about 1 to 20
A range of .mu. is preferable, since it reduces the internal stress concentration rate, resulting in excellent pitting resistance, galling resistance, etc., and the lubricating effect of sulfide on the worn surface tends to act uniformly on the sliding surface. Further, by repeating the friction, the particles are stretched and a coating of tens to hundreds of sulfides is easily formed on the surface, which is preferable. Further, according to the present invention, the remelt time is generally only about 1 second or less, which is advantageous because there is almost no loss due to thermal decomposition of sulfides, for example. FIG. 7 shows the results of investigating the relationship between the volume % of Or sulfide and the amount of wear of the treated product for a camshaft made of an automobile engine FO30. As is clear from this, approximately 0.2%
From the above, it exhibits a wear-resistant effect, and its effect is remarkable even when added in small amounts. However, if it exceeds about 12%, the toughness tends to decrease, so it is advantageous to limit the content to about 12% from the viewpoint that the improvement in effect is small and it becomes economically expensive. Figure 8 shows the relationship between the volume percent of iron sulfide (FeEI + (PeMn)S) and the wear amount of the treated product.
The results of the investigation on the 30-made camshaft showed gold. In this case, the effect is exhibited at 0.5% or more. As the amount increases, the improvement in effectiveness decreases, and from an economical point of view, it is about 20%! It is advantageous to Q: In the fourth line from the bottom of page 12 of the manual, ``It is simple, etc.'' is corrected to ``It is simple, and there is no thermal decomposition loss of effective dispersed particles, etc.''. αυ Book, page 13, line 1, ``...Explanatory diagram.'' was changed to ``...Explanatory diagram, Figures 7 and 8 are the volume percent of sulfide. It is a curve diagram showing the relationship between the amount of wear and the amount of wear.'' (121 Figures 7 and 8 are all attached as shown in the accompanying paper.

Claims (1)

【特許請求の範囲】 1、 鋳鉄、アルミ合金その他の金属材料力)ら成るワ
ークの表面に、プラズマアークによる溶融部を生じさせ
ると共に次で該溶融部を冷却凝固させるリメルト処理層
を形成させる式のものにおいて、該ワークの金属材料と
は異種の金属材料その他の材料の粉末から成る添加剤を
用意し、これを該プラズマアークに伴わせて該溶融部に
導かせてその内部に強制的に混入させることを特徴とす
るワークの表面処理方法。 2 該添加剤はlJi、 Or、 Moその他の金属又
はその合金、To、 Sin、 Mo)、0. Or、
O!、 B40その他の炭化物、BN、 TiBその他
の硼化物、Mob、 、 WSI 、 F’eSその他
の硫化物、Al、O,。 Sin!その他の酸化物、等から撰択される少くとも1
種類の粉末から成る特許請求の範囲第1項所載のワーク
の表面処理方法。
[Claims] 1. A method of forming a remelt treatment layer on the surface of a workpiece made of cast iron, aluminum alloy, or other metal material by generating a molten part by plasma arc and then cooling and solidifying the molten part. In this method, an additive consisting of a powder of a metal material or other material different from the metal material of the workpiece is prepared, and the additive is guided into the molten part along with the plasma arc and forced into the interior of the molten part. A method for surface treatment of a workpiece, characterized by mixing the surface of the workpiece. 2 The additives include lJi, Or, Mo and other metals or their alloys, To, Sin, Mo), 0. Or,
O! , B40 and other carbides, BN, TiB and other borides, Mob, , WSI, F'eS and other sulfides, Al, O,. Sin! At least one selected from other oxides, etc.
A method for surface treating a workpiece according to claim 1, comprising powder of various types.
JP58168405A 1983-09-14 1983-09-14 Surface treatment of work Granted JPS6070136A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP58168405A JPS6070136A (en) 1983-09-14 1983-09-14 Surface treatment of work
GB08423101A GB2148166B (en) 1983-09-14 1984-09-13 A process for treating the surface of a metallic material
CA000463029A CA1249038A (en) 1983-09-14 1984-09-13 Surface treatment process for workpiece
DE19843433698 DE3433698A1 (en) 1983-09-14 1984-09-13 METHOD FOR TREATING A WORKPIECE
FR8414115A FR2551770B1 (en) 1983-09-14 1984-09-14 METHOD FOR THE SURFACE TREATMENT OF A METAL PART BY REFUSION AND PRODUCTS OBTAINED

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58168405A JPS6070136A (en) 1983-09-14 1983-09-14 Surface treatment of work

Publications (2)

Publication Number Publication Date
JPS6070136A true JPS6070136A (en) 1985-04-20
JPH0353388B2 JPH0353388B2 (en) 1991-08-14

Family

ID=15867510

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58168405A Granted JPS6070136A (en) 1983-09-14 1983-09-14 Surface treatment of work

Country Status (5)

Country Link
JP (1) JPS6070136A (en)
CA (1) CA1249038A (en)
DE (1) DE3433698A1 (en)
FR (1) FR2551770B1 (en)
GB (1) GB2148166B (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60187660A (en) * 1984-02-24 1985-09-25 Honda Motor Co Ltd Partially hardened cast iron member
JPS60224790A (en) * 1984-04-19 1985-11-09 Toyota Motor Corp Wear resistant al alloy member and its production
JPS6233758A (en) * 1985-08-05 1987-02-13 Honda Motor Co Ltd Method and apparatus for hardening metal surface using plasma gas
JPS6297770A (en) * 1985-10-22 1987-05-07 Daido Steel Co Ltd Production of tool
JPH02149682A (en) * 1988-11-30 1990-06-08 Showa Alum Corp Production of aluminum alloy material having superior wear resistance
JPH02149681A (en) * 1988-11-30 1990-06-08 Showa Alum Corp Production of aluminum alloy material having superior wear resistance
CN107338434A (en) * 2016-11-22 2017-11-10 国营芜湖机械厂 Wear-resisting composite coating of the spontaneous high-temperature self-lubrication of Laser Cladding in-situ and preparation method thereof
CN108971803A (en) * 2018-08-17 2018-12-11 广州汉源新材料股份有限公司 A kind of composite intensified solder and preparation method thereof
CN113019408A (en) * 2021-03-12 2021-06-25 河南理工大学 Preparation method and application of ammonia borane hydrolysis hydrogen production catalyst

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6213521A (en) * 1985-07-09 1987-01-22 Honda Motor Co Ltd Wear resistant member and its production
JPS6293314A (en) * 1985-10-21 1987-04-28 Honda Motor Co Ltd Wear resistant sliding member
EP0230959A3 (en) * 1986-01-21 1989-07-12 Energy Conversion Devices, Inc. Fabrication of atomically alloyed synthetic materials
DE3715326A1 (en) * 1987-05-08 1988-11-24 Castolin Sa METHOD FOR PRODUCING A SELF-SHARPENING CUTTING OR KNIFE EDGE
US4854196A (en) * 1988-05-25 1989-08-08 General Electric Company Method of forming turbine blades with abradable tips
EP0595802B1 (en) * 1990-03-19 1997-07-23 Duroc Ab Method for working surfaces on metals
DE4102495A1 (en) * 1991-01-29 1992-07-30 Thyssen Edelstahlwerke Ag METHOD FOR COATING SUBSTRATES
DE4139956C2 (en) * 1991-12-04 2003-04-24 Opel Adam Ag Process for the production of wear-resistant boron layers on metallic objects and metal object with a wear-resistant boron layer
DE19639480A1 (en) * 1996-09-26 1998-04-02 Guenter Hackerodt Process for the internal coating of cylinder treads, in particular aluminum treads
DE19643029A1 (en) * 1996-10-18 1998-04-23 Bayerische Motoren Werke Ag Method for coating an internal combustion engine component made of an aluminum alloy with silicon
DE59710348D1 (en) * 1997-11-06 2003-07-31 Sulzer Markets & Technology Ag Method for producing a ceramic layer on a metallic base material
GB0127033D0 (en) * 2001-11-09 2002-01-02 Biocompatibles Ltd Stent manufacture
DE10235813B4 (en) * 2002-08-05 2004-07-22 Brueninghaus Hydromatik Gmbh Sliding shoe and method for producing raised contact surfaces of a sliding shoe
DE102004026636B3 (en) * 2004-06-01 2005-07-21 Daimlerchrysler Ag Plasma jet process to modify the surface of a metal component by exposure to high-pressure jet in the presence of a carrier gas
DE102013219784A1 (en) * 2013-09-30 2015-04-02 Federal-Mogul Friedberg Gmbh Slip rings with leatherburitic structure on the surface
CN103920872B (en) * 2014-04-26 2016-01-06 武汉高斯激光技术有限公司 Laser alloying powder and the application in steel cylinder ring mould laser surface alloying thereof
CN105695985A (en) * 2016-02-15 2016-06-22 河北南车环保科技有限公司 Multi-purpose metal powder repair machine
DE102018113643A1 (en) * 2018-06-07 2019-12-12 Durum Verschleißschutz GmbH Device for coating a surface
CN111239102A (en) * 2020-01-21 2020-06-05 沈阳德其乐科技有限公司 Remelting and whitening spectral detection method for surface of grey iron
CN111876717B (en) * 2020-07-14 2022-07-08 江苏科环新材料有限公司 High-temperature-resistant, abrasion-resistant and remelting nickel-based composite material coating for fire grate segment of garbage incinerator and preparation method thereof
CN114250466B (en) * 2022-03-01 2022-05-03 潍坊学院 Preparation method of laser cladding coating on titanium alloy surface

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50812A (en) * 1972-11-14 1975-01-07
JPS53109882A (en) * 1977-03-09 1978-09-26 Toshiba Corp Coating method
JPS55131164A (en) * 1979-03-30 1980-10-11 Rolls Royce Method and apparatus for applying metal coating to metal substrate
JPS55148752A (en) * 1979-05-11 1980-11-19 Nippon Steel Corp Formation method of coating on metal surface
JPS56158871A (en) * 1980-05-14 1981-12-07 Permelec Electrode Ltd Method for forming corrosion-resistant coating on metallic substrate

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB718866A (en) * 1952-04-01 1954-11-24 Air Reduction Improvements in method of hard surfacing
GB801039A (en) * 1954-06-30 1958-09-03 Kaiser Aluminium Chem Corp Improvements in or relating to welding metals using an inert-gas-shielded arc
US3016447A (en) * 1956-12-31 1962-01-09 Union Carbide Corp Collimated electric arc-powder deposition process
GB1027504A (en) * 1962-02-05 1966-04-27 Union Carbide Corp Improvements in and relating to electric welding
FR1493829A (en) * 1965-09-03 1967-09-01 Boehler & Co Ag Geb Process for the manufacture of shields with high resistance to corrosion and wear, from hot-malleable alloys
FR1481510A (en) * 1966-05-27 1967-05-19 Union Carbide Corp Method for depositing metal
FR2193674A1 (en) * 1972-07-31 1974-02-22 Inst Dece Cetari Plasma beam hard facing - by feeding mild steel strip with serrations filled by cemented carbide grains
DD111589A1 (en) * 1974-04-17 1975-02-20
DE2522690C3 (en) * 1975-05-22 1982-03-04 Goetze Ag, 5093 Burscheid Plasma deposition welding powder for the production of wear-resistant layers
CH593754A5 (en) * 1976-01-15 1977-12-15 Castolin Sa
US4097711A (en) * 1976-09-16 1978-06-27 Ingersoll-Rand Company Roller shell hard coating
DE2703469C3 (en) * 1977-01-28 1979-11-22 Audi Nsu Auto Union Ag, 7107 Neckarsulm Device for hardening the cam surfaces of camshafts for internal combustion engines
JPS555126A (en) * 1978-06-26 1980-01-16 Mitsubishi Heavy Ind Ltd Surface hardening build-up welding method
US4192984A (en) * 1978-07-12 1980-03-11 Thermatool Corporation Embedment of hard particles in a metal surface
US4234776A (en) * 1978-07-12 1980-11-18 Thermatool Corp. Method of producing areas of alloy metal on a metal part using electric currents
GB2096514B (en) * 1981-04-13 1985-08-07 Inst Elektroswarki Patona Deposition of metal on aluminium-based alloys
AU8505082A (en) * 1981-07-17 1983-01-20 Deere & Company Hardfacing
US4376793A (en) * 1981-08-28 1983-03-15 Metallurgical Industries, Inc. Process for forming a hardfacing surface including particulate refractory metal
US4471034A (en) * 1982-11-16 1984-09-11 Eutectic Corporation Alloy coating for cast iron parts, such as glass molds

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50812A (en) * 1972-11-14 1975-01-07
JPS53109882A (en) * 1977-03-09 1978-09-26 Toshiba Corp Coating method
JPS55131164A (en) * 1979-03-30 1980-10-11 Rolls Royce Method and apparatus for applying metal coating to metal substrate
JPS55148752A (en) * 1979-05-11 1980-11-19 Nippon Steel Corp Formation method of coating on metal surface
JPS56158871A (en) * 1980-05-14 1981-12-07 Permelec Electrode Ltd Method for forming corrosion-resistant coating on metallic substrate

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60187660A (en) * 1984-02-24 1985-09-25 Honda Motor Co Ltd Partially hardened cast iron member
JPH0353389B2 (en) * 1984-02-24 1991-08-14 Honda Motor Co Ltd
JPS60224790A (en) * 1984-04-19 1985-11-09 Toyota Motor Corp Wear resistant al alloy member and its production
JPS6233758A (en) * 1985-08-05 1987-02-13 Honda Motor Co Ltd Method and apparatus for hardening metal surface using plasma gas
JPH0116314B2 (en) * 1985-08-05 1989-03-23 Honda Motor Co Ltd
JPS6297770A (en) * 1985-10-22 1987-05-07 Daido Steel Co Ltd Production of tool
JPH02149682A (en) * 1988-11-30 1990-06-08 Showa Alum Corp Production of aluminum alloy material having superior wear resistance
JPH02149681A (en) * 1988-11-30 1990-06-08 Showa Alum Corp Production of aluminum alloy material having superior wear resistance
CN107338434A (en) * 2016-11-22 2017-11-10 国营芜湖机械厂 Wear-resisting composite coating of the spontaneous high-temperature self-lubrication of Laser Cladding in-situ and preparation method thereof
CN108971803A (en) * 2018-08-17 2018-12-11 广州汉源新材料股份有限公司 A kind of composite intensified solder and preparation method thereof
CN113019408A (en) * 2021-03-12 2021-06-25 河南理工大学 Preparation method and application of ammonia borane hydrolysis hydrogen production catalyst

Also Published As

Publication number Publication date
GB8423101D0 (en) 1984-10-17
GB2148166A (en) 1985-05-30
DE3433698A1 (en) 1985-04-04
FR2551770A1 (en) 1985-03-15
FR2551770B1 (en) 1989-07-21
JPH0353388B2 (en) 1991-08-14
CA1249038A (en) 1989-01-17
GB2148166B (en) 1986-12-10
DE3433698C2 (en) 1987-06-11

Similar Documents

Publication Publication Date Title
JPS6070136A (en) Surface treatment of work
EP2456900B1 (en) Bearing steels
DE2925929B2 (en) Welding process for producing hard surfaces
Efremenko et al. Structure refinement of high-Cr cast iron by plasma surface melting and post-heat treatment
JP4361686B2 (en) Steel material and manufacturing method thereof
JP2004501276A (en) Thermal spray formed nitrogen-added steel, method for producing the steel, and composite material produced from the steel
Chaus Use of REM-based modifying agents for improving the structure and properties of cast tungsten-molybdenum high-speed steels
CN114318135A (en) Wear-resistant high-speed steel
Babinets et al. Influence of modification and microalloying on deposited metal structure and properties
EP1471155B1 (en) Method for fabricating a martensitic steel without any melting
Azevedo et al. Effect of austenite grain refinement on morphology of product of bainitic reaction in austempered ductile iron
US2079901A (en) Metallurgical addition agent and process
Raman Uses of Rare Earth Metals and Alloys in Metallurgy: Part I. Applications in Ferrous Materials
Harast Formation Mechanism Of Wear Resisting Surface Layer On Cast Iron Moulds By Direct Surface Alloying
EP0494977B1 (en) Method of modifying the surface of a substrate
RU2136440C1 (en) Method of centrifugal casting of blanks of cast iron cylindrical bushings
Feldshtein et al. Microstructure and phase composition of Febased self-fluxing alloy coatings formed by laser remelting and superficially modified by laser alloying with B4C particulates
Danninger et al. Alloy Systems for Heat Treated Sintered Steels
Safonov Structure and properties of the surface of iron-carbon alloys melted by laser radiation
Chaus Structure and phase transformations upon carburisation of high-speed steel
US221281A (en) Improvement in the manufacture of chrome-steel
Gladkii et al. Surfacing in the USSR
Davydov et al. Nonwaste Recycling of Nonferrous Metallurgy Slags in Iron Casting
Weld Tapan Sarkar, Tapan Kumar Pal & Akshay Kumar Pramanick
Cias Mechanical properties of hybrid Cr, Mn, and Si-containing PM steel when sintered in a local micro-atmosphere

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees