JPH02149681A - Production of aluminum alloy material having superior wear resistance - Google Patents

Production of aluminum alloy material having superior wear resistance

Info

Publication number
JPH02149681A
JPH02149681A JP63304518A JP30451888A JPH02149681A JP H02149681 A JPH02149681 A JP H02149681A JP 63304518 A JP63304518 A JP 63304518A JP 30451888 A JP30451888 A JP 30451888A JP H02149681 A JPH02149681 A JP H02149681A
Authority
JP
Japan
Prior art keywords
base material
wear resistance
hard
aluminum alloy
hard particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP63304518A
Other languages
Japanese (ja)
Other versions
JP2769338B2 (en
Inventor
Fukuhisa Matsuda
松田 福久
Kazuhiro Nakada
一博 中田
Tamotsu Ueno
保 上野
Ichizo Tsukuda
市三 佃
Shigetoshi Jogan
茂利 成願
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Altemira Co Ltd
Original Assignee
Showa Aluminum Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Aluminum Corp filed Critical Showa Aluminum Corp
Priority to JP63304518A priority Critical patent/JP2769338B2/en
Publication of JPH02149681A publication Critical patent/JPH02149681A/en
Application granted granted Critical
Publication of JP2769338B2 publication Critical patent/JP2769338B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/24Selection of soldering or welding materials proper
    • B23K35/28Selection of soldering or welding materials proper with the principal constituent melting at less than 950 degrees C
    • B23K35/286Al as the principal constituent

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Laser Beam Processing (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)

Abstract

PURPOSE:To produce an Al alloy material having superior wear resistance and durability by locally melting the surface of an Al or Al alloy base material together with a metal and a wettability improving element such as B fed from the outside of the base material to form a hard alloyed layer. CONSTITUTION:A shallow groove 2 is cut in the surface of an Al or Al alloy base material 1 and powder 3 of a mixture of one or more kinds of metals such as Ni, Mn and Fe or hard particles of one or more kinds of compds. such as TiC and ZrN with one or more among B, Si and Ge as wettability improving elements is fed from the outside of the base material 1 and embedded in the groove 2. The surface of the base material 1 is locally melted together with the powder 3 by irradiation with laser beams 4 to form a hard alloyed layer 5 contg. an Al-contg. intermetallic compd. crystallized in the Al matrix or a hard alloyed layer 5 contg. the hard particles alloyed with the Al matrix in the surface of the base material 1 in one body. An Al alloy material having superior wear resistance, not causing exfoliation and capable of ensuring satisfactory durability is obtd.

Description

【発明の詳細な説明】 産業上の利用分野 この発明は、自動車、事務機、一般機械等において、耐
摩耗性の要求される部品材料として使用される耐摩耗性
に優れたアルミニウム合金材の製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application This invention relates to the production of aluminum alloy materials with excellent wear resistance, which are used as parts materials that require wear resistance in automobiles, office machines, general machinery, etc. Regarding the method.

従来の技術及び課題 周知のように、アルミニウムあるいはアルミニウム合金
は汎用されている鉄系材料等と比較して格段に軽量であ
るのに加え、熱伝導特性に優れ、また耐食性も優れると
ころから、最近では自動車等の各種機械部品として広く
使用されるようになっている。しかしながら、一般にア
ルミニウムあるいはアルミニウム合金は鉄系材料と比較
して耐摩耗性が劣り、このことが自動車等における軽量
化等を目的として鉄系部材をA4合金部材に代える際の
大きな障害となっていた。
Conventional Technologies and Problems As is well known, aluminum or aluminum alloys are much lighter than commonly used iron-based materials, and have excellent thermal conductivity and corrosion resistance. It has come to be widely used in various mechanical parts such as automobiles. However, aluminum or aluminum alloys generally have inferior wear resistance compared to iron-based materials, and this has been a major obstacle when replacing iron-based parts with A4 alloy parts for the purpose of reducing weight in automobiles, etc. .

そこで従来から、耐摩耗性が要求される部位に適用され
るアルミニウム合金材の耐摩耗性向上策として、メツキ
や陽極酸化処理、あるいは溶射等の表面処理を施して耐
摩耗性の高い表面処理層を形成する試みがなされている
が、いずれも耐摩耗性の要求に対しいまだ充分な満足を
与え得るものではなかった。しかも、いずれの場合も表
面処理層の基材に対する密着性が充分でないところから
、高面圧下で使用した場合に充分な耐久性を確保できな
いという欠点があった。
Therefore, as a measure to improve the wear resistance of aluminum alloy materials used in areas where wear resistance is required, surface treatments such as plating, anodizing, or thermal spraying have been applied to create a highly wear-resistant surface treatment layer. Attempts have been made to form a steel sheet, but none of them have yet been able to fully satisfy the requirements for wear resistance. Moreover, in both cases, the adhesion of the surface treatment layer to the base material is insufficient, resulting in the drawback that sufficient durability cannot be ensured when used under high surface pressure.

この発明は、このような技術的背景のもとでなされたも
のであって、優れた耐摩耗性を有するとともに、高面圧
下で使用した場合にも充分な耐久性を有するアルミニウ
ム合金材料の製作堤供を目的とするものである。
The present invention was made against this technical background, and is aimed at producing an aluminum alloy material that has excellent wear resistance and sufficient durability even when used under high surface pressure. The purpose is to provide levies.

課題を解決するための手段 上記目的において、この発明は、アルミニウムまたはア
ルミニウム合金基材の表面に、Aρ系金金属間化合物硬
質粒子をAρマトリクスに晶出あるいは分散せしめた硬
質合金化層を形成することにより、材料の耐摩耗性を向
上させることを基本的着眼点として、さらに良好な合金
化層を形成するために鋭意研究の結果なされたものであ
る。
Means for Solving the Problems To achieve the above object, the present invention forms a hard alloyed layer on the surface of an aluminum or aluminum alloy base material, in which Aρ-based gold intermetallic compound hard particles are crystallized or dispersed in an Aρ matrix. This was the result of extensive research aimed at forming an even better alloyed layer, with the basic focus being on improving the wear resistance of the material.

即ちこの発明の1つは、アルミニウムまたはアルミニウ
ム合金基材の表面を、基材外部から供給した1種または
2種以上の金属と、B、 Si、Geの1種または2種
以上からなる濡れ性向上元素とともに局部的に溶融し、
もってAρマトリックスにAl系金属間化合物の晶出し
た硬質合金化層を前記基材の表面に形成することを特徴
とする耐摩耗性に優れたアルミニウム合金材の製造方法
を要旨とするものである。また、他の1つはアルミニウ
ムまたはアルミニウム合金基材の表面を、基材外部から
供給した1種または2種以上の硬質粒子と、B、Si、
Geの1種または2種以上からなる濡れ性向上元素とと
もに局部的に溶融し、もってAlマトリックスと硬質粒
子とが合金化した硬質合金化層を前記基材の表面に形成
することを特徴とする耐摩耗性に優れたアルミニウム合
金材の製造方法を要旨とするものである。
That is, one aspect of the present invention is to improve the wettability of the surface of an aluminum or aluminum alloy base material by one or more metals supplied from outside the base material and one or more of B, Si, and Ge. Locally melts with improving elements,
The object of the present invention is to provide a method for producing an aluminum alloy material with excellent wear resistance, which is characterized by forming a hard alloyed layer in which an Al-based intermetallic compound is crystallized in an Aρ matrix on the surface of the base material. . Another method is to coat the surface of an aluminum or aluminum alloy base material with one or more hard particles supplied from outside the base material, B, Si,
It is characterized in that it is locally melted together with a wettability improving element consisting of one or more types of Ge, thereby forming a hard alloyed layer on the surface of the base material in which the Al matrix and hard particles are alloyed. The gist of this paper is a method for producing an aluminum alloy material with excellent wear resistance.

基材として用いるアルミニウムまたはアルミニウム合金
の組成は特に限定されるものではなく、JIS100O
番台の純アルミニウムの他、用途に応じて必要とされる
機械的性質、加工特性を有する各種のアルミニウム合金
を用いうる。
The composition of aluminum or aluminum alloy used as the base material is not particularly limited, and JIS 100O
In addition to standard pure aluminum, various aluminum alloys can be used that have the required mechanical properties and processing characteristics depending on the application.

また基材の形状も、適用される部品の形状に応じて任意
に設計すれば良い。
Further, the shape of the base material may be arbitrarily designed depending on the shape of the part to which it is applied.

かかるアルミニウムまたはアルミニウム合金基材の表面
の溶融はレーザビーム、電子ビーム、TIGアーク等の
照射による高密度エネルギー源を用いた溶融手段によれ
ば良い。このような手段を用いることにより、基材表面
層のみを溶融しえて基材への熱影響を少なくでき、基材
の一部のみを局部的に合金化することができる。
The surface of the aluminum or aluminum alloy base material may be melted by a melting means using a high-density energy source such as laser beam, electron beam, TIG arc, or the like. By using such means, only the surface layer of the base material can be melted to reduce the thermal influence on the base material, and only a part of the base material can be locally alloyed.

−膜内にはレーザビームを用いる場合が多く、具体的に
はYAGレーザ(波長1.06.czm。
- A laser beam is often used in the film, specifically a YAG laser (wavelength: 1.06.czm).

パルス発振)とかCO2レーザ(波長10.68m1連
続発振)を主に用いる。また、溶融は耐摩耗性の要求さ
れる部位について行えば良いが、その部位が広範囲にわ
たるときはレーザビーム等のオシレージ・ヨン幅の調整
や、順次的照射により対処すれば良い。
Pulse oscillation) or CO2 laser (continuous oscillation with a wavelength of 10.68 m1) is mainly used. Further, melting may be carried out on a region where wear resistance is required, but if the region is spread over a wide range, it may be necessary to adjust the oscillation width of a laser beam or the like or sequentially irradiate the region.

基材表面の溶融は基材外部からの金属や硬質粒子の供給
を伴いつつ行う。金属は溶融によってAρとの間で金属
間化合物を形成するものであれば何でも良い。−例とし
てはNi、Mn。
The surface of the base material is melted while metal and hard particles are supplied from outside the base material. Any metal may be used as long as it forms an intermetallic compound with Aρ when melted. - Examples are Ni, Mn.

Fe5TiSV、Cr5ZrSNb、Mo、Hf5Ta
等の各元素を挙げうる。また、必ずしも金属単体である
必要はなく、金属間化合物の形で供給し、溶融によって
Aρと反応してAρ系の金属間化合物を形成するもので
も良い。
Fe5TiSV, Cr5ZrSNb, Mo, Hf5Ta
Each element can be mentioned. Further, it does not necessarily have to be a single metal, but may be supplied in the form of an intermetallic compound, which reacts with Aρ by melting to form an Aρ-based intermetallic compound.

方、硬質粒子としてはTic、、WCSZrC。On the other hand, the hard particles are Tic, WCSZrC.

NbC等の炭化物やTiN5ZrN、CrN等の窒化物
その他のセラミックスを挙げうる。これら金属あるいは
硬質粒子は18のみを用いても良く、あるいは金属どう
し、硬質粒子どうしを2種以上組合せて用いても良い。
Examples include carbides such as NbC, nitrides such as TiN5ZrN and CrN, and other ceramics. Only 18 of these metals or hard particles may be used, or two or more metals or hard particles may be used in combination.

また金属と硬質粒子とを組合せても良い。Further, metal and hard particles may be combined.

而して、上記の金属を単に基材とともに溶融した場合、
溶融時に金属の表面張力が大きく、従って濡れ性が悪い
ため基材と反応しにくい。
Therefore, when the above metals are simply melted together with the base material,
When melted, the metal has a high surface tension and therefore has poor wettability, making it difficult to react with the base material.

一方、硬質粒子の場合にも基材との濡れ性は良くない。On the other hand, hard particles also have poor wettability with the substrate.

そこで、この発明では金属や硬質粒子の基材に対する濡
れ性を向上し、基材中のAρとの反応を促進するため、
B、Si、Geの1種または2種以上を供給しこれをも
含めて同時的に溶融させるものとする。これらのB、S
i。
Therefore, in this invention, in order to improve the wettability of metals and hard particles to the base material and promote the reaction with Aρ in the base material,
One or more of B, Si, and Ge are supplied and melted simultaneously. These B, S
i.

Geは濡れ性向上効果を付与する点で相互に均等物であ
り、少なくともその1種を供給すれば足りるが、金属あ
るいは硬質粒子と濡れ性向上元素合計量との割合は重量
比において99:1〜70 : 30に規定するのが良
い。この範囲を下回って濡れ性向上元素が少なすぎると
金属あるいは硬質粒子と基材AQとの反応を充分促進で
きないおそれがあり、逆に多すぎると反応促進効果はを
するもののコスト高となるおそれがあるからである。
Ge is mutually equivalent in terms of imparting a wettability-improving effect, and it is sufficient to supply at least one of them, but the ratio of metal or hard particles to the total amount of wettability-improving elements is 99:1 by weight. ~70: It is better to specify 30. If the wettability-enhancing element is below this range and there is too little, there is a risk that the reaction between the metal or hard particles and the base material AQ cannot be sufficiently promoted.On the other hand, if it is too high, although the reaction promotion effect will be effective, there is a risk that the cost will increase. Because there is.

金属、硬質粒子、濡れ性向上元素の供給態様の1つとし
ては、これらを混合粉末にしてレーザビーム等の照射前
に予め所期する部位にコーティング層を形成しておく場
合を挙げうる。コーティング層の形成は湿式メツキ、C
VD、PVD、溶射法等により、あるいは混合粉末をエ
チルアルコールなど各種バインダーを用いて塗布するこ
とにより行いうる。また、他の供給態様として、混合粉
末をレーザビーム等の照射中に溶融部に直接投入する場
合を挙げつる。いずれの方法を用いても良いが、直接投
入方式の場合、供給速度の調整等が面倒であるため、簡
便性の点でコーティング方式、特にバインダーを用いた
粉末塗布法が優れている。
One method of supplying the metal, hard particles, and wettability-improving element is to form a mixed powder of these and form a coating layer on the desired site in advance before irradiation with a laser beam or the like. The coating layer is formed by wet plating, C
This can be done by VD, PVD, thermal spraying, etc., or by applying a mixed powder using various binders such as ethyl alcohol. In addition, as another supply mode, there is a case where the mixed powder is directly introduced into the melting zone during irradiation with a laser beam or the like. Although any method may be used, in the case of the direct feeding method, adjustment of the feeding rate, etc. is troublesome, so the coating method, especially the powder coating method using a binder, is superior in terms of simplicity.

上記のように、レーザビーム等の照射により基材表面を
金属及び濡れ性向上元素と共に溶融した後においては、
溶融部分は短詩に凝固しAlマトリックスに金属間化合
物、例えばTiAl3、ZrAl3、N1Ap、NiA
l3、Ni2 A、Q3 、FeA、Q3 、Fe4 
AC13、Mn/us、HfAl3、Nb:AC3、C
rA、Q7などが均一緻密にあるいは塊状に晶出した合
金化層となる。一方、硬質粒子の場合にはAlマトリッ
クスに該粒子が均一に分散しあるいは塊状化した合金化
層となる。而して、上記の金属間化合物は一般的に硬さ
が硬いものであり、また硬質粒子はそれ自体優れた硬度
を有しているため、合金化層が全体として高い硬度を示
し、優れた耐摩耗性を具有する。同時にBやSi。
As mentioned above, after the base material surface is melted together with the metal and the wettability improving element by irradiation with a laser beam or the like,
The molten part solidifies into an Al matrix with intermetallic compounds such as TiAl3, ZrAl3, N1Ap, NiA
l3, Ni2 A, Q3, FeA, Q3, Fe4
AC13, Mn/us, HfAl3, Nb:AC3, C
This results in an alloyed layer in which rA, Q7, etc. are crystallized uniformly and densely or in blocks. On the other hand, in the case of hard particles, an alloyed layer is formed in which the particles are uniformly dispersed or aggregated in an Al matrix. The above intermetallic compounds are generally hard, and the hard particles themselves have excellent hardness, so the alloyed layer as a whole exhibits high hardness and has excellent hardness. Has wear resistance. B and Si at the same time.

Geが濡れ性向上作用を発揮しつつもそれ自体もまたA
lマトリクスにAρ−B金属間化合物(AρB2と推定
される)やSi、Ge相として晶出し、合金化層の硬度
向上に寄与する。この合金化層の厚さはレーザビーム等
の照射条件、例えば出力、照射速度、焦点位置等を変化
させることで数十μmから数mm程度にまで容易に制御
できる。なお、Alマトリックス中の金属間化合物や硬
質粒子はこれが硬質であるほど合金化層の硬さは硬いも
のとなる。
Although Ge exerts the effect of improving wettability, it is also A
It crystallizes in the l matrix as an Aρ-B intermetallic compound (estimated to be AρB2), Si, and Ge phases, and contributes to improving the hardness of the alloyed layer. The thickness of this alloyed layer can be easily controlled from several tens of micrometers to several millimeters by changing the irradiation conditions of the laser beam, for example, the output, irradiation speed, focus position, etc. Note that the harder the intermetallic compound or hard particles in the Al matrix are, the harder the alloyed layer will be.

表面に硬質合金化層を形成した基材は、その後必要に応
じて最終製品形状に機械加工し、耐摩耗性部品として実
用に供する。
The base material with the hard alloyed layer formed on its surface is then machined into the final product shape as required, and put into practical use as a wear-resistant part.

発明の詳細 な説明したように、この発明は、アルミニウムまたはア
ルミニウム合金基材の表面を、基材外部から供給した金
属や硬質粒子及び必須の濡れ性向上元素とともに局部的
に溶融することにより、AlマトリックスにAQ系金金
属間化合物晶出しあるいは硬質粒子が合金化した極めて
硬度の高い合金化層を形成するものであるから、本発明
によって製造したアルミニウム合金材は格段に耐摩耗性
に優れたものとなり、従って自動車等に要請される耐摩
耗部品として好適なものとなしうる。また、合金化層は
従来のようなメツキ等による表面処理層と異なり、基材
と一体的に結合しているから、高面圧下で使用した場合
にも波層の剥離等を起こす危険はなく、充分な耐久性を
確保しうるちのとなる。
Detailed Description of the Invention As described in detail, the present invention provides Al Since an extremely hard alloyed layer is formed by crystallizing AQ-based gold intermetallic compounds or alloyed with hard particles in the matrix, the aluminum alloy material manufactured by the present invention has extremely excellent wear resistance. Therefore, it can be made suitable as a wear-resistant part required for automobiles and the like. In addition, unlike conventional surface treatment layers such as plating, the alloyed layer is integrally bonded to the base material, so there is no risk of peeling of the wave layer even when used under high surface pressure. , ensuring sufficient durability.

実施例 第1図に示すように、工業用純AQ(A1070)から
なる厚さ7.5mmX幅40 mノn X長さ100m
の複数の試験片を基材(1)として用いた。そしてこの
試験片の中央部長手方向に、深さ0,5#、幅6mnの
浅溝(2)を掘り、抜溝に、第1表に示すように組合せ
た金属、硬質粒子と濡れ性向上元素との混合粉末(3)
をエチルアルコールをバインダーとして埋込み状態に塗
布した。塗布厚さは約0.5mmであった。
Example As shown in Fig. 1, a material made of industrial pure AQ (A1070) has a thickness of 7.5 mm, a width of 40 m, and a length of 100 m.
A plurality of test pieces were used as the base material (1). Then, a shallow groove (2) with a depth of 0.5 # and a width of 6 mm was dug in the longitudinal direction of the center of this test piece, and the groove was filled with metals and hard particles combined as shown in Table 1 to improve wettability. Mixed powder with elements (3)
was applied to the embedded state using ethyl alcohol as a binder. The coating thickness was approximately 0.5 mm.

[以下余白] 次に10 k wmc 02 レーザ加工機を用いて、
前記試験片の混合粉末塗布部分にレーザビーム(4)を
照射し、混合粉末とその直下の基材Alとを共に溶融し
た。照射条件は、出力5kw、試片移動速度100m/
m i n、焦点位置+30、ビームオシレーション5
H2,5#とじた。
[Left below] Next, using a 10 kW mc 02 laser processing machine,
A laser beam (4) was irradiated onto the portion of the test piece where the mixed powder was applied, thereby melting both the mixed powder and the base material Al immediately below it. The irradiation conditions were: output 5kw, sample movement speed 100m/
min, focal position +30, beam oscillation 5
H2,5# bound.

レーザビームの照射による溶融後、凝固した試験片の組
織状態を調べたところ、試料Nol〜12の試験片につ
いては溝部分の全体にわたって第1表に示す厚さの合金
化層が形成されていた。かつこれらの合金化層は金属間
化合物や硬質粒子が比較的均一緻密に晶出あるいは分散
した部分と塊状化した部分とを有し、合金化層全体の硬
さは第1表のとおりであった。しかも、合金化層内及び
合金化層と基材Afl界面では割れ及び気孔の発生は全
く認められなかった。これに対し、試料No13では、
表面に亀甲状の割れが認められ、一部が剥離しており、
しかも合金化層直下に基材Aρのみの溶融域が存在し、
Alとの濡れ性が悪いことが認められた。また試料N 
o 14では表面に不連続の孔が形成されるとともに、
合金下層直下でやはり基材Alのみの溶融域が存在し、
Alとの濡れ性か悪いものであった。また、試料No1
5では溶融Niが球状化し、基材Alと濡れなかった。
After melting by laser beam irradiation, the microstructure of the solidified specimens was examined, and it was found that an alloyed layer with the thickness shown in Table 1 was formed over the entire groove portion of the specimens No. 12. . In addition, these alloyed layers have parts where intermetallic compounds and hard particles are crystallized or dispersed relatively uniformly and densely, and parts where they are agglomerated, and the hardness of the whole alloyed layer is as shown in Table 1. Ta. Furthermore, no cracks or pores were observed within the alloyed layer or at the interface between the alloyed layer and the base material Afl. On the other hand, in sample No. 13,
Tortoiseshell-shaped cracks are observed on the surface, and some parts have peeled off.
Moreover, there is a melting region of only the base material Aρ directly below the alloyed layer,
It was observed that the wettability with Al was poor. Also, sample N
o At 14, discontinuous pores are formed on the surface, and
There is also a melting region of only the base material Al just below the alloy lower layer,
The wettability with Al was poor. In addition, sample No.
In No. 5, the molten Ni became spheroidal and did not wet the base material Al.

一方、アルミニウム基材単体の硬度を調べたところ、H
v30 (荷重5Ng)であった。
On the other hand, when we investigated the hardness of the aluminum base material alone, we found that H
v30 (load 5Ng).

以上の試験結果かられかるように、本発明によれば、極
めて硬度が高く従って当然に耐摩耗性にも優れた合金化
層を基材表面に有するアルミニウム材料を製造しうろこ
とを確認しえた。
As can be seen from the above test results, it has been confirmed that according to the present invention, it is possible to produce an aluminum material having an alloyed layer on the surface of the base material that has extremely high hardness and naturally has excellent wear resistance. .

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の実施例における合金化の工程を模式
的に示す斜視図である。 (1)・・・基材、(3)・・・混合粉末、(4)・・
・レーザビーム、(5)・・・合金化層。 以上
FIG. 1 is a perspective view schematically showing the alloying process in an embodiment of the present invention. (1)...Base material, (3)...Mixed powder, (4)...
-Laser beam, (5)...alloyed layer. that's all

Claims (2)

【特許請求の範囲】[Claims] (1)アルミニウムまたはアルミニウム合金基材の表面
を、基材外部から供給した1種または2種以上の金属と
、B、Si、Geの1種または2種以上からなる濡れ性
向上元素とともに局部的に溶融し、もってAlマトリッ
クスにAl系金属間化合物の晶出した硬質合金化層を前
記基材の表面に形成することを特徴とする耐摩耗性に優
れたアルミニウム合金材の製造方法。
(1) Locally coat the surface of an aluminum or aluminum alloy base material with one or more metals supplied from outside the base material and a wettability improving element consisting of one or more of B, Si, and Ge. 1. A method for producing an aluminum alloy material having excellent wear resistance, characterized in that a hard alloyed layer in which an Al-based intermetallic compound is crystallized in an Al matrix is formed on the surface of the base material.
(2)アルミニウムまたはアルミニウム合金基材の表面
を、基材外部から供給した1種または2種以上の硬質粒
子と、B、Si、Geの1種または2種以上からなる濡
れ性向上元素とともに局部的に溶融し、もってAlマト
リックスと硬質粒子とが合金化した硬質合金化層を前記
基材の表面に形成することを特徴とする耐摩耗性に優れ
たアルミニウム合金材の製造方法。
(2) The surface of the aluminum or aluminum alloy base material is locally coated with one or more hard particles supplied from outside the base material and a wettability improving element consisting of one or more of B, Si, and Ge. A method for manufacturing an aluminum alloy material having excellent wear resistance, characterized by forming a hard alloyed layer on the surface of the base material in which the aluminum matrix and the hard particles are alloyed by melting the aluminum alloy material.
JP63304518A 1988-11-30 1988-11-30 Manufacturing method of aluminum alloy material with excellent wear resistance Expired - Fee Related JP2769338B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63304518A JP2769338B2 (en) 1988-11-30 1988-11-30 Manufacturing method of aluminum alloy material with excellent wear resistance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63304518A JP2769338B2 (en) 1988-11-30 1988-11-30 Manufacturing method of aluminum alloy material with excellent wear resistance

Publications (2)

Publication Number Publication Date
JPH02149681A true JPH02149681A (en) 1990-06-08
JP2769338B2 JP2769338B2 (en) 1998-06-25

Family

ID=17933991

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63304518A Expired - Fee Related JP2769338B2 (en) 1988-11-30 1988-11-30 Manufacturing method of aluminum alloy material with excellent wear resistance

Country Status (1)

Country Link
JP (1) JP2769338B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102267260A (en) * 2010-04-28 2011-12-07 普拉特及惠特尼火箭达因公司 Substrate having laser sintered underplate

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6070136A (en) * 1983-09-14 1985-04-20 Honda Motor Co Ltd Surface treatment of work
JPS6238789A (en) * 1985-08-13 1987-02-19 Toyota Motor Corp Formation of alloy layer by co2 laser
JPS6254588A (en) * 1985-08-30 1987-03-10 Toyota Motor Corp Formation of composite aluminum alloy layer dispersed with ceramic particles
JPS6372488A (en) * 1986-09-16 1988-04-02 Mazda Motor Corp Surface processing method for sliding member
JPS63235087A (en) * 1987-03-20 1988-09-30 Toyota Central Res & Dev Lab Inc Build-up welding method
JPH02101177A (en) * 1988-10-05 1990-04-12 Toyota Motor Corp Wear-resistant al alloy member and its production

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6070136A (en) * 1983-09-14 1985-04-20 Honda Motor Co Ltd Surface treatment of work
JPS6238789A (en) * 1985-08-13 1987-02-19 Toyota Motor Corp Formation of alloy layer by co2 laser
JPS6254588A (en) * 1985-08-30 1987-03-10 Toyota Motor Corp Formation of composite aluminum alloy layer dispersed with ceramic particles
JPS6372488A (en) * 1986-09-16 1988-04-02 Mazda Motor Corp Surface processing method for sliding member
JPS63235087A (en) * 1987-03-20 1988-09-30 Toyota Central Res & Dev Lab Inc Build-up welding method
JPH02101177A (en) * 1988-10-05 1990-04-12 Toyota Motor Corp Wear-resistant al alloy member and its production

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102267260A (en) * 2010-04-28 2011-12-07 普拉特及惠特尼火箭达因公司 Substrate having laser sintered underplate

Also Published As

Publication number Publication date
JP2769338B2 (en) 1998-06-25

Similar Documents

Publication Publication Date Title
KR100388150B1 (en) Light metal cylinder block, method of producing the same and device for carrying out the method
CA2254700C (en) Laser clad pot roll sleeves for galvanizing baths
JP2002510361A (en) Surface abrasion resistant sintered machine parts and method of manufacturing the same
DE3808285C2 (en)
JPS62224529A (en) Manufacture for tool
JPH02149681A (en) Production of aluminum alloy material having superior wear resistance
JPH02149682A (en) Production of aluminum alloy material having superior wear resistance
US7235144B2 (en) Method for the formation of a high-strength and wear-resistant composite layer
JP2021515100A (en) Articles with a nitrogen alloy protective layer and methods for manufacturing the articles
JPH02149680A (en) Production of aluminum alloy material having superior wear resistance
JPH02149678A (en) Production of aluminum alloy material having superior wear resistance
US5096662A (en) Method for forming high abrasion resisting layers on parent materials
JP2769336B2 (en) Manufacturing method of aluminum alloy material with excellent wear resistance
JP2736525B2 (en) Spray method
JP2942299B2 (en) Additive for surface hardening of aluminum
JP2677412B2 (en) Filler for surface hardening of aluminum materials
JPS61231151A (en) Surface hardening treatment for titanium or titanium alloy
JP2677413B2 (en) Filler for surface hardening of aluminum materials
JPS60141397A (en) Build-up material using heat source having high energy density as heat source
JP2954258B2 (en) Method of manufacturing filler metal for surface hardening of aluminum material
CN104057246B (en) The manufacture method of steel pipe plated with metal by thermal spraying
JPH04120280A (en) Production of surface-hardened aluminum material
JP2935123B2 (en) Additive for surface hardening of aluminum
RU2217279C2 (en) Method for electron-beam surfacing
JP2003106265A (en) Aluminum oil pump and its manufacturing method

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees