JP2000019152A - Hydrogen gas sensor - Google Patents

Hydrogen gas sensor

Info

Publication number
JP2000019152A
JP2000019152A JP10186366A JP18636698A JP2000019152A JP 2000019152 A JP2000019152 A JP 2000019152A JP 10186366 A JP10186366 A JP 10186366A JP 18636698 A JP18636698 A JP 18636698A JP 2000019152 A JP2000019152 A JP 2000019152A
Authority
JP
Japan
Prior art keywords
hydrogen
hydrogen gas
electrode
oxide
metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10186366A
Other languages
Japanese (ja)
Inventor
Koji Katahira
幸司 片平
Kunihiro Koide
邦博 小出
Hironari Iwahara
弘育 岩原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TYK Corp
Original Assignee
TYK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TYK Corp filed Critical TYK Corp
Priority to JP10186366A priority Critical patent/JP2000019152A/en
Publication of JP2000019152A publication Critical patent/JP2000019152A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a hydrogen gas sensor having high sensitivity and high accuracy. SOLUTION: This hydrogen gas sensor 1 is composed of a solid electrolyte 11 having proton conductivity, a hydrogen electrode 12 formed on one side of the solid electrolyte 11 and with which a measuring gas having a hydrogen partial pressure to be measured comes into contact an oxygen electrode 13 comprising a metal and a metal oxide formed on the other side of the electrode 11, namely, on the side facing the hydrogen electrode 12 from the back side, and a electromotive force measurement means 14 for measuring an electromotive force between the hydrogen electrode 12 and the oxygen electrode 13. In this hydrogen gas sensor 1, the metal oxide forming the oxygen electrode 13 works as an oxidizing agent, therefore, a proton and an electron are produced from hydrogen near the hydrogen electrode 12 and a metal oxide reaction occurs by the proton and the electron on the oxygen electrode 13. Therefore, detection sensitivity of hydrogen gas is high and detection accuracy is also high.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明はプロトン導電性をもつ固
体電解質を用いた水素ガスセンサに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a hydrogen gas sensor using a solid electrolyte having proton conductivity.

【0002】[0002]

【従来の技術】従来、ホタル石型酸化物である安定化ジ
ルコニアにペロブスカイト酸化物であるSrZrO3
を接合した固体電解質の両面にAu電極を付けた水素濃
淡電池が報告されている。この水素濃淡電池のSrZr
3側の水素ガス分圧を変化させると、水素ガス分圧の
対数に比例する起電力が発生する。しかし、この従来の
水素濃淡電池は水素ガス分圧に対する感度が低く、ま
た、同一水素ガス分圧に対する起電力の変動が大きく、
水素ガスセンサに応用しようとした場合性能的に不十分
であった。
2. Description of the Related Art Conventionally, there has been reported a hydrogen concentration cell in which Au electrodes are provided on both surfaces of a solid electrolyte in which a fluorite-type oxide stabilized zirconia is joined to a perovskite oxide SrZrO 3 layer. SrZr of this hydrogen concentration cell
When the hydrogen gas partial pressure on the O 3 side is changed, an electromotive force proportional to the logarithm of the hydrogen gas partial pressure is generated. However, this conventional hydrogen concentration cell has low sensitivity to hydrogen gas partial pressure, and the electromotive force fluctuates greatly for the same hydrogen gas partial pressure.
Performance was insufficient when applied to a hydrogen gas sensor.

【0003】[0003]

【本発明が解決しようとする課題】本発明は従来の問題
を解決するもので、高感度、高精度の水素ガスセンサを
提供することを目的とする。
SUMMARY OF THE INVENTION The present invention has been made to solve the conventional problems, and has as its object to provide a highly sensitive and accurate hydrogen gas sensor.

【0004】[0004]

【課題を解決するための手段】上記課題を解決した本発
明に係る水素ガスセンサは、プロトン導電性をもつ固体
電解質と、該固体電解質の一方の面に形成され測定すべ
き水素ガス分圧をもつ被測定ガスが接触する水素電極
と、該水素電極と背向する該電解質の他方の面に形成さ
れた金属と金属酸化物とからなる酸素電極と、該水素電
極と該酸素電極の間の起電力を測定する起電力測定手段
と、からなることを特徴とする。
A hydrogen gas sensor according to the present invention which has solved the above problems has a solid electrolyte having proton conductivity and a partial pressure of hydrogen gas to be measured which is formed on one surface of the solid electrolyte. A hydrogen electrode in contact with the gas to be measured, an oxygen electrode formed of a metal and a metal oxide formed on the other surface of the electrolyte opposite the hydrogen electrode, and an electrode between the hydrogen electrode and the oxygen electrode. And electromotive force measuring means for measuring power.

【0005】[0005]

【発明の実施の形態】固体電解質としては、例えば、酸
化物イオン導電性電解質であるホタル石型酸化物の表面
にプロトン−酸化物イオン混合導電性電解質であるAB
3型のペロブスカイト酸化物が膜状に積層したものが
使用できる。固体電解質の形状はセンサの形状に合わせ
て例えば膜状、板状あるいは円筒状でもよい。膜状の場
合は、例えば円柱状の酸素電極をベースにして、その側
面に固体電解質を膜状に形成することになる。
DESCRIPTION OF THE PREFERRED EMBODIMENTS As a solid electrolyte, for example, a proton-oxide ion mixed conductive electrolyte AB on a surface of a fluorite-type oxide which is an oxide ion conductive electrolyte is used.
Those O 3 perovskite oxide was laminated in a film form can be used. The shape of the solid electrolyte may be, for example, a film shape, a plate shape, or a cylindrical shape according to the shape of the sensor. In the case of a film shape, for example, a solid electrolyte is formed in a film shape on the side surface based on, for example, a cylindrical oxygen electrode.

【0006】ABO3型のA元素は、アルカリ土類金属
(Sr,Ca,Ba)からなる群から選択された1種以
上の元素である。B元素は前記ホタル石型酸化物の金属
元素またはその一部をアルカリ土類金属(Mg,Ca,
Sr,Ba)、および、希土類元素(Sc,Y,La,
Nd,Sm,Eu,Gd,Dy,Ho,Yb)からなる
群から選択された一種以上の元素で1〜30モル%置換
固溶されて生じるホタル石型酸化物の金属元素である。
The ABO 3 type A element is at least one element selected from the group consisting of alkaline earth metals (Sr, Ca, Ba). The B element is a metal element of the fluorite-type oxide or a part thereof is an alkaline earth metal (Mg, Ca,
Sr, Ba) and rare earth elements (Sc, Y, La,
Nd, Sm, Eu, Gd, Dy, Ho, Yb) is a metal element of a fluorite-type oxide formed by being substituted with 1 to 30 mol% of one or more elements selected from the group consisting of:

【0007】このようなABO3型のペロブスカイト酸
化物としては、SrZrO3,BaCeO3,SrCeO
3,BaZrO3,あるいはCaZrO3がある。ホタル
石型酸化物表面へのペロブスカイト酸化物膜の形成は、
プラズマ溶射、スパッタ等でもできるが、次の方法が簡
便でコスト的にも優れている。すなわち、ホタル石型酸
化物の表面にたとえば、アルカリ土類金属の無機酸塩、
有機酸塩、および有機金属化合物の1種以上を塗布し、
大気中等の酸化性雰囲気中で800℃以上の温度で加熱
焼成することにより、ペロブスカイト酸化物膜を形成す
ることができる。このペロブスカイト酸化物の膜厚は1
0μm以上が望ましい。膜厚が10μm未満では水素が
ホタル石型酸化物層に侵入し、これを還元するためであ
る。
Such ABO 3 type perovskite oxides include SrZrO 3 , BaCeO 3 , and SrCeO.
3 , BaZrO 3 or CaZrO 3 . The formation of a perovskite oxide film on the surface of fluorite oxide
Plasma spraying, sputtering, etc. can be used, but the following method is simple and excellent in cost. That is, for example, on the surface of the fluorite type oxide, an inorganic acid salt of an alkaline earth metal,
Applying one or more of an organic acid salt and an organometallic compound,
The perovskite oxide film can be formed by heating and baking at a temperature of 800 ° C. or more in an oxidizing atmosphere such as the air. The thickness of this perovskite oxide is 1
0 μm or more is desirable. If the thickness is less than 10 μm, hydrogen penetrates into the fluorite-type oxide layer and reduces it.

【0008】ホタル石型酸化物としては、ジルコニア
(ZrO2)あるいはセリア(CeO2)の一部をアルカ
リ土類金属(Mg,Ca,Sr,Ba)および希土類元
素(Sc,Y,La,Nd,Sm,Eu,Gd,Dy,
Ho,Ba)からなる群から選択した1種以上の元素の
酸化物で1〜30モル%置換固溶させた安定化ジルコニ
アまたは安定化セリアが望ましい。上記ホタル石型酸化
物は酸化物イオン導電性に優れており、かつ熱膨張によ
る亀裂発生の問題もない。
As the fluorite-type oxide, part of zirconia (ZrO 2 ) or ceria (CeO 2 ) is converted to an alkaline earth metal (Mg, Ca, Sr, Ba) and a rare earth element (Sc, Y, La, Nd). , Sm, Eu, Gd, Dy,
Stabilized zirconia or stabilized ceria in which 1 to 30 mol% of an oxide of one or more elements selected from the group consisting of Ho, Ba) is solid-dissolved is preferred. The fluorite-type oxide is excellent in oxide ion conductivity and has no problem of crack generation due to thermal expansion.

【0009】このようなホタル石型酸化物には、たとえ
ば(ZrO20.92(Y230.08,(CeO2
0.9(Y230.1,(CeO20.9(SmO1.50.1
(CeO20.8(CaO)0.2,(CeO20.8(Sr
O)0.2等がある。ホタル石型酸化物の表面に形成され
たペロブスカイト酸化物膜の表面にNi、Pt,Au等
の膜を形成し、水素電極とする。この電極膜は通常のP
VD法、CVD法で形成できるが、Ni、Pt,Au等
のペーストをペロブスカイト酸化物膜の表面に塗布し、
還元性雰囲気中で800℃以上で焼き付ける方法(ペー
スト塗布法)で形成する方が多孔質膜になって水素ガス
の侵入が容易になるので、望ましい。なお、AuやPt
のように酸化しにくい金属の場合は空気中で焼き付けて
もよい。
Such fluorite-type oxides include, for example, (ZrO 2 ) 0.92 (Y 2 O 3 ) 0.08 , (CeO 2 )
0.9 (Y 2 O 3 ) 0.1 , (CeO 2 ) 0.9 (SmO 1.5 ) 0.1 ,
(CeO 2 ) 0.8 (CaO) 0.2 , (CeO 2 ) 0.8 (Sr
O) 0.2 mag. A film of Ni, Pt, Au, or the like is formed on the surface of the perovskite oxide film formed on the surface of the fluorite-type oxide to serve as a hydrogen electrode. This electrode film is made of ordinary P
It can be formed by a VD method or a CVD method, but a paste of Ni, Pt, Au or the like is applied to the surface of the perovskite oxide film,
Baking at a temperature of 800 ° C. or higher in a reducing atmosphere (paste coating method) is preferable because it forms a porous film and facilitates the invasion of hydrogen gas. In addition, Au or Pt
In the case of a metal that does not easily oxidize as described above, it may be baked in the air.

【0010】前記水素電極と背向して配設される酸素電
極は、発明者らの実験によれば、Pt、Au、Fe、N
i、Cu、Zn、Cr等の電気伝導性に優れた金属と、
Fe 23、Ni23、Cu2O、ZnO、Cr23等の
金属酸化物との混合物のとき、水素ガス検出感度が高く
なることが示された。さらに、前記金属がCuで前記金
属酸化物がCu2Oのとき、あるいは、前記金属がCr
で前記金属酸化物がCr23のとき、より一層検出感度
が高くなることが示された。前記金属と金属酸化物との
混合物である酸素電極は、例えば次のようにして形成さ
れる。すなわち、金属と金属酸化物の粉末を適当な割合
で混合し、有機溶剤でペースト状にした後水素電極と背
向する前記固体電解質の面に塗布し、有機溶剤が蒸散し
た後800℃以上で焼成することによって形成される。
酸素電極を基体としてその上に固体電解質を形成する場
合は、例えば、金属と金属酸化物の粉末を適当な割合で
混合し、酸素電極を作ることができる。例えば、Cuと
Cu2Oの混合物である。
[0010] An oxygen electrode disposed opposite to the hydrogen electrode.
The poles are, according to our experiments, Pt, Au, Fe, N
a metal having excellent electrical conductivity such as i, Cu, Zn, Cr,
Fe TwoOThree, NiTwoOThree, CuTwoO, ZnO, CrTwoOThreeEtc.
High sensitivity to hydrogen gas detection when mixed with metal oxides
It was shown to be. Further, the metal is Cu and the gold is
Group oxide is CuTwoO, or when the metal is Cr
And the metal oxide is CrTwoOThreeIn the case of, more detection sensitivity
Was shown to be higher. The metal and metal oxide
The oxygen electrode, which is a mixture, is formed, for example, as follows.
It is. That is, the powder of metal and metal oxide is
And paste it with an organic solvent.
To the surface of the solid electrolyte facing, the organic solvent evaporates
Then, it is formed by firing at 800 ° C. or more.
When a solid electrolyte is formed on an oxygen electrode as a substrate
If, for example, a powder of metal and metal oxide in an appropriate ratio
Can be mixed to form an oxygen electrode. For example, with Cu
CuTwoIt is a mixture of O.

【0011】起電力測定手段は前記水素電極と酸素電極
とリード線で接続され、両電極間の起電力を測定するも
ので、通常の電圧計、電流計、ガルバノメータ等が使わ
れる。
The electromotive force measuring means is connected to the hydrogen electrode and the oxygen electrode by a lead wire, and measures the electromotive force between the two electrodes. A normal voltmeter, ammeter, galvanometer or the like is used.

【0012】[0012]

【作用】プロトン導電性をもつ固体電解質の一方の面に
形成された水素電極に水素ガスが接触すると、前記固体
電解質の水素電極近傍で水素がプロトンになり、電子を
発生する。プロトンは固体電解質の中を移動し、水素電
極と背向する酸素電極に達する。一方、電子は水素電極
と酸素電極をつなぐリード線の中を通り起電力測定手段
を経て酸素電極に達する。そうすると、酸素電極中の金
属酸化物が酸化剤として働き、金属酸化物とプロトンお
よび電子が反応する。この一連の反応で水素電極側から
酸素電極側に電子が移動し、その移動量が水素ガス分圧
に比例する。したがって、両電極を結ぶリード線間に接
続された起電力測定手段で起電力を測定することで、水
素ガス分圧、すなわち水素ガス濃度を検出することがで
きる。
When a hydrogen gas contacts a hydrogen electrode formed on one surface of a solid electrolyte having proton conductivity, hydrogen becomes a proton near the hydrogen electrode of the solid electrolyte to generate an electron. Protons travel through the solid electrolyte and reach the hydrogen electrode and the back oxygen electrode. On the other hand, the electrons pass through a lead wire connecting the hydrogen electrode and the oxygen electrode, and reach the oxygen electrode via the electromotive force measuring means. Then, the metal oxide in the oxygen electrode functions as an oxidizing agent, and the metal oxide reacts with protons and electrons. In this series of reactions, electrons move from the hydrogen electrode side to the oxygen electrode side, and the amount of the movement is proportional to the hydrogen gas partial pressure. Therefore, by measuring the electromotive force with the electromotive force measuring means connected between the lead wires connecting the two electrodes, the hydrogen gas partial pressure, that is, the hydrogen gas concentration can be detected.

【0013】[0013]

【実施例】本発明の実施例を示し、本発明をさらに具体
的に説明する。本実施例の水素ガスセンサを被測定ガス
流路の隔壁に取り付けた断面図を図1に示す。本水素ガ
スセンサ1は円柱状の酸素電極13と、その円柱状酸素
電極13の表面に形成されたプロトン導電性をもつ膜状
の固体電解質11と、その膜状の固体電解質11の表面
に形成された水素電極12と、一端が水素電極12に、
他端が酸素電極13にリード線15で接続された起電力
測定手段14と、からなる。
The present invention will be described in more detail with reference to Examples of the present invention. FIG. 1 shows a cross-sectional view in which the hydrogen gas sensor of the present embodiment is attached to a partition wall of a gas flow path to be measured. The present hydrogen gas sensor 1 is formed on a cylindrical oxygen electrode 13, a proton-conductive film-shaped solid electrolyte 11 formed on the surface of the cylindrical oxygen electrode 13, and formed on the surface of the film-shaped solid electrolyte 11. Hydrogen electrode 12 and one end to the hydrogen electrode 12,
And an electromotive force measuring means 14 having the other end connected to the oxygen electrode 13 by a lead wire 15.

【0014】水素ガスセンサ1は被測定ガス流路2に挿
入され、上端が隔壁3に固着され、水素電極12が被測
定ガスに曝されている。円柱状の酸素電極13はCuと
Cu2Oの混合物である。円柱状酸素電極13の表面に
形成された膜状の固体電解質11は膜状のホタル石型酸
化物111と、膜状のペロブスカイト酸化物112とか
らなる。膜状のホタル石型酸化物111の外面に膜状の
ペロブスカイト酸化物膜112が形成されている。
The hydrogen gas sensor 1 is inserted into the gas flow path 2 to be measured, the upper end is fixed to the partition 3, and the hydrogen electrode 12 is exposed to the gas to be measured. The cylindrical oxygen electrode 13 is a mixture of Cu and Cu 2 O. The film-like solid electrolyte 11 formed on the surface of the columnar oxygen electrode 13 is composed of a film-like fluorite oxide 111 and a film-like perovskite oxide 112. A film-like perovskite oxide film 112 is formed on the outer surface of the film-like fluorite oxide 111.

【0015】膜状のホタル石型酸化物111は、安定化
ジルコニア、(ZrO20.97(Y230.03、であ
る。市販の安定化ジルコニア粉末を水で練ってペースト
状にし、これを円柱状酸素電極13の表面に塗布し、室
温で乾燥後、空気中、1500℃、5時間の条件で焼成
して作られた。膜状のホタル石型酸化物111の表面に
アルカリ土類金属の中のSrの硝酸塩の飽和水溶液(ペ
ースト)を塗布し、室温で乾燥後、空気中、1200
℃、10時間の条件で焼成して、厚さ10μmのペロブ
スカイト酸化物112であるSrZrO3が形成され
た。
The fluorite oxide 111 in the form of a film is stabilized zirconia, (ZrO 2 ) 0.97 (Y 2 O 3 ) 0.03 . A commercially available stabilized zirconia powder was kneaded with water to form a paste, which was applied to the surface of the cylindrical oxygen electrode 13, dried at room temperature, and then fired in air at 1500 ° C. for 5 hours. . A saturated aqueous solution (paste) of nitrate of Sr in alkaline earth metal is applied to the surface of the film-like fluorite oxide 111, dried at room temperature, and then dried in air at 1200
° C., and fired under the conditions of 10 hours, SrZrO 3 is formed a perovskite oxide 112 having a thickness of 10 [mu] m.

【0016】前記膜状のペロブスカイト酸化物112の
上にAuペーストが塗布され、1000℃で還元雰囲気
中で焼き付けて多孔質のAu水素電極12が形成され
た。2本のCu線からなるリード線16の一端が水素電
極12と酸素電極13に半田付けされ、他端が起電力測
定手段15としての電圧計に接続されている。被測定ガ
ス流路2中の水素ガス分圧を変化させたときの、動作温
度700℃での本水素ガスセンサの起電力と水素ガス分
圧の関係を図2に示す。水素ガス分圧を1桁変えると起
電力が約250mV変化しており、高感度であることが
わかる。また、起電力と水素ガス分圧の直線性がよく、
高精度であることがわかる。
An Au paste was applied on the film-like perovskite oxide 112 and baked at 1000 ° C. in a reducing atmosphere to form a porous Au hydrogen electrode 12. One end of a lead wire 16 composed of two Cu wires is soldered to the hydrogen electrode 12 and the oxygen electrode 13, and the other end is connected to a voltmeter as the electromotive force measuring means 15. FIG. 2 shows the relationship between the electromotive force of the present hydrogen gas sensor and the hydrogen gas partial pressure at an operating temperature of 700 ° C. when the hydrogen gas partial pressure in the measured gas flow path 2 was changed. When the hydrogen gas partial pressure is changed by one digit, the electromotive force changes by about 250 mV, which indicates that the sensitivity is high. In addition, the linearity between the electromotive force and the hydrogen gas partial pressure is good,
It can be seen that the accuracy is high.

【0017】[0017]

【発明の効果】本発明の水素ガスセンサは、酸素電極が
金属と金属酸化物との混合物で、金属酸化物が酸化剤と
して働くので、水素電極近傍で水素からプロトンと電子
を生成し、そのプロトンと電子が酸素電極で金属酸化物
を還元する。したがって、図2に示したように、水素ガ
スの高感度、高精度検出が可能になる。
According to the hydrogen gas sensor of the present invention, since the oxygen electrode is a mixture of a metal and a metal oxide, and the metal oxide acts as an oxidizing agent, protons and electrons are generated from hydrogen near the hydrogen electrode, and the protons are generated. And electrons reduce the metal oxide at the oxygen electrode. Therefore, as shown in FIG. 2, it is possible to detect hydrogen gas with high sensitivity and high accuracy.

【図面の簡単な説明】[Brief description of the drawings]

【図1】実施例の水素ガスセンサを被測定ガス流路の隔
壁に取り付けた断面図。
FIG. 1 is a cross-sectional view in which a hydrogen gas sensor according to an embodiment is attached to a partition wall of a gas flow path to be measured.

【図2】実施例の水素ガスセンサの起電力と水素ガス分
圧の関係を示すグラフ。
FIG. 2 is a graph showing a relationship between an electromotive force and a hydrogen gas partial pressure of the hydrogen gas sensor of the embodiment.

【符号の説明】[Explanation of symbols]

1・・水素がガスセンサ、11・・プロトン導電性をも
つ固体電解質、12・・水素電極、13・・酸素電極、
14・・起電力測定手段、111・・ホタル石型酸化
物、112・・ペロブスカイト酸化物膜
1 ·· Hydrogen gas sensor, 11 ·· Proton-conducting solid electrolyte, 12 ·· Hydrogen electrode, 13 ·· Oxygen electrode,
14. Electromotive force measuring means, 111. fluorite oxide, 112. perovskite oxide film

───────────────────────────────────────────────────── フロントページの続き (72)発明者 岩原 弘育 愛知県名古屋市守山区四軒家1−1511 コ ンセール藤が丘北303 Fターム(参考) 2G004 ZA01  ────────────────────────────────────────────────── ─── Continued on the front page (72) Inventor Hiroyuki Iwahara 1-1511 Yokenya, Moriyama-ku, Nagoya-shi, Aichi 303 Fujigaoka-kita 303 F-term (reference) 2G004 ZA01

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】プロトン導電性をもつ固体電解質と、該固
体電解質の一方の面に形成され測定すべき水素ガス分圧
をもつ被測定ガスが接触する水素電極と、該水素電極と
背向する該電解質の他方の面に形成された金属と金属酸
化物とからなる酸素電極と、該水素電極と該酸素電極の
間の起電力を測定する起電力測定手段と、からなること
を特徴とする水素ガスセンサ。
1. A solid electrolyte having proton conductivity, a hydrogen electrode formed on one surface of the solid electrolyte and having a gas to be measured having a partial pressure of hydrogen gas to be measured, and a hydrogen electrode facing the hydrogen electrode. An oxygen electrode comprising a metal and a metal oxide formed on the other surface of the electrolyte, and an electromotive force measuring means for measuring an electromotive force between the hydrogen electrode and the oxygen electrode. Hydrogen gas sensor.
【請求項2】前記固体電解質は酸化物イオン導電性電解
質であるホタル石型酸化物の表面にプロトン−酸化物イ
オン混合導電性電解質であるABO3型のペロブスカイ
ト酸化物が膜状に積層しており、該A元素がアルカリ土
類金属(Sr,Ca,Ba)からなる群から選択された
1種以上の元素であり、該B元素は該ホタル石型酸化物
の金属元素またはその一部をアルカリ土類金属(Mg,
Ca,Sr,Ba)、および、希土類元素(Sc,Y,
La,Nd,Sm,Eu,Gd,Dy,Ho,Yb)か
らなる群から選択された一種以上の元素で置換されて生
じる該ホタル石型酸化物の金属元素である請求項1記載
の水素ガスセンサ。
2. The solid electrolyte according to claim 1, wherein said solid electrolyte is a fluorite-type oxide which is an oxide ion conductive electrolyte and an ABO 3 type perovskite oxide which is a proton-oxide ion mixed conductive electrolyte is laminated in a film form. The element A is at least one element selected from the group consisting of alkaline earth metals (Sr, Ca, Ba), and the element B is a metal element of the fluorite-type oxide or a part thereof. Alkaline earth metals (Mg,
Ca, Sr, Ba) and rare earth elements (Sc, Y,
2. The hydrogen gas sensor according to claim 1, wherein the hydrogen gas sensor is a metal element of the fluorite-type oxide generated by being replaced with one or more elements selected from the group consisting of La, Nd, Sm, Eu, Gd, Dy, Ho, and Yb). .
【請求項3】前記金属はCuで、前記金属酸化物はCu
2Oである請求項1記載の水素ガスセンサ。
3. The method according to claim 1, wherein the metal is Cu, and the metal oxide is Cu.
The hydrogen gas sensor according to claim 1, which is 2 O.
【請求項4】前記金属はCrで前記金属酸化物はCr2
3である請求項1記載の水素ガスセンサ。
4. The method according to claim 1, wherein the metal is Cr and the metal oxide is Cr 2.
O 3 hydrogen gas sensor according to claim 1, wherein the.
【請求項5】前記ホタル石型酸化物は安定化ジルコニア
または安定化セリアであり、前記ABO3型のペロブス
カイト酸化物はSrZrO3,BaCeO3,SrCeO
3,BaZrO3,あるいはCaZrO3である請求項2
記載の水素ガスセンサ。
5. The fluorite type oxide is stabilized zirconia or stabilized ceria, and the ABO 3 type perovskite oxide is SrZrO 3 , BaCeO 3 , SrCeO.
3 , BaZrO 3 or CaZrO 3.
The hydrogen gas sensor as described in the above.
JP10186366A 1998-07-01 1998-07-01 Hydrogen gas sensor Pending JP2000019152A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10186366A JP2000019152A (en) 1998-07-01 1998-07-01 Hydrogen gas sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10186366A JP2000019152A (en) 1998-07-01 1998-07-01 Hydrogen gas sensor

Publications (1)

Publication Number Publication Date
JP2000019152A true JP2000019152A (en) 2000-01-21

Family

ID=16187131

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10186366A Pending JP2000019152A (en) 1998-07-01 1998-07-01 Hydrogen gas sensor

Country Status (1)

Country Link
JP (1) JP2000019152A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000088794A (en) * 1998-09-08 2000-03-31 Tokyo Yogyo Co Ltd Sensor for dissolved hydrogen in molten metal
WO2007060925A1 (en) * 2005-11-24 2007-05-31 Japan Science & Technology Agency Electrochemical cell and method for producing electrochemical cell
US7396443B2 (en) 2003-02-17 2008-07-08 Dongsub Park Solid-state electrochemical hydrogen probe for the measurement of hydrogen content in the molten aluminum
US7829061B2 (en) 2007-07-06 2010-11-09 Hitachi Maxwell, Ltd. Zirconium oxide hydrate particles and method for producing the same
JP2016011936A (en) * 2014-06-30 2016-01-21 東京窯業株式会社 Hydrogen sensor
JP2016027317A (en) * 2014-06-30 2016-02-18 東京窯業株式会社 Gas sensor and gas sensor manufacturing method
US9366646B2 (en) * 2012-03-14 2016-06-14 Korea Advanced Institute Of Science And Technology Hydrogen measurement sensor having junction structure of solid oxygen ion conductor and solid hydrogen ion conductor in molten metal
JP2016530544A (en) * 2013-09-12 2016-09-29 コリア・アドバンスト・インスティテュート・オブ・サイエンス・アンド・テクノロジー Hydrogen sensor element for measuring dissolved hydrogen gas concentration in liquid and method for measuring hydrogen gas concentration using the same

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000088794A (en) * 1998-09-08 2000-03-31 Tokyo Yogyo Co Ltd Sensor for dissolved hydrogen in molten metal
US7396443B2 (en) 2003-02-17 2008-07-08 Dongsub Park Solid-state electrochemical hydrogen probe for the measurement of hydrogen content in the molten aluminum
WO2007060925A1 (en) * 2005-11-24 2007-05-31 Japan Science & Technology Agency Electrochemical cell and method for producing electrochemical cell
JP4977621B2 (en) * 2005-11-24 2012-07-18 独立行政法人科学技術振興機構 Electrochemical cell and method for producing electrochemical cell
US7829061B2 (en) 2007-07-06 2010-11-09 Hitachi Maxwell, Ltd. Zirconium oxide hydrate particles and method for producing the same
US9366646B2 (en) * 2012-03-14 2016-06-14 Korea Advanced Institute Of Science And Technology Hydrogen measurement sensor having junction structure of solid oxygen ion conductor and solid hydrogen ion conductor in molten metal
JP2016530544A (en) * 2013-09-12 2016-09-29 コリア・アドバンスト・インスティテュート・オブ・サイエンス・アンド・テクノロジー Hydrogen sensor element for measuring dissolved hydrogen gas concentration in liquid and method for measuring hydrogen gas concentration using the same
US9977006B2 (en) 2013-09-12 2018-05-22 Korea Advanced Institute Of Science And Technology Hydrogen sensor element for measuring concentration of hydrogen gas dissolved in liquid and method for measuring concentration of hydrogen gas using same
JP2016011936A (en) * 2014-06-30 2016-01-21 東京窯業株式会社 Hydrogen sensor
JP2016027317A (en) * 2014-06-30 2016-02-18 東京窯業株式会社 Gas sensor and gas sensor manufacturing method

Similar Documents

Publication Publication Date Title
CA2189360C (en) Nox sensor
KR101052618B1 (en) Nitrogen oxide gas sensor with long term signal stability
EP1635171B1 (en) Hydrocarbon sensor
KR101052617B1 (en) Nitrogen Oxide Gas Sensor
JP2000019152A (en) Hydrogen gas sensor
JP4977621B2 (en) Electrochemical cell and method for producing electrochemical cell
US20050061670A1 (en) NOx sensing cell, manufacturing method for the NOx sensing cell, and NOx sensing device including the NOx sensing cell
JP2010261855A (en) Nitrogen oxide sensor and nitrogen oxide detection method
JP3775704B2 (en) Solid electrolyte hydrogen sensor
KR101843848B1 (en) NOx Sensor and Method of preparing the same
JP2000292409A5 (en)
JP2000292409A (en) Hydrocarbon sensor
KR100631276B1 (en) pH sensing electrode having a solid-state electrolyte layer and pH measuring system containing same
JP2948124B2 (en) Oxygen sensor
JP2000097905A (en) APPARATUS AND METHOD FOR MEASURING NOx GAS CONCENTRATION
JP4155632B2 (en) Dissolved hydrogen sensor in molten metal
JP3865498B2 (en) Limit current type oxygen sensor and oxygen detection method
JP3367640B2 (en) Solid electrolyte thick film laminated carbon monoxide sensor
JP4750574B2 (en) Gas detection element
JP3516488B2 (en) Nitrogen oxide sensor
JP3774059B2 (en) Hydrocarbon sensor
JP2993340B2 (en) Gas sensor
JP2001221774A (en) Gas sensor
JPH07306178A (en) Nitrogen oxide sensor
KR20120023461A (en) Nox gas sensor