JPS6064718A - Device for automatically calculating factor - Google Patents

Device for automatically calculating factor

Info

Publication number
JPS6064718A
JPS6064718A JP59160236A JP16023684A JPS6064718A JP S6064718 A JPS6064718 A JP S6064718A JP 59160236 A JP59160236 A JP 59160236A JP 16023684 A JP16023684 A JP 16023684A JP S6064718 A JPS6064718 A JP S6064718A
Authority
JP
Japan
Prior art keywords
thickness
rolling
processing
tracking
deviation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59160236A
Other languages
Japanese (ja)
Inventor
Toshio Mitsunaka
満仲 俊夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP59160236A priority Critical patent/JPS6064718A/en
Publication of JPS6064718A publication Critical patent/JPS6064718A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B37/00Control devices or methods specially adapted for metal-rolling mills or the work produced thereby
    • B21B37/16Control of thickness, width, diameter or other transverse dimensions
    • B21B37/18Automatic gauge control

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Control Of Metal Rolling (AREA)
  • Feedback Control In General (AREA)

Abstract

PURPOSE:To control properly and automatically the thickness of a rolling material by continuously calculating a plsticity factor of material in a rolling stage and controlling a rolling down force of rolling roll through an adaptive correction of plasticity factor in an on-line state, in case of rolling a steel material. CONSTITUTION:In a plastic working by rolling a metallic material 3 such as a steel one by the work rolls 1a of a mill, the thickness of material 3 is measured by a thickness meter 5a and is inputted to an adapting arithemtic device 9 and an automatic sheet-thickness control device 6. At the time when the material 3 before rolling passes a deflector roll 4a; the thickness of material 3 after passing through rolling rolls 1a, is measured by a thickness meter 5b and is inputted to the devices 9, 6, and the plasticity factor of material 3 is calculated basing on the deviation value of thickness before and after rolling by a tracking device 7 and a timing device 8. The factor is inputted to a rolling-reduction control device 1b of rolls 1a through the device 6, to automatically control the sheet- thickness of material 3 to a target value by controlling the rolling down force.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は材料の塑性変形を伴う加工機に関するものであ
る。 1 〔発明の背景〕 従来、金属材料等の加工機に於ける被加工材の厚みを一
定に保つ技術は自動板厚制御として古くから種々の方法
が提唱されている。
DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to a processing machine that involves plastic deformation of a material. 1 [Background of the Invention] Conventionally, various methods have been proposed for automatic plate thickness control as a technique for maintaining a constant thickness of a workpiece in a machine for processing metal materials, etc.

近年制御用計算機が導入されることに依って、返属等の
加工機の弾性係数にと、被加工材の塑性係数Mとを用い
、母板の厚み偏差AHと、加工機通過後の厚み偏差A’
h(以下、これらを入側偏差aHと、出側偏差Ahと云
う)及び圧下制御量、!118と出側偏差、4hとの間
に1次の相関を有することが裏付けられ、当該技術を普
偏化せしめた。
With the introduction of control computers in recent years, the elastic modulus of the processing machine such as returning material and the plasticity coefficient M of the workpiece are used to calculate the thickness deviation AH of the base plate and the thickness after passing through the processing machine. Deviation A'
h (hereinafter referred to as the inlet side deviation aH and the outlet side deviation Ah) and the reduction control amount,! It was confirmed that there was a first-order correlation between 118 and the exit deviation and 4h, making the technique generalized.

即ち、 (1)式は、主として加工機入側偏差AHを知って、同
出側偏差Δhを零に制御しようとする。
That is, Equation (1) mainly attempts to control the processing machine exit side deviation Δh to zero by knowing the processing machine entrance side deviation AH.

いわゆるフィードフォワード制御に適用される。It is applied to so-called feedforward control.

その具体的制御モデルを(2)式に示す。The specific control model is shown in equation (2).

K K K+M M =−AH(2) (2)式を用いて制御すれば、ΔSに依って予測圧下修
正すべき制御量を得ることが出来る。
K K K+M M =-AH (2) If the equation (2) is used for control, the control amount to be corrected for the predicted pressure reduction can be obtained depending on ΔS.

しかし従来技術に於いては、上述の塑性係数Mを算定す
るに際し、極めて複雑な演算過程を要するが故に、各加
工(パス)の初期にtいて、典型的な気延条件を推定し
、(M/K)を算定しているにすぎなかった。又、甚し
き場合に至っては(M/K)を一定数として取扱う場合
すら散見された。しかし加工機の弾性係数には通常用い
られる動的加工区間に於いては、はぼ定数と見做して差
支えないことはよく知られた事実であるが、一方被加工
材の塑性係数Mは、その変形状態や、前後方に於ける張
力等に起因する加工条件に依って成る時は著しく、又成
る場合には微妙に変化する特性を有し、これをオンライ
ン(加工中)にて動的に修飾することが制御の質をより
高め得ることが種々の加工機実験にて立証されるに至っ
た。
However, in the conventional technology, when calculating the above-mentioned plasticity coefficient M, an extremely complicated calculation process is required. M/K). Furthermore, in some cases, (M/K) was even treated as a constant number. However, it is a well-known fact that the elastic modulus of the processing machine can be regarded as a constant in the dynamic machining section that is normally used, but on the other hand, the plastic modulus M of the workpiece is , it has characteristics that change significantly depending on its deformation state and processing conditions such as tension in the front and back, and in other cases it changes subtly, and this can be controlled online (during processing). It has been proven through various processing machine experiments that the quality of control can be further improved by modifying the material.

〔発明の目的〕[Purpose of the invention]

本発明は、前記加工機に於ける材料の塑性変形に関する
影響係数のアダプティブ修正手段の提供を目的とし、こ
れを用いて自動厚み制御装置の性能改善に寄与すること
を併せて指向することにある。
The present invention aims to provide an adaptive correction means for the influence coefficient regarding plastic deformation of a material in the processing machine, and also aims to contribute to improving the performance of an automatic thickness control device using the same. .

〔発明の概要〕[Summary of the invention]

この発明は、上述の事実に立脚し、前記塑性係数Mを加
工過程に於いて、逐次、連続的かつ簡易に算定し、オン
ラインに於ける塑性係数Mのアダプティブ修正を通して
制御効果を高め、もって厚等に起因する塑性係数Mの変
化及び加工条件の変化に伴うそれの検出にある。
Based on the above-mentioned facts, the present invention calculates the plasticity coefficient M in a sequential, continuous and simple manner during the machining process, enhances the control effect through adaptive correction of the plasticity coefficient M on-line, and thereby increases the thickness. The purpose of this method is to detect changes in the plasticity modulus M due to factors such as changes in the plasticity modulus M and changes in processing conditions.

その具体的検出方法として、1)特定点を塑性係数算定
のために無制御とする方法と2)制御を行ない乍ら塑性
係数を算定する方法とがある。
Specific detection methods include 1) a method in which a specific point is not controlled for calculating the plasticity coefficient, and 2) a method in which the plasticity coefficient is calculated while performing control.

1)に関しては、(1)式を下記の如く変形し、同一点
の追尾に依り当該点の塑性係数Mを算定できる。即ち、 M=(Δh/ CAH−Δh) ) K (3)この方
法に依れば、Kは動的には、はぼ定数で与えられるから
、特定点の入側出側に於ける厚み偏差AH2Δhを夫々
正しく追跡する丈で良い利点がある。しかし、この計測
の区間に於いては、圧下、張力、速度等の加工条件の変
化があっては正確なMをめていくという欠点を同時に有
するが一手法としい充分に実用性のある方法である。
Regarding 1), the plasticity coefficient M at the point can be calculated by modifying equation (1) as follows and tracking the same point. That is, M=(Δh/CAH−Δh) ) K (3) According to this method, since K is dynamically given by a Habo constant, the thickness deviation on the entrance and exit sides of a specific point is It has the advantage of being long enough to track AH2Δh correctly. However, in this measurement period, it is a method that is sufficiently practical, although it has the drawback that it requires accurate M when processing conditions such as reduction, tension, and speed change. It is.

次に2)について述べる。Next, we will discuss 2).

この方法は、制御の適中度からその制御の誤差を全て塑
性係数Mへ集約する方法である。
This method is a method of consolidating all control errors into the plasticity coefficient M based on the appropriateness of the control.

例えば、(2)式に示すフィードフォワード制御に於い
て、全く正しく制御されれば、入側にAHの偏差があっ
ても出側偏差Ahは零となる筈である。然るに、何等か
の出側偏差Ah′が残存する時、もはや、被加工材の塑
性係数はMではなくM’ (M’ =M−MIM)に移
行していると認識することによる。この過程を数式に示
せば(4)式の如くなる。
For example, in the feedforward control shown in equation (2), if the control is performed completely correctly, even if there is a deviation of AH on the input side, the output side deviation Ah should be zero. However, when some exit deviation Ah' remains, it is recognized that the plastic modulus of the workpiece has shifted from M' to M'(M' = M-MIM). This process can be expressed as equation (4).

KK K 上式は極めて簡易な相関を示すもので、この簡単なモデ
ルに依り塑性係数Mの変化分711M’ を把握するこ
とができる。但し、ここで、Δh′とAHは同一点の追
跡結果に依ることを注意する必要がある。
KK K The above equation shows an extremely simple correlation, and the change 711M' in the plasticity coefficient M can be grasped by this simple model. However, it must be noted here that Δh' and AH depend on the results of tracking the same point.

一般に、被加工材に於ける塑性係数の変化はそれ程急峻
ではないから、例えば5又は10mピッチ毎に算定して
アダプティブ修正すれば良い。例えば、加工の初期に於
ける塑性係数の算定値(理論値)がM。の時、動的なそ
れM′は(3)式からは M’ =M0+α (M−M、) (5)(4)式から
は M’=M、+αΔM(6) で与えられる。ここにOくαく1とする。又、特別な応
用例として、(5)、(6)式に、いわゆる指数平滑を
用いてアダプティブ修飾できることは言及する迄もない
Generally, the change in plasticity coefficient in a workpiece is not so steep, so it is sufficient to calculate the change every 5 or 10 m pitch, for example, and perform adaptive correction. For example, the calculated value (theoretical value) of the plasticity coefficient at the initial stage of processing is M. Then, the dynamic value M' is given by M' = M0 + α (M - M,) from equation (3) (5) and M' = M, + αΔM (6) from equation (4). Let Okuαku1 be here. It goes without saying that as a special application example, equations (5) and (6) can be adaptively modified using so-called exponential smoothing.

このようにして、金属等の加工機に於いてその加工過程
に於いても、簡便にして比較的正確な被加工材の塑性係
数Mのアダプティブ修飾が可能となり、被加工材に対す
る厚み制御精度が著しく改善された。
In this way, it is possible to easily and relatively accurately adaptively modify the plasticity modulus M of the workpiece in the processing process of a metal processing machine, and the thickness control accuracy for the workpiece can be improved. Significantly improved.

尚、この方法は、既存の設備に単に演算装置ならびにこ
の周辺装置を付加するだけで済むため容易かつ経済的に
実現できるシステムとしての特長を併せて有するもので
ある。
This method also has the advantage of being an easy and economical system to implement, since it is sufficient to simply add an arithmetic unit and its peripheral devices to existing equipment.

図は本発明にかかる具体的に一実施例を示す。The figure specifically shows one embodiment of the present invention.

図に於いて、加工機は金属圧延に於ける一例を示す。The figure shows an example of a processing machine used in metal rolling.

同図に於いて被加工材3は左リール2aがら巻き戻され
、左ディフレクタロール(以下デフロールと称する)4
a、厚計58、加工のための圧延ロール(以下ワークロ
ールと称する)laを介し、厚計5b、右デフロール4
bを経て右リール2bに巻取られる圧延状況を示す。こ
の詩人厚計58は入側被加工材の厚みを測定し、右厚計
5bは出側のそれを測定するから、夫々の実測値から厚
み設定を減算すれば、入側及び出側(厚み)偏差を算定
できるにの偏差算定機構は図に於いて、左右厚計5a、
5bに包含される。
In the figure, the workpiece 3 is rewound from the left reel 2a, and the left deflector roll (hereinafter referred to as def roll) 4
a, thickness gauge 58, rolling roll for processing (hereinafter referred to as work roll) la, thickness gauge 5b, right defroll roll 4
The figure shows the rolling state of winding onto the right reel 2b via b. The poet's thickness gauge 58 measures the thickness of the workpiece on the entry side, and the right thickness gauge 5b measures the thickness of the workpiece on the exit side, so by subtracting the thickness setting from each actual measurement, the thickness of the entry side and exit side (thickness ) In the figure, the deviation calculation mechanism that can calculate the deviation is the left and right thickness gauge 5a,
5b.

さて、厚計58に依る入側厚み測定点は、追跡装置7に
依って追尾される。具体的にはデフロール4aに機械的
に結合されたパルス発電機(図示省略)に依り、そのパ
ルス列信号の計数に依存し被加工材3の移動長を知るも
のである。このパルス列信号に依り当該測定点がワーク
ロール1aを下、あるいは出側厚計5bに到達したこと
をタイミング装置8に依り認識し、塑性係数Mのアダプ
ティブ演算を既述(3)〜(6)式を用いて演算装置9
にて実行し、さらにその結果を用いて自動板厚制御装置
6の制御影響係数、換言すれば、被加工材の塑性係数M
をアダプティブ修正し当該演算出力は圧下制御装置1b
に付与され、良質のAGCが実行される。尚、この種の
圧延機では逆転運転がなされるが、人出側の相対関係が
倒置されるのみで、原理的には、いささかも上述の記述
範囲を逸脱するものではない。
Now, the entry side thickness measurement point by the thickness gauge 58 is tracked by the tracking device 7. Specifically, the moving length of the workpiece 3 is determined by counting the pulse train signals of a pulse generator (not shown) mechanically connected to the deflore 4a. Based on this pulse train signal, the timing device 8 recognizes that the measurement point has reached the bottom of the work roll 1a or the exit thickness gauge 5b, and performs the adaptive calculation of the plasticity coefficient M as described in (3) to (6) above. Arithmetic device 9 using the formula
The results are used to determine the control influence coefficient of the automatic plate thickness control device 6, in other words, the plasticity coefficient M of the workpiece material.
is adaptively corrected, and the calculated output is the lowering control device 1b.
and high quality AGC is performed. Although this type of rolling mill operates in reverse, the relative relationship on the exit side is simply reversed, and in principle this does not deviate from the scope of the above description in any way.

〔発明の効果〕〔Effect of the invention〕

本発明によると塑性係数のアダプティブ修正をおこなう
ので板厚精度が向上する。
According to the present invention, since the plasticity coefficient is adaptively corrected, the plate thickness accuracy is improved.

【図面の簡単な説明】[Brief explanation of the drawing]

図は本発明にかかる一実施例を示す図である。 1a−・・・圧延ロール、1b・・・圧下制御装置、2
a・・・左リール、2b・・・右リール、3・・・被加
工材、4a・・・左ディフレクタロール、4b・・・右
ディフレクタロール、5a・・・左厚計、 5 b 川
石厚計、6・・・自動板厚制御装置、7・・・追跡装置
、8・・・タイミング装置、9・・・アダプティブ演算
装置。
The figure is a diagram showing an embodiment according to the present invention. 1a-... Rolling roll, 1b... Rolling down control device, 2
a...Left reel, 2b...Right reel, 3...Work material, 4a...Left deflector roll, 4b...Right deflector roll, 5a...Left thickness gauge, 5b Kawaishi thickness Total, 6... Automatic plate thickness control device, 7... Tracking device, 8... Timing device, 9... Adaptive calculation device.

Claims (1)

【特許請求の範囲】[Claims] 1、加工機とその前後に一対の巻取装置及び被加工機の
厚みを測定する一対の厚み計測装置を備えて成る加工装
置に於いて、当該加工機の入庫偏差の追跡を行なうため
の追跡装置、前記追跡装置出力に依り、前記入庫偏差測
定点が出側厚計に到達したことを判定するためのタイミ
ング装置とを備え、このタイミング装置からの時間的制
御出力を受けて被加工材の同一部に対する出入側厚偏差
から被加工材の塑性変形特性を加工中に於いて、アダプ
ティブ修正するフダプテイブ演算装置とを備え、前記ア
ダプティブ演算装置出力を自動板厚制御装置に付与する
ことにより、被加工材の加工中に於いても最適な加工後
の厚みを得ることを特徴とする自動係数演算装置。
1. In a processing device that is equipped with a processing machine, a pair of winding devices before and after the processing machine, and a pair of thickness measuring devices that measure the thickness of the machine to be processed, tracking for tracking the stocking deviation of the processing machine. The device includes a timing device for determining whether the storage deviation measurement point has reached the exit thickness gauge based on the output of the tracking device, and a timing device for determining whether the storage deviation measurement point has reached the exit thickness gauge based on the output of the tracking device, and in response to the temporal control output from the timing device, The present invention is equipped with an adaptive calculation device that adaptively corrects the plastic deformation characteristics of the workpiece during machining based on the entrance and exit side thickness deviation for the same part, and provides the output of the adaptive calculation device to the automatic plate thickness control device. An automatic coefficient calculation device that is characterized by obtaining the optimal thickness after processing even during processing of the processed material.
JP59160236A 1984-08-01 1984-08-01 Device for automatically calculating factor Pending JPS6064718A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59160236A JPS6064718A (en) 1984-08-01 1984-08-01 Device for automatically calculating factor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59160236A JPS6064718A (en) 1984-08-01 1984-08-01 Device for automatically calculating factor

Publications (1)

Publication Number Publication Date
JPS6064718A true JPS6064718A (en) 1985-04-13

Family

ID=15710644

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59160236A Pending JPS6064718A (en) 1984-08-01 1984-08-01 Device for automatically calculating factor

Country Status (1)

Country Link
JP (1) JPS6064718A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5054302A (en) * 1989-04-07 1991-10-08 Kawasaki Steel Corporation Hardness compensated thickness control method for wet skin-pass rolled sheet
JPH0485604A (en) * 1990-07-30 1992-03-18 Hitachi Ltd Motor control system

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5054302A (en) * 1989-04-07 1991-10-08 Kawasaki Steel Corporation Hardness compensated thickness control method for wet skin-pass rolled sheet
JPH0485604A (en) * 1990-07-30 1992-03-18 Hitachi Ltd Motor control system

Similar Documents

Publication Publication Date Title
JPS6064718A (en) Device for automatically calculating factor
KR19990001794A (en) Control method of automatic stop of strip end of hot rolled winding machine
JPS6277110A (en) Dimension and shape straightening apparatus for hot rolling steel plate
JP3129162B2 (en) Method and apparatus for controlling thickness of tandem rolling mill
JPH0289757A (en) Method for adjusting meandering of band material
JP3942356B2 (en) Thickness control device for reverse rolling mill
JP2959426B2 (en) Elongation rate calculation method
JP3610338B2 (en) Method and apparatus for temper rolling of metal strip
JP3506119B2 (en) Method of changing rolling load distribution of tandem rolling mill
JPH0919707A (en) Method for controlling thickness in reversible rolling mill
KR20030028902A (en) Tension operation control system of hot strip mill and its control method
JP3062017B2 (en) Thickness control method in hot rolling
JPS60199513A (en) Method for correctingly controlling meandering of sheet in rolling
JPS60250816A (en) Method for controlling initial roll gap in cold rolling mill
JP3490305B2 (en) Rolling mill thickness control device
JPH0818058B2 (en) Automatic plate thickness control method for plate rolling
JPH0390207A (en) Meandering control method of plate rolling time
JPS61222623A (en) Detecting method of welded point of strip
JPS631124B2 (en)
JPH0815609B2 (en) Roll thickness control method
JPH06304635A (en) Method for controlling plate thickness at bitten end part in plate rolling
JPH0796313A (en) Automatic device for controlling plate thickness in rolling mill
JPH0471606B2 (en)
JPS6320604B2 (en)
JP2716866B2 (en) Mass flow controller for tandem rolling mill