JPS6061019A - Ceramic filter for dust collection - Google Patents

Ceramic filter for dust collection

Info

Publication number
JPS6061019A
JPS6061019A JP16756783A JP16756783A JPS6061019A JP S6061019 A JPS6061019 A JP S6061019A JP 16756783 A JP16756783 A JP 16756783A JP 16756783 A JP16756783 A JP 16756783A JP S6061019 A JPS6061019 A JP S6061019A
Authority
JP
Japan
Prior art keywords
filter layer
porous body
filter
ceramic
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP16756783A
Other languages
Japanese (ja)
Inventor
Noriyuki Oda
紀之 織田
Toshihiro Morishita
森下 智弘
Takashi Mimori
三森 隆
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd filed Critical Asahi Glass Co Ltd
Priority to JP16756783A priority Critical patent/JPS6061019A/en
Publication of JPS6061019A publication Critical patent/JPS6061019A/en
Pending legal-status Critical Current

Links

Landscapes

  • Filtering Materials (AREA)

Abstract

PURPOSE:To make the air permeability of a titled filter excellent and to make backwash easy by forming a ceramic layer having pores of 10-100mum average pore diameter on one side of a ceramic porous body having <=0.5% thermal expansion coefficient at 1,000 deg.C. CONSTITUTION:A filter layer 2 of ceramic is formed on one side of the ceramic porous body 1. The porous body 1 reinforcing the filter layer 2 and having required resistance to thermal shock and having <=0.5% thermal expansion coefficient at 1,000 deg.C is selected. Porosity is >=30% preferably and 100-500mum average pore diameter and 10-20mm. thickness are preferable. The layer 2 has pores of 10-100mum average pore diameter and 0.5-5mm. thickness. The quality of material can be changed suitably according to applications but cracks due to the difference of thermal expansion are not caused when the body 1 and the layer 2 are formed by the same material.

Description

【発明の詳細な説明】 本発明は、高温排ガス中の粉塵を高温状態で捕集するた
めの集塵用セラミックスフィルタに関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a dust-collecting ceramic filter for collecting dust in high-temperature exhaust gas at a high temperature.

排ガス中の粉塵を捕集する集塵装置としては、サイクロ
ン、電気集塵器、バグフィルタ等種々のものが使用され
ている。しかし、これらの集塵装置はいずれも高温には
耐えないものであシ、このため高温排ガスをいったんガ
ス冷却室に導入して冷却してからこれらの集塵装置に送
るようにしていた。高温排ガスをそのまま処理できる集
塵装置としては、シリカ質繊維でできたクロスをバグフ
ィルタにしたもの〜が試験的に用いられたこともあった
が、このようなりロスは耐久性がなく、短期間に破れる
等の問題があり、実用化には至らなかった。
Various types of dust collectors, such as cyclones, electrostatic precipitators, and bag filters, are used as dust collectors for collecting dust in exhaust gas. However, none of these dust collectors can withstand high temperatures, so the high-temperature exhaust gas is first introduced into a gas cooling chamber and cooled before being sent to these dust collectors. As a dust collector that can directly process high-temperature exhaust gas, a bag filter made of siliceous fiber cloth was used on a trial basis, but such losses are not durable and can only be used in the short term. It was not put into practical use due to problems such as breakage.

したがって、本発明の目的は、1000℃程度の高温排
ガス中の粉塵を高温状態のまま捕集することが可能なフ
ィルタを提供することにある。
Therefore, an object of the present invention is to provide a filter capable of collecting dust in high-temperature exhaust gas of about 1000° C. while maintaining the high temperature.

かかるフィルタの性能としては、耐熱性1強度、粉塵の
捕捉性能1通気性等が要求される。
As for the performance of such a filter, heat resistance, strength, dust trapping performance, air permeability, etc. are required.

耐熱性を有するようにするためには、フィルタの材質を
セラミックスにすればよいのであるが、単に材質をセラ
ミックスにしただけでは、フィルタとして要求される他
の性能を満足することができない。例えば、30μm以
下の孔径を有するセラミックスフィルタを形成した場合
、粉塵の大部分を捕集することができるが、30μm以
下の粒子が少量フィルタ内部を通過する際に一部が気孔
内にとどまシ、やがては閉塞を起こす。
In order to have heat resistance, the material of the filter should be made of ceramics, but simply using ceramics as the material does not satisfy the other performance requirements of the filter. For example, if a ceramic filter is formed with a pore size of 30 μm or less, most of the dust can be captured, but when a small amount of particles of 30 μm or less pass through the filter, a portion remains in the pores. Eventually, a blockage will occur.

このような状態になると、通常の逆洗では閉塞を取シ除
くことが極めて困難である。また、通気性を良くするた
めにフィルタの厚みを薄くすると強厚が不足するという
問題がある。
In such a state, it is extremely difficult to remove the blockage using normal backwashing. Furthermore, if the thickness of the filter is reduced in order to improve air permeability, there is a problem that the filter is insufficiently thick.

そこで、本発明では、熱膨張率が1000℃で0.5%
以下であるセラミックスの多孔体の片面に平均孔径10
〜100p1nの気孔を有するセラミックスのフィルタ
層を形成して、実質的に二層構造にすることによって、
これらの問題を解決した。
Therefore, in the present invention, the thermal expansion coefficient is 0.5% at 1000°C.
An average pore size of 10 on one side of a ceramic porous body with the following
By forming a ceramic filter layer having pores of ~100 p1n to have a substantially two-layer structure,
Solved these problems.

すなわち、多孔体によって補強がなされるのでフィルタ
層の厚みは極めて薄くすることができ、通気性を良好に
することができる。この場合にもフィルタ層の気孔にや
がて粉塵が閉塞してくるが、フィルタ層の厚みを薄くす
ることにより、逆洗にて容易に閉塞を取シ除くことがで
きる。
That is, since reinforcement is provided by the porous material, the thickness of the filter layer can be made extremely thin, and breathability can be improved. In this case as well, the pores of the filter layer will eventually become clogged with dust, but by reducing the thickness of the filter layer, the blockage can be easily removed by backwashing.

次に第1図を参照して本発明をより詳細に説明する。Next, the present invention will be explained in more detail with reference to FIG.

第1図に示すように、セラミックスの多孔体1の片面に
セラミックスのフィルタ層2が形成されている。そして
、粉塵3はフィルタ層2によってそのほとんどを捕捉さ
れ、フィルタ層2を通過した微細な粉塵4は多孔体1を
容易に通シ抜けてそのまま流出する。流出する微細な粉
塵4の量は極めて少量であシ、実際上はとんど問題はな
い。
As shown in FIG. 1, a ceramic filter layer 2 is formed on one side of a ceramic porous body 1. As shown in FIG. Most of the dust 3 is captured by the filter layer 2, and the fine dust 4 that has passed through the filter layer 2 easily passes through the porous body 1 and flows out as it is. The amount of fine dust 4 flowing out is extremely small, and practically there is no problem.

多孔体1は、主としてフィルタ層2を補強する役割をな
す。高温ガス中の粉塵捕集に際し、フィルタは通常スタ
ート時に急加熱されたシ、逆洗用空気によシ急冷された
シするので耐熱衝撃性が要求される。したがって、多孔
体1の材質としては熱膨張率の小さいことが重要であシ
、種々の実験の結果、1000℃で0.5%以下である
ことが必要であシ、さらには0.3%以下がよシ好まし
いことが判明した。かかる材質としてはコージライト質
、チタン酸アルミニウ^質。
The porous body 1 mainly serves to reinforce the filter layer 2. When collecting dust in high-temperature gas, the filter is usually rapidly heated at the start and rapidly cooled by backwashing air, so thermal shock resistance is required. Therefore, it is important that the material of the porous body 1 has a low coefficient of thermal expansion, and as a result of various experiments, it is necessary that the coefficient of thermal expansion be 0.5% or less at 1000°C, and even 0.3%. The following was found to be preferable. Such materials include cordierite and aluminum titanate.

ユークリプタイト質、スポジュメン質、溶融シリカ質、
ムライト質、炭化ケイ素質などが好ましく例示できる。
Eucryptite, spodumene, fused siliceous,
Preferred examples include mullite and silicon carbide.

多孔体1は粉塵3の捕捉性能を特に要求されるものでは
ないため、通気性の良いものが好ましく、このため気孔
率は30%以上とすることが好ま、しい。さらに、通気
性を良好にすると共にフィルタ層2を通過した微細な粉
塵4が多孔体1t−閉一塞することがないように、多孔
体1の平均孔径は100〜500.g*とすることが好
ましい。多孔体1の厚みは、フィルタ層2を充分に補強
できるように、かつ、通気性が悪くならないように適宜
設定され、通例は10〜20−とするが好ましい。
Since the porous body 1 is not particularly required to have a performance of capturing dust 3, it is preferable that the porous body 1 has good air permeability, and therefore, the porosity is preferably set to 30% or more. Furthermore, the average pore diameter of the porous body 1 is 100 to 500 mm in order to improve air permeability and to prevent the fine dust 4 that has passed through the filter layer 2 from clogging the porous body 1t. It is preferable to set it as g*. The thickness of the porous body 1 is appropriately set so that the filter layer 2 can be sufficiently reinforced and the air permeability is not deteriorated, and it is usually preferably set to 10 to 20.

かかる多孔体1は例えば次のような方法によって製造す
ることができる。すなわち、所定粒度のセラミックスの
粉末と、所定粒度の粉末状気孔付与材(加熱処理するこ
とによって焼失し気孔を形成せしめるもの、例えばピッ
チコークス粉末)とを適当割合にてバインダーを加えて
混合する。この混合物を通常のプレス成形、ラバープレ
ス成形、あるいは押出成形等によシ所定形状、例えばパ
イプ状等に成形し、乾燥処理した後、例えばコージ゛ラ
イ)%の場合は1350℃で焼成することによって製造
することができる。
Such a porous body 1 can be manufactured, for example, by the following method. That is, a ceramic powder of a predetermined particle size and a powdery pore-providing material (one that burns out and forms pores by heat treatment, such as pitch coke powder) of a predetermined particle size are mixed with a binder added in an appropriate ratio. This mixture is formed into a predetermined shape, such as a pipe shape, by ordinary press molding, rubber press molding, or extrusion molding, and after drying, it is fired at 1350° C. It can be manufactured by

フィルタ層2は、平均孔径10〜100μmの気孔を有
するものとする。平均孔径が10μm未満では通気性が
悪くなり、平均孔径が100μlnf超えると粉塵3の
捕捉性能が低下する。
The filter layer 2 has pores with an average pore diameter of 10 to 100 μm. If the average pore diameter is less than 10 μm, air permeability will be poor, and if the average pore diameter is more than 100 μlnf, the dust 3 trapping performance will be reduced.

また、フィルタ層2の厚みは、好ましくは0.5〜5鱈
、さらに好ましくは1〜3鱈とする。フイルタ層の厚み
が0.5w未満ではコートされない部分や厚みの不均一
が生じ易く集塵性能が低下する。フィルタ層の厚みが5
m+を超えると通気抵抗が増し、また、多孔体1との熱
膨張率の違いによるクラックおよび剥離がかなシ犬きく
なシ集塵性能が低下する。
Moreover, the thickness of the filter layer 2 is preferably 0.5 to 5 pieces, more preferably 1 to 3 pieces. If the thickness of the filter layer is less than 0.5W, uncoated portions and non-uniform thickness tend to occur, resulting in a decrease in dust collection performance. The thickness of the filter layer is 5
When m+ is exceeded, ventilation resistance increases, and cracking and peeling due to the difference in coefficient of thermal expansion with the porous body 1 are likely to occur, resulting in a decrease in dust collection performance.

本発明のフィルタの一つの有利な点は、フィルタ層2の
セラミックス材質を用途に応じて変えられることである
。すなわち、フィルタ層2の材質は、粉塵の種類と使用
条件(温度、雰囲気等)に適するものを選ぶことができ
、がっ、望ましい。本発明においては、フィルタ層2は
多孔体1と同材質のセラミックスが好ましく、この場合
には熱膨張率の違いによるクラックが#Iとん、ど発生
しない。またフィルタ層2は多孔体1と異なる材質でも
よい。フィルタ層2に使用できる〜セラミックスとして
は、さきに多孔体材質として例示したコージライト質以
下の各材質が好ましく例示され、またアルミナ、ジルコ
ン、スピネル、ジルコニア、グラファイト、マグネシア
、カオリン、シャモットなども適宜使用できる。この場
合、多孔体1とフィルタ層2との熱膨張率がかなり違う
場合には、フィルタ層2に微細なりラックを生じるが、
集塵性能にはほとんど影響がない。ただし、前述したよ
うにフィルタ層2の厚みを51111以下、特には31
11111以下にして、クラックが大きくなりすぎない
ように注意する。
One advantage of the filter of the present invention is that the ceramic material of the filter layer 2 can be varied depending on the application. That is, it is desirable that the material of the filter layer 2 can be selected to be suitable for the type of dust and the conditions of use (temperature, atmosphere, etc.). In the present invention, the filter layer 2 is preferably made of ceramic of the same material as the porous body 1, and in this case, cracks due to the difference in coefficient of thermal expansion will hardly occur #I. Further, the filter layer 2 may be made of a different material from that of the porous body 1. Preferred examples of the ceramics that can be used for the filter layer 2 include cordierite and the following as examples of the porous material, and alumina, zircon, spinel, zirconia, graphite, magnesia, kaolin, chamotte, etc. are also suitable. Can be used. In this case, if the coefficients of thermal expansion of the porous body 1 and the filter layer 2 are considerably different, fine racks will occur in the filter layer 2;
It has almost no effect on dust collection performance. However, as mentioned above, the thickness of the filter layer 2 should be 51111 mm or less, especially 31 mm thick.
Be careful not to make cracks too large by setting the value to 11111 or less.

かかるフィルタ層2は、例えば原料セラミックスの粉末
に気孔付与材を加えて、多孔体1の片面にコートし、多
孔体1と共に焼成することによって形成すること“がで
きる。この場合、セラミックスの粉末の粒径および気孔
付与材の添加量を適当に選択することによシ、フィルタ
層2め平均孔径11−10〜100μmの範囲で自由に
調整できる。
Such a filter layer 2 can be formed, for example, by adding a pore-providing material to raw ceramic powder, coating it on one side of the porous body 1, and firing it together with the porous body 1.In this case, the ceramic powder By appropriately selecting the particle size and the amount of the pore-imparting material added, the average pore size of the second filter layer can be freely adjusted within the range of 11-10 to 100 μm.

次に本発明のフィルタの製法を、パイプ状のコージライ
ト質多孔体の内面にフィルタ層を形成する場合で説明す
る。ラバープレス成形法を用いると、次のような方法も
採用できる。
Next, a method for manufacturing a filter of the present invention will be explained using a case in which a filter layer is formed on the inner surface of a pipe-shaped cordierite porous body. When using the rubber press molding method, the following methods can also be adopted.

中子の金型にフィルタ層用セラミックス粉体のみ又はこ
れに気孔付与材を加えた泥漿をはけ塗シ法又はスプレー
法で塗付し、充分乾燥後、この中子の金型を用いて多孔
体を成形して二層構造とする。
Apply the filter layer ceramic powder alone or a slurry containing a pore-imparting material to the core mold by brushing or spraying, and after drying thoroughly, use this core mold. The porous body is molded into a two-layer structure.

あるいは実施例2に示すように所定調合原料でフィルタ
層をパイプ状にラバープレス成形し、′/1 ライで島枠のみ交換してパイプ状フィルタ層成形体の外
側に多孔体用所定調合原料を充填し、これを再びラバー
プレス成形して二層構造としてもよい。
Alternatively, as shown in Example 2, a filter layer is rubber press-molded into a pipe shape using a predetermined blended raw material, and only the island frame is replaced at '/1 lie, and a predetermined blended raw material for a porous body is applied to the outside of the pipe-shaped filter layer molded body. It may be filled and then rubber press molded again to form a two-layer structure.

別の手段として、多孔体1を成形後、その成形体に上記
の如き泥漿を流し込み、又ははけで塗付することによシ
ニJ−構造とすることもできる0 成形体は通常、次に適宜な条件で焼成されることが好ま
しいが、成形条件などによっては、成形後の焼成を必ず
しも要しないこともある。
Alternatively, after molding the porous body 1, a slurry as described above may be poured into the molded body or applied with a brush to form a thin J-structure. Although it is preferable to perform firing under appropriate conditions, firing after molding may not necessarily be necessary depending on the molding conditions.

なお、本発明のフィルタは実質的に二層構造からなるが
、例えばフィルタ層を複数の層で形成し、全体として平
均孔径10〜11001tの気孔を有する層としてもよ
いし、あるいは、例えば多菫体を複数の層で形成し、全
体として熱膨張率が1000℃で0.5%以下である多
孔体としてもよい。
Although the filter of the present invention has a substantially two-layer structure, for example, the filter layer may be formed of a plurality of layers having pores having an average pore diameter of 10 to 11,001 tons as a whole. The body may be formed of a plurality of layers, and the porous body as a whole may have a coefficient of thermal expansion of 0.5% or less at 1000°C.

以下、本発明の詳細な説明する。The present invention will be explained in detail below.

実施例1 表1に示す各調合の原料坏土をそれぞれ小型ミキサで混
合し、その所定量を内径100m++の金型に充填し、
200 kv/−の圧力で油圧プレスして成形体を得た
。ついで表2に示す各調合の原°料坏土を同様に混合−
し、その所定量をさきの金型内の成形体の上に充填し、
その状態で600鯉/−の圧力で加圧した。かくして得
られた計19種類の成形体は、それぞれの材質に応じた
条件でシリコニット電気炉にて5時間焼成された。得ら
れた円板状セラミックスフィルタサンプルは外径的10
0m+、多孔体の厚み15tm、全体の厚み15〜21
mmであった。
Example 1 The raw material clay of each formulation shown in Table 1 was mixed using a small mixer, and the predetermined amount was filled into a mold with an inner diameter of 100 m++.
A molded body was obtained by hydraulic pressing at a pressure of 200 kv/-. Next, the raw material clay for each formulation shown in Table 2 was mixed in the same manner.
Then, fill the predetermined amount onto the molded object in the previous mold,
In that state, it was pressurized at a pressure of 600 carp/-. A total of 19 types of molded bodies thus obtained were fired for 5 hours in a silicone electric furnace under conditions appropriate to each material. The obtained disc-shaped ceramic filter sample had an outer diameter of 10
0m+, porous body thickness 15tm, total thickness 15-21
It was mm.

表1 多孔体の原料調合(単位二重置部)表2 フィル
タ層の原料調合(単位二重綾部)セラミックスフィルタ
の特性は次のようにして測定した。すなわち通気抵抗と
しては、得られたフィルタサンプルの有効径80−の部
分に室温の空気を流速5cIn/秒となるように流した
ときのサンプルの前後の差圧を測定した。
Table 1 Preparation of raw materials for porous body (unit double twill portion) Table 2 Preparation of raw materials for filter layer (unit double twill portion) The characteristics of the ceramic filter were measured as follows. That is, as ventilation resistance, the differential pressure before and after the sample was measured when air at room temperature was flowed at a flow rate of 5 cIn/sec through a portion of the obtained filter sample having an effective diameter of 80 mm.

集塵試験では、ベンガラ(粒度分布は10μm以下=8
重量%、10〜40μm=35重量%、40〜100μ
rn:46重量%、100〜200μm:11重量係)
を3027−の割合で混ぜた約200℃の空気を、得ら
れたフィルタサンプルの有効径80m1の部分のフィル
タ層側から、流速5 cm 7秒となるように5分間流
し、ついでベンガラを含まない室温の空気をサンプルの
多孔体側から同流速で5分間流す集塵・逆洗のサイクル
を180サイクル実施し、上記した通気抵抗の180サ
イクル後の値と当初の値との差を測定した。
In the dust collection test, red iron oxide (particle size distribution is 10 μm or less = 8
Weight%, 10-40μm = 35weight%, 40-100μm
rn: 46% by weight, 100-200μm: 11% by weight)
Air at about 200°C mixed in a ratio of 3027 - was flowed for 5 minutes at a flow rate of 5 cm for 7 seconds from the filter layer side of the effective diameter of 80 m1 of the obtained filter sample, and then the air was heated to a temperature of about 200 ° C. A dust collection/backwashing cycle in which room temperature air was flowed from the porous body side of the sample for 5 minutes at the same flow rate was performed for 180 cycles, and the difference between the above-mentioned airflow resistance value after 180 cycles and the initial value was measured.

急熱急冷通気試験では、LPG f:燃焼させて得た約
1000℃の熱風をフィルタサンプルの有効径80四の
部分に流速的1m/秒で5分間流し、引きつづき室温の
空気を同様の流速で5分間流すサイクルを連続して12
サイクル実施して評価した。
In the rapid heating and cooling ventilation test, hot air at approximately 1000°C obtained by burning LPG f was flowed through a portion of the filter sample with an effective diameter of 804 at a flow rate of 1 m/sec for 5 minutes, and then room temperature air was flowed at the same flow rate. 12 consecutive cycles of 5 minutes at
The cycle was performed and evaluated.

また別に多孔体のみ、およびフィルタ層のみについて表
11表2に示す各調合で上述したと同様に成形、焼成し
て外径的100ffi、厚み10鱈の多孔体サンプル、
フィルタ層サンプルを得、多孔体物性、フィルタ層物性
の測定に供した。
Separately, porous body samples of only the porous body and only the filter layer were molded and fired in the same manner as described above for each formulation shown in Table 11 and Table 2, and the outer diameter was 100ffi and the thickness was 10 mm.
A filter layer sample was obtained, and the physical properties of the porous body and the filter layer were measured.

これらの測定結果を調製条件とともに表3に示す。表3
の急熱急冷通気試験の欄において斜線は試験を実施しな
かったこと、◎はクラックが発生しなかったこと、Xは
クラックが発生したことを示す。さらにサンプル番号1
のフィルタサンプルはフィルタ層を形成しなかったもの
である、。
These measurement results are shown in Table 3 together with the preparation conditions. Table 3
In the rapid heating and cooling ventilation test column, diagonal lines indicate that the test was not conducted, ◎ indicates that no cracks occurred, and X indicates that cracks occurred. Furthermore, sample number 1
The filter sample was one in which no filter layer was formed.

表3から以下のようなことが理解される。まずフィルタ
層を形成しないもの(サンプル番号1)は集塵試験にお
いて少ないサイクル数でも急激な通気抵抗上昇を示し、
多孔体に目詰まシを起こしてフィルタとして適当でない
The following can be understood from Table 3. First, the sample that does not form a filter layer (sample number 1) shows a rapid increase in ventilation resistance even with a small number of cycles in the dust collection test.
The porous material becomes clogged and is not suitable as a filter.

フィルタ層の平均孔径を変えた場合(サンプル番号2〜
6)、10μm以下では通気抵抗が太きすぎて適当でな
く、100μm以上では集塵試験での通気抵抗上昇が大
きく、これも適当でない。サンプル番号15のフィルタ
サンプルは多孔体の平均孔径が500μmよシ大きいの
で、多孔体によるフィルタ層の補強性に劣る場合も見ら
れた。
When the average pore size of the filter layer is changed (sample number 2~
6) If the thickness is 10 μm or less, the ventilation resistance is too thick and is not suitable, and if the thickness is 100 μm or more, the ventilation resistance increases greatly in the dust collection test, which is also not suitable. In filter sample No. 15, since the average pore diameter of the porous body was larger than 500 μm, there were cases where the reinforcing property of the filter layer by the porous body was poor.

実施例2 表3のサンプル番号4の場合と同じ多孔体、フィルタ層
調合により、外径170111111%内径14t)8
、高さ1000.で内側にフィルタ層を付与したパイプ
状コージ2イト質セラミックスフィルタを製作した。
Example 2 With the same porous material and filter layer formulation as in the case of sample number 4 in Table 3, the outer diameter was 170111111% and the inner diameter was 14t)8
, height 1000. A pipe-shaped cordier ceramic filter with a filter layer on the inside was fabricated.

すなやち、まず外径140sm−金型中子と内径144
餌ゴム型外枠からなる型に、所定のフィルタ層用調合の
原料を入れ、ラバープレスにて1トン/l−l11の圧
力で加圧し、肉厚2■、長さ110011Il++のパ
イプを成形した。ついで中子は抜きとらず、外枠のみを
内径190.ゴム型に取りかえ、予め大型ミキサで所定
の多孔体用調合の原料とバインダとを混合した混合物を
型に入れ、ラバープレスにて1トン/dの圧力で加圧し
て、内側にフィルタ層を有するパイプに成形した。成形
体音ガス間にて1350℃で5時間焼成した後、100
01tInの長さに切断した。
First of all, outer diameter 140s - mold core and inner diameter 144
A predetermined mixture of filter layer ingredients was put into a mold consisting of a feed rubber mold outer frame, and the mixture was pressurized with a rubber press at a pressure of 1 ton/l-11 to form a pipe with a wall thickness of 2cm and a length of 110011Il++. . Next, without removing the core, only the outer frame was cut to an inner diameter of 190mm. Replace the mold with a rubber mold, put a mixture of the raw materials and binder of the predetermined porous material formulation into the mold using a large mixer, and pressurize the mold with a pressure of 1 ton/d using a rubber press to form a filter layer on the inside. Formed into a pipe. After firing the molded body at 1350°C for 5 hours in a sonic gas atmosphere,
It was cut to a length of 01tIn.

ベンガジ含有空気の温度を約1000℃とし、有効集塵
面積を得られたパイプ状フィルタのほぼ全内面積とし、
サイクル数を300サイクルとした他は実施例1と同様
にしてこのパイプ状フィルタの集塵試験を実施した。
The temperature of the Benghazi-containing air is about 1000°C, and almost the entire internal area of the pipe-shaped filter that has an effective dust collection area,
A dust collection test was conducted on this pipe-shaped filter in the same manner as in Example 1, except that the number of cycles was 300.

ベンガラ含有空気投入前にi、ooo℃の空気を流速5
6n/秒で流したときの通気抵抗は29011111q
であった。300サイクルの集塵試験後に同じ<100
0℃の空気を流速5crn/秒で流したときには通気抵
抗はさらに13011’IIIIA(1上昇した。また
集塵試験において集塵されたベンガラ量の投入ベンガラ
量に対する割合、すなわち集塵率は98%であった。
Before introducing red iron-containing air, the air at a temperature of i, ooo°C was introduced at a flow rate of 5.
The ventilation resistance when flowing at 6n/sec is 29011111q
Met. Same <100 after 300 cycles of dust collection test
When air at 0°C was flowed at a flow rate of 5 crn/sec, the ventilation resistance further increased by 13011'IIIA (1).Also, in the dust collection test, the ratio of the amount of red dust collected to the amount of red iron thrown in, that is, the dust collection rate was 98%. Met.

試験後、このパイプ状フィルタを取シ出して調査したと
ころ、パイプの内面にうずくベンガラが付着していた。
After the test, this pipe-shaped filter was taken out and inspected, and it was found that red snails were attached to the inner surface of the pipe.

またクラックは全く認められなかった。Moreover, no cracks were observed at all.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明による集塵用セラミックスフィルタを示
す断面模式図である。 1・・・・・・多孔体 、2・・・・・・フィルタ層。 3・・・・・・粒塵。 第 1 圓
FIG. 1 is a schematic cross-sectional view showing a ceramic filter for dust collection according to the present invention. 1... Porous body, 2... Filter layer. 3...Particles of dust. 1st circle

Claims (1)

【特許請求の範囲】 1、熱膨張率が1000℃で0.5%以下であるセラミ
ックスの多孔体の片面に、平均孔径lO〜100μ軍の
気孔を有するセラミックスのフィルタ層を形成した、実
質的に二層構造からなる集塵用セラミックスフィルタ。 2、フィルタ層の厚みは0.5〜5闘である特許請求の
範囲第1項記載の集塵用セラミックスフインタ。 3、多孔体の気孔率は30%以上である特許請求の範囲
第1項又は第2項記載の集塵用セラミックスフィルタ。 4、 多孔一体の平均孔径は100〜500μm であ
る特許請求の範囲第1項、第2項又は第3項記載の集塵
用セラミックスフィルタ。
[Claims] 1. A ceramic filter layer having pores with an average pore diameter of 10 to 100 μm is formed on one side of a porous ceramic body having a coefficient of thermal expansion of 0.5% or less at 1000°C. A ceramic filter for dust collection with a two-layer structure. 2. The ceramic finter for dust collection according to claim 1, wherein the filter layer has a thickness of 0.5 to 5 mm. 3. The ceramic filter for dust collection according to claim 1 or 2, wherein the porous body has a porosity of 30% or more. 4. The ceramic filter for dust collection according to claim 1, 2, or 3, wherein the average pore diameter of the integrated porous body is 100 to 500 μm.
JP16756783A 1983-09-13 1983-09-13 Ceramic filter for dust collection Pending JPS6061019A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16756783A JPS6061019A (en) 1983-09-13 1983-09-13 Ceramic filter for dust collection

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16756783A JPS6061019A (en) 1983-09-13 1983-09-13 Ceramic filter for dust collection

Publications (1)

Publication Number Publication Date
JPS6061019A true JPS6061019A (en) 1985-04-08

Family

ID=15852122

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16756783A Pending JPS6061019A (en) 1983-09-13 1983-09-13 Ceramic filter for dust collection

Country Status (1)

Country Link
JP (1) JPS6061019A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6290716U (en) * 1985-11-29 1987-06-10
JPS62168523A (en) * 1986-01-06 1987-07-24 レフラクトロン・コーポレーション Ceramic filter consisting plural layers having different void ratios
JPS6331517A (en) * 1986-07-24 1988-02-10 Asahi Glass Co Ltd Ceramic filter
JPS63143421A (en) * 1986-12-03 1988-06-15 Kyocera Corp Ceramic plate for evaporation
JPS63240912A (en) * 1987-03-28 1988-10-06 Ngk Insulators Ltd Ceramic filter for dustcollecting from exhaust gas
JPS6415113A (en) * 1987-07-09 1989-01-19 Tadahiro Omi Filter element comprising electroconducting ceramic
JPH0231811A (en) * 1988-06-04 1990-02-01 Herding Gmbh Filter for separating solid particle from hot gaseous or liquid medium
JPH08932A (en) * 1994-06-17 1996-01-09 Agency Of Ind Science & Technol Production of ceramic filter
JP5616059B2 (en) * 2007-04-27 2014-10-29 日本碍子株式会社 Honeycomb filter

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4918326A (en) * 1972-06-10 1974-02-18
JPS52136206A (en) * 1976-05-07 1977-11-14 Commissariat Energie Atomique Manufacture of porous pipe members

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4918326A (en) * 1972-06-10 1974-02-18
JPS52136206A (en) * 1976-05-07 1977-11-14 Commissariat Energie Atomique Manufacture of porous pipe members

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6290716U (en) * 1985-11-29 1987-06-10
JPS62168523A (en) * 1986-01-06 1987-07-24 レフラクトロン・コーポレーション Ceramic filter consisting plural layers having different void ratios
JPS6331517A (en) * 1986-07-24 1988-02-10 Asahi Glass Co Ltd Ceramic filter
JPS63143421A (en) * 1986-12-03 1988-06-15 Kyocera Corp Ceramic plate for evaporation
JPS63240912A (en) * 1987-03-28 1988-10-06 Ngk Insulators Ltd Ceramic filter for dustcollecting from exhaust gas
JPS6415113A (en) * 1987-07-09 1989-01-19 Tadahiro Omi Filter element comprising electroconducting ceramic
JPH0231811A (en) * 1988-06-04 1990-02-01 Herding Gmbh Filter for separating solid particle from hot gaseous or liquid medium
JPH08932A (en) * 1994-06-17 1996-01-09 Agency Of Ind Science & Technol Production of ceramic filter
JP5616059B2 (en) * 2007-04-27 2014-10-29 日本碍子株式会社 Honeycomb filter

Similar Documents

Publication Publication Date Title
JP4906177B2 (en) Honeycomb monolithic structure of porous ceramic materials and use as a filter for particles
JP4459052B2 (en) Diesel particulate filter made of mullite / aluminum titanate
EP0630677B1 (en) Ceramic filter for a dust-containing gas and method for its production
US5733352A (en) Honeycomb structure, process for its production, its use and heating apparatus
JP5524924B2 (en) Honeycomb structure
CN101612499B (en) Method for preparing wall-flow honeycomb ceramic filter
US6699429B2 (en) Method of making silicon nitride-bonded silicon carbide honeycomb filters
US5198006A (en) Ceramic filter for a dust-containing gas and method for its production
EP0087789B1 (en) Porous ceramic article
JP2005530616A (en) Aluminum magnesium silicate structure for DPF applications
CN102448909A (en) Method and substrate for curing a honeycomb structure
CN107915475A (en) A kind of gradient pore high temperature filtration ceramic tube and preparation method thereof
JP2013522020A (en) Filter material with occlusive material
CN101612500B (en) Wall-flow honeycomb ceramic filter
JPS6061019A (en) Ceramic filter for dust collection
JP3185960B2 (en) Method for producing porous aluminum titanate sintered body
JP2008043852A (en) Ceramics filter
JP2003236322A (en) Ceramic honeycomb filter
KR20110114542A (en) Filtration structure having inlet and outlet surfaces with a different plugging material
JPH0431372A (en) Production of ceramic sintered compact having honeycomb structure
US5552049A (en) Ceramic fiber reinforced filter
US5082480A (en) Ceramic filter
JP2651170B2 (en) Ceramics porous body
JPH10299454A (en) Exhaust gas filter and manufacture thereof, and sealant for exhaust gas filter used therein
GB2097777A (en) Ceramic foam