JPS6060960A - Fiber reinforcement material for hydraulic inorganic material and manufacture - Google Patents

Fiber reinforcement material for hydraulic inorganic material and manufacture

Info

Publication number
JPS6060960A
JPS6060960A JP16509183A JP16509183A JPS6060960A JP S6060960 A JPS6060960 A JP S6060960A JP 16509183 A JP16509183 A JP 16509183A JP 16509183 A JP16509183 A JP 16509183A JP S6060960 A JPS6060960 A JP S6060960A
Authority
JP
Japan
Prior art keywords
fibers
electron beam
curable resin
fiber
inorganic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP16509183A
Other languages
Japanese (ja)
Other versions
JPS646137B2 (en
Inventor
賢司 杉本
孜 丸山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taisei Corp
Kansai Paint Co Ltd
Original Assignee
Taisei Corp
Kansai Paint Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taisei Corp, Kansai Paint Co Ltd filed Critical Taisei Corp
Priority to JP16509183A priority Critical patent/JPS6060960A/en
Publication of JPS6060960A publication Critical patent/JPS6060960A/en
Publication of JPS646137B2 publication Critical patent/JPS646137B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Curing Cements, Concrete, And Artificial Stone (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 本発明は、水硬性無機材料用繊維補強材及びその製造方
法に関し、さらに詳しくはコンクリート、モルタルなど
の水硬性無機材料の補強に適するように材質及び形状の
改良された無機または有機印維補強材及びその製造方法
に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a fiber reinforcing material for hydraulic inorganic materials and a method for producing the same. This invention relates to an inorganic or organic print reinforcing material and a method for producing the same.

なお、本明細書において、「水硬性無機材料」とは、水
の添加によって水と化学反応を生じて硬化を開始する無
機質材料をいい、例えばポルトランドセメント、混合セ
メントや石こう、生石灰等が包含される。
In addition, in this specification, "hydraulic inorganic material" refers to an inorganic material that causes a chemical reaction with water and starts hardening when water is added, and includes, for example, Portland cement, mixed cement, gypsum, quicklime, etc. Ru.

従来からコンクリート、モルタルなどの水硬性無機材料
の機械的性質たとえば引張強度、曲げ強度、耐衝撃性、
耐亀裂性等を改良するために、種種の補強用繊維が研究
、開発され、たとえばガラス繊維、金属繊維、セラミッ
ク繊維、ポリプロピレン繊維などを配合することが試み
られている。
Traditionally, the mechanical properties of hydraulic inorganic materials such as concrete and mortar have been studied, such as tensile strength, bending strength, impact resistance,
In order to improve crack resistance and the like, various types of reinforcing fibers have been researched and developed, and attempts have been made to incorporate glass fibers, metal fibers, ceramic fibers, polypropylene fibers, etc.

しかしながら、これらの繊維はコンクリートの補強に使
用する場合それぞれ下記の欠点を有している。
However, each of these fibers has the following drawbacks when used for reinforcing concrete.

すなわち、ガラス繊維やシラス繊維はコンクリートと混
練する際にコンクリート中の骨材と接触して傷がつき易
く、その結果ノツチ効果によシ強度が極端に悪くなシ、
たとえば1/1000位にまで低下するので特殊なミキ
サーや吹付法を用いなければならないなど取扱上の難点
がある。また、金属繊維は腐食し易く、コンクリートに
海砂が使用されたり、コンクリート構造物が海中で使用
される場合には金属繊維の錆の膨張力によるクラックが
生じたシして補強効果が短期間でなくなってしまう欠点
がおる。さらにセラミック繊維、就中、炭素繊維は開発
の最も新しいもので、その性質は軽く、極めて強靭で他
の繊維よシすぐれた特性を有しているため、今後その使
用がさらに増加するものと期待されるが、炭素繊維の表
面はポーラスな構造体である水硬性無機材料に対して非
常に滑シやすい性質を有しているためコンクリートに配
合しても炭素繊維とコンクリートとの界面の接着力がほ
とんど得られず、且つ曲は応力がかかっだ際炭素繊維は
コンクリート内部で滑って引抜けを起こし、本来の繊維
のもつ物性が元押できずひび割れ、破壊に対する十分な
ひび割れ拘束力が得られないという欠点がある。このこ
とはガラス繊維、金属繊維、ポリプロピレン繊維におい
てもその表面が平滑であることから程度の差はあれ同様
に看えることで、その表面の改質が強く望まれている。
In other words, when glass fibers and shirasu fibers are mixed with concrete, they come into contact with the aggregate in the concrete and are easily damaged, resulting in extremely poor strength due to the knot effect.
For example, since the concentration decreases to about 1/1000, there are difficulties in handling, such as the need to use a special mixer or spraying method. In addition, metal fibers are prone to corrosion, and when sea sand is used in concrete or concrete structures are used underwater, cracks occur due to the expansion force of the rust in the metal fibers, and the reinforcing effect is short-lived. There is a drawback that it disappears. Furthermore, ceramic fibers, especially carbon fibers, are the latest in development and are light in nature, extremely strong, and have superior properties compared to other fibers, so we expect their use to increase further in the future. However, the surface of carbon fiber has a property of being extremely slippery against hydraulic inorganic materials that are porous structures, so even if it is mixed into concrete, the adhesive strength at the interface between carbon fiber and concrete will be low. In addition, when stress is applied to the concrete, the carbon fibers slip inside the concrete and pull out, and the original physical properties of the fibers cannot be restored, resulting in cracks and failure. There is a drawback that there is no This appears to be the same for glass fibers, metal fibers, and polypropylene fibers, since their surfaces are smooth, although there are differences in degree, and there is a strong desire to modify their surfaces.

そこで、本発明者らは水硬性無機材料補強用繊維として
用いられているがラス繊維、金属繊維、セラミック繊維
および有機合成繊維の前記した如き欠点を改良すべく鋭
意研究を重ねだ結果、これらの繊維の表面に電子線硬化
性樹脂液を塗布し、その上に細骨材を付着せしめてなる
繊維が前記した用途に満足すべき性能を示すことを見い
出し本発明を完成するに至った。
Therefore, the present inventors have conducted extensive research to improve the above-mentioned drawbacks of lath fibers, metal fibers, ceramic fibers, and organic synthetic fibers that are used as fibers for reinforcing hydraulic inorganic materials. The present inventors have discovered that fibers prepared by applying an electron beam curable resin liquid to the surface of the fibers and adhering fine aggregate thereon exhibit satisfactory performance for the above-mentioned uses, and have completed the present invention.

かくして、本発明に従えば、無機系繊維または有機合成
繊維と、その表面に電子線硬化樹脂によって付着結合せ
しめられた平均粒子径が0.01〜0.5皿の細骨材と
からなることを特徴とする水硬性無位材料用繊維補強材
が提供される。
Thus, according to the present invention, the fiber is composed of inorganic fibers or organic synthetic fibers and fine aggregate with an average particle diameter of 0.01 to 0.5, which is adhesively bonded to the surface of the inorganic fiber or organic synthetic fiber with an electron beam curing resin. Provided is a fiber reinforcement material for hydraulic non-positional materials characterized by the following.

本発明に従えばさらに、無機系繊維または有機合成繊維
の表面に電子線硬化性樹脂液を塗布し、錦の細骨材を付
着せしめ、ついで50KeV ないし500KeV の
電子線を照射して電子線硬化性樹脂液を硬化せしめるこ
とを特徴とする水硬性無機材料用繊維補強材の製造方法
が提供される。
According to the present invention, an electron beam curable resin liquid is further applied to the surface of the inorganic fiber or organic synthetic fiber, fine brocade aggregate is adhered thereto, and then 50 KeV to 500 KeV electron beam is irradiated to cure the electron beam. Provided is a method for producing a fiber reinforcing material for hydraulic inorganic materials, which comprises curing a hydraulic resin liquid.

本発明により提供される繊維補強材は、無機系繊維また
は有機合成繊維の表面が付着性のすぐれた電子線硬化樹
脂によって被覆されているため、繊維自体の耐薬品性、
耐食性が高められると同時に、電子線硬化樹脂塗膜表面
に細骨材が付着結合せしめられているので繊維周面に多
数の細骨材の突起が存在する構造を有している。このた
め該繊維補強材は滑り抵抗が高く且つその表面は水硬性
無機材料のマトリックスとの界面の接着性にすぐれてい
るので、水硬性無機材料に配合した場合に水硬性無機材
料の曲げ強度、引張強度、@撃強度、ひび割れ強度など
が大巾に向上する。
In the fiber reinforcing material provided by the present invention, the surface of the inorganic fiber or organic synthetic fiber is coated with an electron beam curing resin with excellent adhesion, so the fiber itself has excellent chemical resistance.
In addition to improving corrosion resistance, since fine aggregate is bonded to the surface of the electron beam cured resin coating, it has a structure in which many protrusions of fine aggregate exist on the peripheral surface of the fibers. Therefore, the fiber reinforcing material has high slip resistance and its surface has excellent adhesion at the interface with the matrix of the hydraulic inorganic material, so when it is blended with the hydraulic inorganic material, the bending strength of the hydraulic inorganic material increases. Tensile strength, @impact strength, crack strength, etc. are greatly improved.

本発明の繊維補強材に用いられる無機系繊維または有機
合成繊維は、この種用途において従来から公知のもので
あり、例えば無機系繊維としては、ガラス繊維、金属繊
維およびセラミック繊維等が包含され、他方有機合成繊
維としては、ポリプロピレン、ビニロン、ナイロン等が
包含サレル。
The inorganic fibers or organic synthetic fibers used in the fiber reinforcing material of the present invention are conventionally known for this type of use. Examples of the inorganic fibers include glass fibers, metal fibers, ceramic fibers, etc. On the other hand, organic synthetic fibers include polypropylene, vinylon, nylon, etc.

本発明の目的に使用される繊維は、単繊維または単繊維
を集束して撚りをかけたストランドのいずれの形状であ
ってもよく、その繊維の断面の大きさは、平均直径が通
常Z Omm以下であり、好適には0605〜1.0皿
の範囲にあるのが望ましく、また、弾性係数は一般に8
.000〜30,0OOkli/氾2の範囲にあること
が適当である。
The fibers used for the purpose of the present invention may be in the form of single fibers or twisted strands of single fibers, and the cross-sectional size of the fibers is typically an average diameter of Z Omm. or less, preferably in the range of 0.605 to 1.0, and the elastic modulus is generally 8.
.. It is appropriate that it be in the range of 000 to 30,0 OOkli/flood 2.

かかる繊維の長さには特に制限はなく、短繊維状(約3
〜50酩)のものから連続長繊維状のものまで、用途に
応じて使いわけることができる。
There is no particular restriction on the length of such fibers, and short fibers (approximately 3
It can be used depending on the purpose, from those in the form of 50 mm) to those in the form of continuous long fibers.

上記した態様繊維の具体例としては、例えばガラス繊維
としてはAガラス、Eガラス、耐アルカリガラス、シラ
ス繊維などが挙げられ、金属繊維としてはスチールファ
イバー、ステンレスファイバーなどが挙げられ、またセ
ラミック繊維と[7てはカーがンアスベストなどの材料
からなるものが挙げられる。
Specific examples of the above-mentioned fibers include glass fibers such as A glass, E glass, alkali-resistant glass, glass fibers, metal fibers such as steel fibers and stainless steel fibers, and ceramic fibers. [7] Examples include carbon fibers made of materials such as asbestos.

また、本発明において、繊維の表面に塗布される電子線
硬化性樹脂液とは、例えば、「最新工業塗装技術」(昭
和52年株式会社幸書房発行)248〜272頁に記載
されている如き公知のものでちって、電子線の照射によ
って架橋・重合し得る被膜形成性の樹脂の液状物である
In addition, in the present invention, the electron beam curable resin liquid applied to the surface of the fibers is, for example, the one described in "Latest Industrial Painting Techniques" (published by Saiwai Shobo Co., Ltd. in 1978), pages 248 to 272. It is a well-known liquid material that is a film-forming resin that can be crosslinked and polymerized by irradiation with electron beams.

該樹脂は、飽和結合を骨格と12、下記表−1に例示す
るがごとき官能基を有する基体樹脂に、該官能基と付加
あるいは縮合反応しつる基を有するビニル系単量体(下
記表−2に例示する)を従来公知の反応方法によって反
応せし、めた電子線のエネルギーにより重合硬化可能な
樹脂であって、官能基含有基体樹脂としては、たとえば
アクリル系樹脂、ポリエステル系樹脂、エポキシ系樹脂
、アミン樹脂(たとえばメラミン樹脂)、ポリアミド系
樹脂、ポリウレタン系樹脂等、或いはこれら樹脂の2種
又はそれ以上の混合物が挙げられる。
The resin has a saturated bond with a backbone of 12, and a vinyl monomer having a vine group (Table 1 below) that is added or condensed to a base resin having a functional group as shown in Table 1 below. A resin that can be polymerized and cured by the energy of the collected electron beam by reacting a compound (exemplified in 2) by a conventionally known reaction method, and examples of the functional group-containing base resin include acrylic resin, polyester resin, and epoxy resin. Examples include resins such as amine resins (for example, melamine resins), polyamide resins, polyurethane resins, and mixtures of two or more of these resins.

これらの基体樹脂中に含有される各種の官能基と反応さ
せるべきビニル系単量体中の官能基の一例は下記表−1
に示すとおシである。また、かかる官能基を有するビニ
ル系単量体の具体例は下記表−2に掲げたとおりである
Examples of functional groups in vinyl monomers that should be reacted with various functional groups contained in these base resins are shown in Table 1 below.
This is shown in . Further, specific examples of vinyl monomers having such functional groups are listed in Table 2 below.

上記基体樹脂とビニル系単量体の反応割合は、反応生成
物の分子中に存在するエチレン性不飽和結合の存在量(
不飽和度)が0.3〜3.0モル/kg分子、好ましく
は0.5〜2.0モル/ kg分子となるような量であ
る。
The reaction rate between the base resin and the vinyl monomer is determined by the amount of ethylenically unsaturated bonds present in the molecules of the reaction product (
The amount is such that the degree of unsaturation) is 0.3 to 3.0 mol/kg molecule, preferably 0.5 to 2.0 mol/kg molecule.

表−1 狡−1(つづき) 表−1(つづき) 表−2 表−2(つづき) 本発明で使用される電子線硬化性樹脂液は、上記の基体
樹脂とビニル系単量体との反応生成物のみからなること
ができるが、塗装に適した粘度への調整および塗膜性能
面の向上をはかる目的で必要に応じて反応性希釈剤およ
び/−!たは架橋性オリゴマーが加えられる。反応性希
釈剤としては、たと、tばスチレン、α−メチルスチレ
ン、ビニルトルエン、アクリル酸エステル類、メタクリ
ル酸エステル類、アクリロニトリル、メタクリロニトリ
ル、アクリルアミド、酢酸ビニルなどがある。
Table-1 Ko-1 (Continued) Table-1 (Continued) Table-2 Table-2 (Continued) The electron beam curable resin liquid used in the present invention is composed of the above-mentioned base resin and vinyl monomer. Although it can consist only of reaction products, reactive diluents and/-! can be used as necessary to adjust the viscosity to a level suitable for coating and to improve the performance of the coating film. or crosslinkable oligomers are added. Examples of the reactive diluent include t-styrene, α-methylstyrene, vinyltoluene, acrylic esters, methacrylic esters, acrylonitrile, methacrylonitrile, acrylamide, and vinyl acetate.

また、架橋性オリゴマーとしては、たとえば分子量i、
 o o o以下で且つ2〜4個の重合性ビニル基を有
する化合物があシ、これらの具体例として、ソアリルフ
タレート、エチレングリコールソ(メタ)アクリレート
、テトラエチレンダリコールジ(メタ)アクリレート、
ビス−(エチレングリコールフタレート)ソ(メタ)ア
クリレート、ビス−(ジエチレングリコールフタレート
)ソ(メタ)アクリレート、ポリエチレングリコールジ
(メタ)アクリレート、ポリプロピレングリコールジ(
メタ)アクリレート、トリメチロールエタンぐントリ(
メタ)アクリレート、トリレンツイソシアネートと(メ
タ)アクリル酸ヒドロキシアルキルエステルとの1=1
(モル比)付加物とトリメチロールエタンあるいはトリ
メチロールプロパンとの付加反応物、ペンタエリスリト
ールテトラ(メタ)アクリレートなどがあシ、また(メ
タ)アクリル酸の長鎖エステル(側鎖に長錦アルキル基
、ポリエステル基などを有するもの)などの不飽和オリ
ゴマーも使用可能である。
Further, as the crosslinkable oligomer, for example, molecular weight i,
o o o or less and having 2 to 4 polymerizable vinyl groups, specific examples of which include soaryl phthalate, ethylene glycol so(meth)acrylate, tetraethylene dalicold di(meth)acrylate,
Bis-(ethylene glycol phthalate) so(meth)acrylate, bis-(diethylene glycol phthalate) so(meth)acrylate, polyethylene glycol di(meth)acrylate, polypropylene glycol di(
meth)acrylate, trimethylolethanetri(
1=1 of meth)acrylate, tolylene diisocyanate and (meth)acrylic acid hydroxyalkyl ester
(Mole ratio) Addition reaction products of adducts with trimethylolethane or trimethylolpropane, pentaerythritol tetra(meth)acrylate, etc., and long-chain esters of (meth)acrylic acid (long-chain alkyl group in the side chain). , polyester groups, etc.) can also be used.

上記反応性希釈剤および/または架橋性オリゴマーの使
用量は、基体樹脂とビニル系単量体との反応生成物10
0重量部に対し一般には1〜300重量部、好ましくは
50〜150重量部の範囲とすることができる。なお、
反応性希釈剤と架橋性オリゴマーを併用する場合、両者
の比率は任意である。以上のような組成を有する電子線
硬化性樹脂液には、さらに必要に応じて塗料技術分野で
公知の無機顔料、有機顔料および金属顔料の一種以上を
任意に配合することができる。かかる電子線硬化性樹脂
液は、通常塗装に適する粘度である2〜100ポイズ、
好適には5〜30ポイズに調整され塗装に供される。
The amount of the reactive diluent and/or crosslinkable oligomer used is 10% of the reaction product of the base resin and the vinyl monomer.
In general, the amount may range from 1 to 300 parts by weight, preferably from 50 to 150 parts by weight. In addition,
When a reactive diluent and a crosslinkable oligomer are used together, the ratio of the two is arbitrary. The electron beam curable resin liquid having the composition described above may further contain one or more types of inorganic pigments, organic pigments, and metal pigments known in the field of coating technology, if necessary. Such electron beam curable resin liquid usually has a viscosity of 2 to 100 poise, which is suitable for painting.
It is preferably adjusted to 5 to 30 poise and used for painting.

前記した電子線硬化性樹脂液の中でも本発明に特に好適
なものは、繊維に対する伺着性、耐久性等にすぐれてい
る点から基体樹脂としてエポキシ系樹脂、ウレタン系樹
脂を用いたものでちる。
Among the electron beam curable resin liquids mentioned above, those using epoxy resins or urethane resins as the base resin are particularly suitable for the present invention because of their excellent adhesion to fibers, durability, etc. .

これらの電子線硬化性樹脂液の繊維表面への塗装手段と
しては公知の任意の方法を用いることができるが、本発
明においては長尺物の塗装であることから浸漬塗装また
は被塗物の外形とはソ等しい口金中を挿通させる17ご
き塗りが好適である。
Any known method can be used to apply these electron beam curable resin liquids to the fiber surface, but in the present invention, since the coating is for a long object, dip coating or It is preferable to apply a coating of 17, which is inserted through the cap equal to .

塗布量は特に制限されないが、通常は3〜2001/ば
、好適には7〜soy7mとずろことができる。
The amount of coating is not particularly limited, but can vary from 3 to 200 l/bar, preferably from 7 to 7 m/soy.

前記した電子線硬化性樹脂液は無機系繊維捷たは有機合
成繊維に直接塗布することができるが、付着性をより高
めるだめにこれらの繊維に予め表面処理を施すことが好
ましい。たとえばガラス繊維の場合にはシランカップリ
ング処理が施こされ、また鋼繊維にはリン酸塩処理など
の化成処理が施こされ付着性と耐食性が向上せしめられ
る。さらに炭素繊維の場合は他の繊維に比べて特に付着
性が悪いので、例えばフッ化水素溶液に浸漬し、水洗し
て乾燥させてから処理すると付着性が向上する。
The above-mentioned electron beam curable resin liquid can be applied directly to inorganic fibers or organic synthetic fibers, but in order to further improve adhesion, it is preferable to subject these fibers to a surface treatment in advance. For example, glass fibers are subjected to silane coupling treatment, and steel fibers are subjected to chemical conversion treatment such as phosphate treatment to improve adhesion and corrosion resistance. Furthermore, since carbon fibers have particularly poor adhesion compared to other fibers, adhesion can be improved by, for example, immersing them in a hydrogen fluoride solution, washing with water, drying, and then treating.

本発明の方法において、まず繊維に電子線硬化性樹脂液
が塗布され、ついで未硬化の状態でその上に細骨材が付
着結合せしめられる。本明細書において「7皿骨材」と
は従来からモルタルやコンククリートに用いられている
骨材および塗料に用いられている体質顔料でその平均粒
子径が0.01〜0、5 Winの範囲のものをいう。
In the method of the present invention, an electron beam curable resin liquid is first applied to the fibers, and then fine aggregate is adhesively bonded thereon in an uncured state. In this specification, "7-pan aggregate" refers to aggregates conventionally used in mortar and concrete concrete, and extender pigments used in paints, with an average particle diameter in the range of 0.01 to 0.5 Win. It refers to something.

使用される細骨材としては、例えば、砂、砕石(各種岩
石)、火山レキ砂、抗火石粒などの天然骨材;パーライ
ト、バーミキュライト、石炭殻、膨張スラグ、合成樹脂
粒、鉱物繊維粒などの人工軽量骨材;辰収カルシウム、
硫酸バリウム、タルク、クレーなどの体質顔料等が挙げ
られる。
Fine aggregates used include, for example, natural aggregates such as sand, crushed stone (various rocks), volcanic sand, and anti-pyrotechnic grains; perlite, vermiculite, coal shells, expanded slag, synthetic resin grains, mineral fiber grains, etc. Artificial lightweight aggregate; Tatsuyoshi calcium,
Examples include extender pigments such as barium sulfate, talc, and clay.

細骨材を未硬化樹脂痘膜に付着せしめる方法としては、
例えば吹付、散布等の方法をあげることができるが、生
産性等の面から細骨材の入った槽中を樹脂塗付繊維を通
過せしめて静電塗布する方法が好ましい。細骨材の付着
量は細骨材が塗布された樹脂液の面積の少くとも30%
以上、好ましくは50〜100%を占めるような量とす
ることができる。付着量が30%以下であると補強材の
水硬性無機材料との付着が低下する傾向がみられる。
The method for attaching fine aggregate to uncured resin pox membrane is as follows:
For example, methods such as spraying and scattering can be used, but from the viewpoint of productivity etc., a method of electrostatic coating by passing resin-coated fibers through a tank containing fine aggregate is preferred. The amount of fine aggregate attached is at least 30% of the area of the resin liquid coated with fine aggregate.
The above amount can preferably be 50 to 100%. If the amount of adhesion is 30% or less, there is a tendency for the adhesion of the reinforcing material to the hydraulic inorganic material to decrease.

かくして形成された表面に細骨材の突起を有する繊維は
、ついで電子線が照射され、未硬化塗膜が硬化され、そ
れと同時に細骨材も塗膜と堅固に付着する。電子線照射
に使用する電子線発生源の加速器としては、コツククロ
フト型、コツククロフトワルトン型、パン・デ・グラー
フ型、共振変圧器型、変圧器型、絶縁コア笈圧器型、ダ
イナミドロン型、リニアーフィラメント型、高周波型な
どがある。本発明による電子線硬化性樹脂塗膜を硬化・
乾燥せしめる電子線エネルギーは50KeV〜500 
KeV、好ましくは100KeV 〜300K e V
 の範囲が適当である。照射線量は0.2 Jirad
〜15Jfταdの範囲が適し、特にIMrad〜5M
radの範囲が好ましい。 照射線量がQ、 2. M
r a dより少ない場合には塗膜の硬化が完全ではな
く十分な塗膜の性能が得敵い。また照射線量が15Mr
adを超えると繊維、特にガラス繊維に影響を及はし機
械的強度の劣化をもたらすおそれがある。
The thus formed fibers having fine aggregate protrusions on their surfaces are then irradiated with an electron beam to harden the uncured coating film, and at the same time, the fine aggregate firmly adheres to the coating film. The electron beam source accelerators used for electron beam irradiation include Kotskucroft type, Kotscroft-Walton type, Pan de Graaf type, resonant transformer type, transformer type, insulated core transformer type, dynamidron type, and linear accelerator. There are filament type and high frequency type. Curing and curing the electron beam curable resin coating film according to the present invention
The electron beam energy for drying is 50KeV to 500
KeV, preferably 100KeV to 300KeV
A range of is appropriate. The irradiation dose is 0.2 Jirad
A range of ~15Jfταd is suitable, especially IMrad~5M
A range of rad is preferred. The irradiation dose is Q, 2. M
If it is less than r a d, the coating film will not be completely cured, making it difficult to obtain sufficient coating performance. Also, the irradiation dose is 15Mr.
If it exceeds ad, it may affect fibers, especially glass fibers, resulting in deterioration of mechanical strength.

電子線を巾広い範囲にわたって照射する場合には電子線
を均一な巾に拡げる必要がちシ、この方法に通常スキギ
ンコンク方式とリニアフィラメント方式(米国特許第4
246297号明細書参照)の2つの代表的な方法があ
る。いずれの方法でも被覆物の硬化のために巾が約1 
nb程度のものが既に実用化されている。繊維自身は細
いものであるので電子線照射の巾方向の長さは数センチ
ないし数十セイチで十分である。電子線照射に際して電
子線硬化性樹脂塗装物を電子線加速器の照射窓の長手方
向と平行方向に動かして電子線を照射すればより効果的
に高速のラインスピードが得られ生産性も大巾に向上す
る。
When irradiating an electron beam over a wide area, it is necessary to spread the electron beam to a uniform width.
There are two typical methods. In either method, the width is approximately 1 mm due to hardening of the coating.
A device of the order of nb has already been put into practical use. Since the fibers themselves are thin, it is sufficient for the widthwise length of the electron beam to be irradiated from several centimeters to several tens of centimeters. During electron beam irradiation, if the electron beam curable resin coating is moved in a direction parallel to the longitudinal direction of the irradiation window of the electron beam accelerator and the electron beam is irradiated, a high line speed can be obtained more effectively and productivity can be greatly increased. improves.

電子線を照射する際、照射室内の空気を不活性ガスたと
えばチッ素、炭酸ガス、ヘリウム、燃焼ガスなどで置換
して行なったほうがよい。
When irradiating with an electron beam, it is better to replace the air in the irradiation chamber with an inert gas such as nitrogen, carbon dioxide, helium, or combustion gas.

かくして製造される繊維補強材は、その表面に付着性の
すぐれた電子線硬化樹脂塗膜が被穏され、さらに細骨材
が表面に突起を形成しまた状態で付着結合【7ているこ
とによシ、このものを水硬性無機材料に応用すると、繊
維自体の性能の向上はもとよシ、繊維とコンクリート界
面との接着力の向上、さらには繊維表面の突起とコンク
リートとの掛は合いが生じるので、曲げ荷重時の引抜は
強度が増強される。しかして本発明の繊維補強材を用い
れば、コンクリート製品、モルタル製品等の曲げ強度、
引張強度、衝撃強度、ひび割れ強度等の物理強度を大巾
に向上せしめることができる。
The fiber reinforcement material produced in this way has an electron beam-cured resin coating with excellent adhesion on its surface, and the fine aggregate forms protrusions on the surface and is bonded with adhesive [7]. If this is applied to hydraulic inorganic materials, it will not only improve the performance of the fibers themselves, but also improve the adhesion between the fibers and the concrete interface, and even improve the alignment between the protrusions on the fiber surface and the concrete. occurs, so the strength of the pull-out process under bending load is enhanced. However, if the fiber reinforcement material of the present invention is used, the bending strength of concrete products, mortar products, etc.
Physical strengths such as tensile strength, impact strength, and cracking strength can be greatly improved.

以下、実施例によって本発明をさらに詳細に説明する。Hereinafter, the present invention will be explained in more detail with reference to Examples.

部および%は重量部および重量%を示す。Parts and percentages refer to parts and percentages by weight.

実施例1 エピコート1001(シェル化学社製エポキシ樹脂)に
アクリル酸を付加して得られる不飽和度1.2の不飽和
エポキシ樹脂100部、1,6−ヘキサンジオールジア
クリレート50部およびジシクロペンチニルオキシエチ
ルアークリレート(日立化成社製“FA−512A”)
50部を混合溶解して粘度5ポイズ(30℃)の電子線
硬化性樹脂液(クリヤー)を得た。
Example 1 100 parts of an unsaturated epoxy resin with a degree of unsaturation of 1.2 obtained by adding acrylic acid to Epikote 1001 (an epoxy resin manufactured by Shell Chemical Co., Ltd.), 50 parts of 1,6-hexanediol diacrylate, and dicyclopentyl Nyloxyethyl acrylate (“FA-512A” manufactured by Hitachi Chemical Co., Ltd.)
50 parts were mixed and dissolved to obtain an electron beam curable resin liquid (clear) with a viscosity of 5 poise (30°C).

ついで、平均直径100μの炭素繊維に前記電子線硬化
性樹脂液をしごき塗装によって塗装膜厚lOμとなるよ
うに塗装し、未硬化の状態°でその上に平均粒径20μ
の炭酸カルシウムを静電気(細骨材にマイナス10.0
00 &ルトかける)をかけて塗布し、炭素繊維表面の
ほとんど全体をおおった。ついで、このものに電子線加
速器により1’1OKeV の電子線を3Mrad照射
1.テ本発明の塗装処理炭素繊維補強材を得た。
Next, the electron beam curable resin liquid was applied to the carbon fibers having an average diameter of 100μ by ironing so as to have a coating film thickness of lOμ, and in an uncured state, the average particle diameter of 20μ was coated on the carbon fibers.
of calcium carbonate with static electricity (minus 10.0 on fine aggregate)
00<00<00<0> Next, this material was irradiated with 3 Mrad of 1'1 OKeV electron beam using an electron beam accelerator. A painted carbon fiber reinforcing material of the present invention was obtained.

かくして得られた炭素繊維補強材を長さ30鮪に切断し
て、このものをポルトランドセメント:砂:水:補強材
=1:1:0.7:0.4(重量比)の割合で混合して
モルタルを作シ琥内に注入し7硬化させた。比較のため
に未塗装処理炭素繊維を用いて上記と同様にしてモルタ
ルを作シ硬化せしめた。両者の曲げ強度(JIS 、4
5403)を測定したところ、塗装処理炭素繊維を用い
たものが未塗装処理のものに比較[7て約2倍の強度が
得られた。
The carbon fiber reinforcement thus obtained was cut into 30 pieces and mixed in a ratio of Portland cement: sand: water: reinforcement = 1:1:0.7:0.4 (weight ratio). Then, mortar was injected into the chamber and allowed to harden for 7 days. For comparison, mortar was made and hardened in the same manner as above using unpainted carbon fibers. Bending strength of both (JIS, 4
5403), it was found that the strength of the coated carbon fiber was approximately twice as high as that of the uncoated coated one [7].

実施例2 ヘキサメチレンジインシアネート2モル及びエチレング
リコール1モルよりなる末端インシアネート基のポリウ
レタン樹脂にヒドロキクエチルアクリレートを付加【7
て得られる不飽和度1.0の不飽和ウレタン樹脂100
部、ネオペンチルグリコールノアクリレート50部、及
びエチルカルピトールアクリレ−)50部を混合溶解し
てクリヤーフェスを荷、た。このクリヤーフェスに表面
調整剤としてシリコン系添加剤0.5%、顔料としてカ
ーゲンブラック0.2%を添加分散して粘度7ポイズ(
30℃)の電子線硬化性樹脂液を得た。
Example 2 Addition of hydroxyethyl acrylate to a polyurethane resin with terminal incyanate groups consisting of 2 moles of hexamethylene diincyanate and 1 mole of ethylene glycol [7]
Unsaturated urethane resin 100 with an unsaturation degree of 1.0 obtained by
50 parts of neopentyl glycol noacrylate, and 50 parts of ethylcarpitol acrylate were mixed and dissolved to form a clear face. To this clear face, 0.5% silicone additive as a surface conditioner and 0.2% Cargen black as pigment were added and dispersed to give a viscosity of 7 poise (
An electron beam curable resin liquid was obtained.

ついで平均直径200μの炭素繊維に前記電子線硬化性
樹脂液を実施例1と同様の方法で塗装膜J85μになる
ように塗装し、未硬化の状態でその上に平均粒径10μ
の微粉硼酸を流動浸漬塗装し、炭素繊維素面の約95%
をおおった。ついで、このものに電子線加速器によシ1
50KeVの電子線を511rad照射して塗装処理炭
素繊維補強材を得た。
Next, the electron beam curable resin liquid was applied to carbon fibers having an average diameter of 200μ in the same manner as in Example 1 so that the coating film J85μ was obtained, and in an uncured state, the average particle diameter of 10μ was coated on the carbon fibers.
Approximately 95% of the carbon fiber surface is coated with fine powder boric acid.
covered. Next, we put this thing through an electron beam accelerator.
A painted carbon fiber reinforcement material was obtained by irradiating 511 rad with a 50 KeV electron beam.

かくして得られた@装処理炭緊繊錐補強材と未塗装処理
のものとを実施例1と同様の方法で試験に供したところ
、前者は後者に比較して約2.5倍の曲げ強度を与えた
When the thus obtained @-loaded charcoal fiber reinforced cone reinforcement material and the unpainted one were subjected to a test in the same manner as in Example 1, the former had approximately 2.5 times the bending strength as the latter. gave.

実施例3 メチルメタクリレート、ブチルアクリレート及びダリシ
ヅルアクリレートを共重合12て得られるアクリル共重
合体にアクリル酸を付加して得られる不飽和度0.8の
不飽和アクリル樹脂100部、プロピレンダリコールソ
アクリレー)80部、トリメチロールゾロノぞントリア
クリレート10部、ビニルピロリドン20部及び酸化チ
タン顔料10部を混合分散して粘度20ポイズ(30℃
)の電子線硬化性樹脂液を得た。
Example 3 100 parts of an unsaturated acrylic resin with a degree of unsaturation of 0.8 obtained by adding acrylic acid to an acrylic copolymer obtained by copolymerizing 12 methyl methacrylate, butyl acrylate, and dalicidyl acrylate, propylene dalicol 80 parts of trimethylolzoronotriacrylate, 10 parts of trimethylolzoronotriacrylate, 20 parts of vinylpyrrolidone, and 10 parts of titanium oxide pigment were mixed and dispersed to give a viscosity of 20 poise (30°C
) was obtained.

ついで、平均直径100μの耐アルカリガラス繊維に前
記電子線硬化性樹脂液を実施例1と同様にして塗装膜厚
20μに一&るように塗装し、未硬化の状態でその上に
平均粒径40μの硼砂を実施例2と同様の方法でガラス
繊維表面の50%をおおうように塗布した。ついで、こ
のものに電子線加速器により270KeVの電子線を5
Mrad照射12て塗装処理ガラス繊維を得た。
Next, the electron beam curable resin liquid was applied to alkali-resistant glass fibers having an average diameter of 100 μm in the same manner as in Example 1, so that the coating film thickness was 20 μm, and in an uncured state, the average particle diameter Borax of 40 μm was applied in the same manner as in Example 2 so as to cover 50% of the glass fiber surface. Next, 5 electron beams of 270 KeV were applied to this material using an electron beam accelerator.
Painted glass fibers were obtained by Mrad irradiation 12 times.

かくして得られた塗装処理ガラス繊維補強材と未塗装処
理のものを実施例1と同様の方法で試験に供したところ
前者は後者に比較して約2倍の曲げ強度を与えた。
When the thus obtained painted glass fiber reinforcement material and the unpainted reinforced material were subjected to a test in the same manner as in Example 1, the former had approximately twice the bending strength as the latter.

実施例4 無水フタル酸、無水コハク酸、1,6−ヘキサンソオー
ルよシなる末端水酸基ポリエステルにアクリル酸を付加
して得られる不飽和度2.8の不飽和ポリエステル10
0部、1,3−ブチレングリコールノアクリレート50
部及びラウリルアクリレート10部を混合溶解して粘度
50ポイズの電子線硬化性樹脂液(クリヤー)を得た。
Example 4 Unsaturated polyester 10 with a degree of unsaturation of 2.8 obtained by adding acrylic acid to a polyester with a terminal hydroxyl group such as phthalic anhydride, succinic anhydride, and 1,6-hexanesool
0 parts, 1,3-butylene glycol noacrylate 50
and 10 parts of lauryl acrylate were mixed and dissolved to obtain an electron beam curable resin liquid (clear) having a viscosity of 50 poise.

ついで、平均直径80μのポリゾロピレン繊維に前記ク
リヤーを実施例1と同様の方法で塗装膜厚10μになる
ように塗装置2、未硬化の状態でその上に平均粒径20
μの微粉タルクを実施例1と同様の方法でポリプロピレ
ン繊維表面の70%をおおうように塗布した。ついで、
このものに電子線加速器により2001(eVの電子線
を2Mrad照射17て塗装処理ポリプロピレン繊維を
得た。
Next, the above-mentioned clear was applied to polyzolopyrene fibers having an average diameter of 80 μm in the same manner as in Example 1 so that the coating film thickness was 10 μm, and the coating device 2 was used to coat the polyzolopyrene fibers with an average particle diameter of 20 μm in an uncured state.
Micronized talc powder of μ was applied in the same manner as in Example 1 so as to cover 70% of the surface of the polypropylene fiber. Then,
This material was irradiated with 2 Mrad of electron beam of 2001 (eV) using an electron beam accelerator to obtain a painted polypropylene fiber.

かくして得られた塗装処理ポリプロピレン繊維補強材を
長さ30mに切断]7て、α型中水石1’4に10%混
合して硬化させたものを実施例1と同様の試験に供t7
た。本発明の塗装処理[7たポリプロピレン繊維は未塗
装処理のものに比較して約1.5〜2倍の曲げ強度を与
えた。
The thus obtained painted polypropylene fiber reinforcement material was cut to a length of 30 m] 7) Then, the mixture was mixed with α-type 1'4 1'4 of 10% cured material and subjected to the same test as in Example 1.
Ta. The polypropylene fibers treated with the coating treatment of the present invention gave about 1.5 to 2 times the bending strength compared to those treated without coating.

Claims (1)

【特許請求の範囲】 1、無機系繊維または有機合成繊維と、その表面に電子
線硬化性樹脂によって付着結合せしめられた平均粒子径
が0.01〜0,5絽の細骨材とからなることを特徴と
する水硬性無機材料用繊維補強材。 2 無機系繊維が平均直径0.05〜1.0認のガラス
繊維、金属繊維またはセラミック繊維である特許請求の
範囲第1項記載の繊維補強材。 3、無機系繊維または有機合成繊維の表面に電子線硬化
性樹脂液を塗布し、未硬化の状態でその上に平均粒子径
0.01〜0.5節の細骨材を付着錠しめ、ついで50
KgVないし500KeV(1)電子線を照射して電子
線硬化性樹脂液を硬化せ1−めることを特徴とする水硬
性無機材料用補強材の製造方法。 4、無機系繊維が平均直径0.05〜1.0 m、のガ
ラス繊維、金属繊維まだはセラミック繊維である特許請
求の範囲第3項記載の方法。
[Claims] 1. Consisting of inorganic fibers or organic synthetic fibers and fine aggregate with an average particle diameter of 0.01 to 0.5 squares, which is adhesively bonded to the surface of the fibers with an electron beam curable resin. A fiber reinforcing material for hydraulic inorganic materials. 2. The fiber reinforcing material according to claim 1, wherein the inorganic fibers are glass fibers, metal fibers, or ceramic fibers having an average diameter of 0.05 to 1.0. 3. Apply an electron beam curable resin liquid to the surface of inorganic fibers or organic synthetic fibers, and adhere and lock fine aggregate with an average particle size of 0.01 to 0.5 nodes on top of the liquid in an uncured state. Then 50
A method for producing a reinforcing material for hydraulic inorganic materials, which comprises curing an electron beam-curable resin liquid by irradiating it with an electron beam of KgV to 500 KeV (1). 4. The method according to claim 3, wherein the inorganic fibers are glass fibers, metal fibers, or ceramic fibers with an average diameter of 0.05 to 1.0 m.
JP16509183A 1983-09-09 1983-09-09 Fiber reinforcement material for hydraulic inorganic material and manufacture Granted JPS6060960A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16509183A JPS6060960A (en) 1983-09-09 1983-09-09 Fiber reinforcement material for hydraulic inorganic material and manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16509183A JPS6060960A (en) 1983-09-09 1983-09-09 Fiber reinforcement material for hydraulic inorganic material and manufacture

Publications (2)

Publication Number Publication Date
JPS6060960A true JPS6060960A (en) 1985-04-08
JPS646137B2 JPS646137B2 (en) 1989-02-02

Family

ID=15805711

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16509183A Granted JPS6060960A (en) 1983-09-09 1983-09-09 Fiber reinforcement material for hydraulic inorganic material and manufacture

Country Status (1)

Country Link
JP (1) JPS6060960A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6951686B2 (en) 1999-12-08 2005-10-04 Dow Global Technologies Inc. Architectural concrete and process to make same
FR2870850A1 (en) * 2004-05-25 2005-12-02 Saint Gobain Mat Constr Sas CHARGED POLYMERIC FIBER, METHOD FOR MANUFACTURING THE SAME, USE THEREOF, AND COMPOSITION COMPRISING SUCH FIBERS
JP2016534247A (en) * 2013-09-04 2016-11-04 オーシーヴィー インテレクチュアル キャピタル リミテッド ライアビリティ カンパニー Composite fiber for concrete reinforcement
US10947156B2 (en) 2016-05-24 2021-03-16 Neocrest Llc Polymer fibers for reinforcement of cement-based composites

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6951686B2 (en) 1999-12-08 2005-10-04 Dow Global Technologies Inc. Architectural concrete and process to make same
FR2870850A1 (en) * 2004-05-25 2005-12-02 Saint Gobain Mat Constr Sas CHARGED POLYMERIC FIBER, METHOD FOR MANUFACTURING THE SAME, USE THEREOF, AND COMPOSITION COMPRISING SUCH FIBERS
WO2005118924A1 (en) * 2004-05-25 2005-12-15 Saint-Gobain Materiaux De Construction Sas Loaded polymer fibre, method for the production thereof, use of the same, and composition comprising such fibres
JP2016534247A (en) * 2013-09-04 2016-11-04 オーシーヴィー インテレクチュアル キャピタル リミテッド ライアビリティ カンパニー Composite fiber for concrete reinforcement
US10947156B2 (en) 2016-05-24 2021-03-16 Neocrest Llc Polymer fibers for reinforcement of cement-based composites
US11634361B2 (en) 2016-05-24 2023-04-25 Neocrest Llc Polymer fibers for reinforcement of cement-based composites

Also Published As

Publication number Publication date
JPS646137B2 (en) 1989-02-02

Similar Documents

Publication Publication Date Title
CA2907164C (en) Reinforcement fiber coating compositions, methods of making and treating, and uses for improved adhesion to asphalt and portland cement concrete
KR0145733B1 (en) Polymer-modified cements with improved chemical resistance
CN1692133A (en) Metal-acylates as curing agents for polybutadiene, melamine and epoxy compounds
KR100225155B1 (en) Impregnation composition and primer composition for resin concrete, method for its coating and composite body employing it
GB2052520A (en) Coating compositions and coatings comprising polymer-transition metal chelates
US4889876A (en) Composite substance and a method for the production of the same
US4293596A (en) Surface coating method employing a temporary bonding
JPS6060960A (en) Fiber reinforcement material for hydraulic inorganic material and manufacture
KR102336006B1 (en) waterproof-anticorrosion coating material with epoxy for concrete and waterproof-anticorrosion method using thereof
US4611015A (en) Polymer concrete compositions containing water absorbent polymers
WO2020066363A1 (en) Structure repairing method
US3554941A (en) Building material made of a mixture of polyester resin and rice hulls
JP3514601B2 (en) Composition for impregnation, primer composition for resin concrete, method of applying the same, and composite body using the same
JPS599585B2 (en) Corrosion-resistant paint composition
CN1382074A (en) Method of applying powder coating to non-metallic substrate
JP3446261B2 (en) Composite covering structure, civil engineering building and composite covering structure construction method
JPS5848593B2 (en) Anti-contact paint composition
JP7060663B2 (en) How to reinforce or repair structures
CA1092743A (en) Polymer concrete having low binder levels
JP3589504B2 (en) Resin mortar and concrete protection method
JPH08295832A (en) Resin composition for sealer and its production
JPS6262810A (en) Solvent-free polymeric composition and copolymer
JP2833676B2 (en) Concrete floor coating method
JP2994038B2 (en) Concrete article and method of manufacturing the same
JPH02150456A (en) Fiber-reinforced plastic sheet, material for civil engineering and construction and reinforcing process therefor