JPS6355906A - Magnetic polycrystal and manufacture thereof - Google Patents

Magnetic polycrystal and manufacture thereof

Info

Publication number
JPS6355906A
JPS6355906A JP61198906A JP19890686A JPS6355906A JP S6355906 A JPS6355906 A JP S6355906A JP 61198906 A JP61198906 A JP 61198906A JP 19890686 A JP19890686 A JP 19890686A JP S6355906 A JPS6355906 A JP S6355906A
Authority
JP
Japan
Prior art keywords
magnetic
alloy powder
layer
body according
powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP61198906A
Other languages
Japanese (ja)
Other versions
JP2739935B2 (en
Inventor
Hiromi Nibu
丹生 ひろみ
Masashi Sahashi
政司 佐橋
Koichiro Inomata
浩一郎 猪俣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP61198906A priority Critical patent/JP2739935B2/en
Publication of JPS6355906A publication Critical patent/JPS6355906A/en
Application granted granted Critical
Publication of JP2739935B2 publication Critical patent/JP2739935B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]

Landscapes

  • Powder Metallurgy (AREA)
  • Hard Magnetic Materials (AREA)

Abstract

PURPOSE:To obtain the polycrystal having excellent heat conductivity even at the temperature of liquid nitrogen or below by a method wherein the surface of the alloy powder, consisting of the rare-earth element such as Y, lantanides element and the remainder composed of Ni, Co, Fe and the like, is coated by the layer consisting of high density Ni, Co, Fe and the like, and they are coupled by a non-magnetic metal binder. CONSTITUTION:Fe2, Ni2 and Co2 are dissolved in an arc furnace, the obtained alloy is pulverized and formed into fine powder. At this time, the grain diameter of the powder is selected in the range of 1-10mum taking into consideration of the rate of filling of said powder and the binder to be used later. Also, the content of the rare- earth element such as Y, lanthanides element and the like contained in said magnetic alloy is set in the range of 20-99 wt. %, and when the content is lowered, magneto- caloric effect can not be obtained, and when it is too much, the characteristics of pulverization is deteriorated, and the manufacture of the magnetic polycrystal becomes difficult. Also, Gd, Tb, Dy and the like are contained in order to obtain excellent magneto-caloric effect. Subsequently, the surface of the powder is coated by the layer of high density Ni, Co, Fe and the like, and they are coupled using the non-magnetic metal binder such as Au, Cu and the like.

Description

【発明の詳細な説明】 [発明の目的] (産業上の利用分野) 本発明は磁性多結晶体に係り、特に液体窒素温度以下の
如くの極低温において、熱伝導性に優れ、かつ優れた磁
気熱量効果を有する磁性多結晶体及びその製造方法に関
する。
[Detailed Description of the Invention] [Object of the Invention] (Industrial Application Field) The present invention relates to a magnetic polycrystalline material, which has excellent thermal conductivity and excellent thermal conductivity, especially at extremely low temperatures such as below the temperature of liquid nitrogen. The present invention relates to a magnetic polycrystalline body having a magnetocaloric effect and a method for manufacturing the same.

(従来の技術) 近年、超電導技術の発展は著しく、その応用分野が拡大
するに伴って、小型で高性能の冷凍機の開発が不可欠に
なってきている。このような小型冷凍機は、軽量・小型
で熱効率の高いことが要求される。
(Prior Art) In recent years, superconducting technology has made remarkable progress, and as its application fields expand, the development of compact, high-performance refrigerators has become essential. Such small refrigerators are required to be lightweight, compact, and have high thermal efficiency.

そこで、気体冷凍に代わる磁気熱量効果を用いたエリク
ソンサイクルによる新たな冷凍方式(磁気冷凍)及びス
ターリングサイクルによる気体冷凍機の高性能化の研究
が盛んに行なわれている(Proceedings o
f I CEC9(1982) 。
Therefore, research is actively being conducted on a new refrigeration method (magnetic refrigeration) using the Ericsson cycle that uses magnetocaloric effects to replace gas refrigeration, and on improving the performance of gas refrigerators using the Stirling cycle.
f I CEC9 (1982).

pp、26−29、A dvances in  Cr
yogenicsEngineerfng、  198
4. vol、29. pp、  581−587、P
 roceedlngs of’ I CE C10(
1984) 、3 rd  Cryo−cooler 
 Conference(1984) )。
pp, 26-29, Advances in Cr.
yogenicsEngineerfng, 198
4. vol, 29. pp, 581-587, P
roceedlngs of' I CE C10 (
1984), 3rd Cryo-cooler
Conference (1984)).

磁気冷凍方式は、磁性体に磁場を加えたときのスピン配
列状態と、磁場を解除したときのスピンが乱雑な状態と
のエントロピーの変化(68M)による吸熱、放熱反応
をセj用することを基本原理とするものである。したが
って、この68Mが大きければ大きいほど、それだけ大
きな冷却効果を発揮することができるため、各種の磁性
体が検討されている。
The magnetic refrigeration method uses heat absorption and heat release reactions due to changes in entropy (68M) between the state in which the spins are aligned when a magnetic field is applied to a magnetic material and the state in which the spins are disordered when the magnetic field is removed. This is the basic principle. Therefore, the larger 68M is, the greater the cooling effect can be exerted, and therefore various magnetic materials are being considered.

また、スターリングサイクルによる気体冷凍機の高性能
化にとっては、蓄冷器、圧縮部及び膨張部の構成を特徴
とする特に蓄冷器を構成する蓄冷材料はその性能を左右
する( P roceedings ofICEC10
(1984))。このような蓄冷材料としては、鋼や鉛
の比熱が激減する20に以下においても高い比熱を有す
る材料が要望されており、これについても各種の磁性体
が検討されている。
In addition, in order to improve the performance of a gas refrigerator using the Stirling cycle, the cold storage material that makes up the cold storage, which is characterized by the configuration of the cold storage, compression section, and expansion section, affects its performance (Proceedings of ICEC 10
(1984)). As such a regenerator material, there is a demand for a material that has a high specific heat even below 20, where the specific heat of steel and lead is drastically reduced, and various magnetic materials are being considered for this as well.

更に、磁気作業物質には吸収した熱を効率よく外部に放
散せしめることも要求されるので、熱伝達性にも優れて
いなければならない。
Furthermore, since the magnetic working material is required to efficiently dissipate absorbed heat to the outside, it must also have excellent heat transfer properties.

以上のような要求のもとて例えば特開昭60−2048
52号公報には、キュリー温度の異なる3種以上の磁性
体粉末を混合して焼結した多孔質の磁性体が記載されて
いる。このような磁性体では、磁性体粉末の種類に応じ
た異なるキュリー温度近傍のエントロピー変化の大きい
範囲が連続して、広い温度範囲にわたってほぼ一定した
大きいエントロピー変化を示すため、磁気冷凍機の性能
を向上させることが期待できる。
Based on the above requirements, for example, Japanese Patent Application Laid-Open No. 60-2048
No. 52 describes a porous magnetic material obtained by mixing and sintering three or more types of magnetic powders having different Curie temperatures. In such magnetic materials, the range of large entropy changes near the Curie temperature, which differs depending on the type of magnetic material powder, is continuous, and the large entropy change is almost constant over a wide temperature range, so the performance of the magnetic refrigerator is We can expect it to improve.

しかしながら、上記公報に記載されている磁性体は多孔
質の焼結体であるため熱伝導性が悪く、上記のような優
れた磁気熱量効果を有効に発揮させることが困難である
。一方、磁性体粉末の充填率が高い磁性体を得ようとし
て高い圧力で圧縮成形して焼結すると、均一な固溶体が
形成されるため、広い温度範囲でほぼ一定した大きいエ
ントロピー変化が得られなくなる。
However, since the magnetic material described in the above publication is a porous sintered body, it has poor thermal conductivity, making it difficult to effectively exhibit the excellent magnetocaloric effect described above. On the other hand, when compressing and sintering at high pressure to obtain a magnetic material with a high filling rate of magnetic powder, a uniform solid solution is formed, making it impossible to obtain a large entropy change that is almost constant over a wide temperature range. .

(発明が解決しようとする問題点) 本発明者らは、上記目的を達成すべく鋭意研究を重ねた
結果、極低温で磁気熱量効果を有する磁性合金粉末を金
属バインダで被覆した被覆粉末を成形して得られた磁性
多結晶体は熱伝導性が優れており、しかも、複数種磁性
合金粉末の混合からなる場合は、異種の磁性合金粉末間
での相互拡散が抑制され、したがって複数の異なる磁気
転移点を有するものとなるとの事実を見出し、特願昭6
0−214617号として更に特許出願を行なった。
(Problems to be Solved by the Invention) As a result of intensive research to achieve the above object, the inventors of the present invention have molded a coated powder in which a magnetic alloy powder having a magnetocaloric effect at extremely low temperatures is coated with a metal binder. The magnetic polycrystalline material obtained by this process has excellent thermal conductivity, and when it is made of a mixture of multiple types of magnetic alloy powders, mutual diffusion between different types of magnetic alloy powders is suppressed, and therefore multiple different types of Discovered the fact that it has a magnetic transition point, and filed a patent application in 1986.
A further patent application was filed as No. 0-214617.

ここで新たな問題が生じてきた。すなわち焼結時に金属
バインダーが磁性合金粉末中に拡散し、磁性合金粉末の
磁気熱量効果が低下してしまうのである。従つて、せっ
かくの高熱伝導性の効果を生かしきれないという問題点
があった。
A new problem has arisen here. That is, during sintering, the metal binder diffuses into the magnetic alloy powder, reducing the magnetocaloric effect of the magnetic alloy powder. Therefore, there was a problem that the effect of high thermal conductivity could not be fully utilized.

本発明は以上の点を考慮してなされたもので、低温での
磁気熱量効果に優れ、かつ熱伝導性に優れた磁性多結晶
体及びその製造方法を提供することを目的とする。
The present invention has been made in consideration of the above points, and an object of the present invention is to provide a magnetic polycrystalline body having excellent magnetocaloric effect at low temperatures and excellent thermal conductivity, and a method for manufacturing the same.

[発明の構成コ (問題点を解決するための手段) 本発明はYおよびランタニド元素から選ばれた少なくと
も一種の希土類元素(R)と、残部が実質的にNi、C
o及びFeから選ばれた少なくとも一種の磁性元素(M
)とから構成される磁性合金粉末と、この磁性合金粉末
表面に形成され、前記磁性合金に対しNi、Co及びF
eから選ばれた少なくとも一種の磁性元素の濃度の高い
被覆層と、この被覆層を有する磁性合金粉末を結合する
非磁性金属からなるバインダとを具備したことを特徴と
する磁性多結晶体である。
[Configuration of the Invention (Means for Solving the Problems)] The present invention comprises at least one rare earth element (R) selected from Y and lanthanide elements, and the remainder being substantially Ni and C.
At least one magnetic element (M
), formed on the surface of this magnetic alloy powder, and containing Ni, Co and F to the magnetic alloy.
A magnetic polycrystalline body characterized by comprising a coating layer having a high concentration of at least one magnetic element selected from e. .

また、このような磁性多結晶体は、Y及びランタニド元
素から選ばれた少なくとも一種の希土類元素と、残部が
実質的にNi、Co及びFeから選ばれた少なくとも一
種の磁性元素とから構成される磁性合金粉末表面に、N
i、Co及びFeから選ばれた少なくとも一種の磁性元
素からなる第1の層を形成する第1の工程と;第1の層
上にバインダとなる非磁性金属からなる第2の層を形成
する第2の工程と;第2の工程を経た磁性合金粉末を成
形する第3の工程とを具備した製造方法により得ること
ができる。
Further, such a magnetic polycrystalline body is composed of at least one rare earth element selected from Y and lanthanide elements, and the remainder substantially composed of at least one magnetic element selected from Ni, Co, and Fe. N on the surface of the magnetic alloy powder
a first step of forming a first layer made of at least one magnetic element selected from i, Co, and Fe; forming a second layer made of a nonmagnetic metal serving as a binder on the first layer; It can be obtained by a manufacturing method comprising a second step and a third step of molding the magnetic alloy powder that has passed through the second step.

(作 用) 本発明による磁性多結晶体は非磁性金属からなるバイン
ダと磁性合金粉末が直接接することがないため、非磁性
金属の磁性合金粉末中への拡散が防止でき、磁性合金の
磁気特性の低下を防止することができる。Fe、Ni、
Coの拡散は多少の磁気特性の変動はあっても、低下せ
しめることはない。
(Function) In the magnetic polycrystalline body according to the present invention, since the binder made of non-magnetic metal and the magnetic alloy powder do not come into direct contact, diffusion of the non-magnetic metal into the magnetic alloy powder can be prevented, and the magnetic properties of the magnetic alloy can be improved. It is possible to prevent a decrease in Fe, Ni,
Although the diffusion of Co may cause some variation in magnetic properties, it will not deteriorate.

以下本発明の詳細な説明する。The present invention will be explained in detail below.

まず磁性合金粉末であるが、次のようにして製造するこ
とができる。つまり、例えばRF e2 。
First, magnetic alloy powder can be manufactured as follows. That is, for example RF e2.

RN i 2 、  RC02合金をアーク溶融炉で溶
解して得る。次いで、得られた合金を粉砕して微細な粉
末とする。この粉末の粒径は、この粉末と後述するバイ
ンダとからなる混合体を成形する際の成形モールドへの
充填率に影響するので、1〜100μm好ましくは2〜
30μmの範囲内にあることが好ましい。粒径が100
μmを超えると充填率が低下し、また1μm未満の場合
酸化しやすく所望の磁気熱量効果が得られない。
RN i 2 is obtained by melting RC02 alloy in an arc melting furnace. The resulting alloy is then ground into a fine powder. The particle size of this powder is 1 to 100 μm, preferably 2 to 100 μm, since it affects the filling rate into a mold when molding a mixture consisting of this powder and a binder to be described later.
It is preferably within the range of 30 μm. Particle size is 100
When it exceeds μm, the filling rate decreases, and when it is less than 1 μm, it is easy to oxidize and the desired magnetocaloric effect cannot be obtained.

前記磁性合金中のRの含有ff1(Rが2種の場合には
両者の合計含有量)は20重量%以上で、99重量%以
上であることが好ましい。含有量が下限値未満の場合に
は、低温において磁気熱量効果が発揮できず、室温以下
のいずれの温度においても68Mが大きくならず充分な
磁気熱量効果が得られない。
The content ff1 of R (in the case of two types of R, the total content of both) in the magnetic alloy is 20% by weight or more, preferably 99% by weight or more. If the content is less than the lower limit, the magnetocaloric effect cannot be exhibited at low temperatures, and 68M does not increase at any temperature below room temperature, and a sufficient magnetocaloric effect cannot be obtained.

Rの含有量が99重量%を超えると、Mの含有量が少な
くなって合金粉砕特性が著しく劣化し、微粉末の製造が
困難となり、事実上粉末成形体ができにくくなるためで
ある。上記含’GfJfflの条件を満足する合金粉末
は強磁性合金粉末となる。
This is because when the R content exceeds 99% by weight, the M content decreases and the alloy grinding properties deteriorate significantly, making it difficult to produce fine powder and, in fact, making it difficult to form powder compacts. An alloy powder that satisfies the above-mentioned conditions including 'GfJffl' becomes a ferromagnetic alloy powder.

なお、良好な磁気熱量効果を得るためには、Gd、Tb
、Dy、Ho及びErのすくなくとも−FJ(R+)を
必須とすることが好ましく、R1/Rは50%以上であ
ることが望ましい。
In addition, in order to obtain a good magnetocaloric effect, Gd, Tb
, Dy, Ho, and Er are preferably at least -FJ(R+), and R1/R is preferably 50% or more.

以上のような磁性合金粉末表面にM成分からなる第1の
層を形成する(第1の工程)形成法としては、薄くかつ
均一に形成可能である無電解メッキ法等のメッキ法、ス
パッタリング法、蒸着法等の気相成長法を用いることが
好ましい。なおメッキ法を採用する場合、脱脂、活性化
、洗浄等の前処理を施することが好ましい。この第1の
層は、後工程での成形の際、バインダーが磁性合金粉内
に拡散し、磁気特性を低下せしめるのを防止する。
Formation methods for forming the first layer made of the M component on the surface of the magnetic alloy powder as described above (first step) include plating methods such as electroless plating, which can form a thin and uniform layer, and sputtering. It is preferable to use a vapor phase growth method such as , evaporation method, or the like. Note that when a plating method is employed, it is preferable to perform pretreatment such as degreasing, activation, and cleaning. This first layer prevents the binder from diffusing into the magnetic alloy powder and degrading the magnetic properties during molding in a subsequent process.

この第1の層は0.05μm以上であることが好ましい
。あまり薄いとバインダ拡散防止の効果が得にくい。ま
たバインダ拡散を防止できれば良く、それ以上の存在は
多結晶体としてみた場合の磁性合金粉量を低減せしめる
ため、実質的には1μm以下とする。
This first layer preferably has a thickness of 0.05 μm or more. If it is too thin, it is difficult to obtain the effect of preventing binder diffusion. Further, it is sufficient if the binder diffusion can be prevented, and since the presence of more than that will reduce the amount of magnetic alloy powder when viewed as a polycrystalline body, the diameter is substantially set to 1 μm or less.

次いでバインダとなる非磁性金属からなる第2の層を形
成する(第2の工程)。形成法は第1の層と同様である
。このバインダは熱伝導率の高いことが要求され、4.
2Kにおける熱伝導度が、IW/cm−に以上であるこ
とが好ましく、例えばAu、Ag、Cu等が挙げられる
。第2の層の膜厚は0.05〜1μmとすることが好ま
しい。
Next, a second layer made of a non-magnetic metal to serve as a binder is formed (second step). The formation method is the same as that for the first layer. This binder is required to have high thermal conductivity; 4.
It is preferable that the thermal conductivity at 2K is IW/cm- or more, and examples thereof include Au, Ag, and Cu. The thickness of the second layer is preferably 0.05 to 1 μm.

このバインダは、後述する方法により得られた成形体中
において熱伝達性を向上させる働き及び、上記した各種
の混合粉末をそれぞれ分離独立せしめた状態で結合する
働きを有する。その結果、粉末間における相互拡散が抑
制され、複数の磁気転移点を有する焼結体が得られる。
This binder has the function of improving heat transfer properties in the molded body obtained by the method described later, and the function of binding the various mixed powders described above in a state where they are separated and independent from each other. As a result, mutual diffusion between the powders is suppressed, and a sintered body having a plurality of magnetic transition points can be obtained.

次いで、第2の工程を経た磁性合金粉末を成形する(第
2の工程)。例えばプレス成形した後焼結する方法や衝
撃加圧成形法により目的とする成形体を得ることができ
る。
Next, the magnetic alloy powder that has undergone the second step is molded (second step). For example, the desired molded body can be obtained by a method of press molding and then sintering or an impact pressure molding method.

焼結法による場合、プレス圧は500〜10.000K
g/cIl  好ましくは1.QOO〜10.000k
g/ ca+2テある。
When using the sintering method, the press pressure is 500 to 10,000K.
g/cIl preferably 1. QOO ~ 10,000k
There are g/ca+2te.

次いで得られた成形体を非酸化性雰囲気中で焼結処理す
る。非酸化性雰囲気としては、10−8Torr以下の
真空、Ar、N2などの不活性ガスがあげられる。
The obtained molded body is then sintered in a non-oxidizing atmosphere. Examples of the non-oxidizing atmosphere include a vacuum of 10-8 Torr or less, and an inert gas such as Ar and N2.

焼結温度は100〜1200’cである。焼結温度が1
00℃未満の場合には高い充填率が得られず、また12
00℃を超えるとバインダ金属と合金粉末間の相互拡散
が進行して、広範囲の温度における充分な冷却効果が得
られない。
The sintering temperature is 100-1200'c. The sintering temperature is 1
If the temperature is less than 00°C, a high filling rate cannot be obtained, and 12
If the temperature exceeds 00°C, interdiffusion between the binder metal and the alloy powder will proceed, making it impossible to obtain a sufficient cooling effect over a wide range of temperatures.

衝撃加圧成形法の場合、金属被覆された磁性合金粉末を
カプセルに挿入し、衝撃加圧成形することにより高密度
成形体を得る方法である。例えば、レールガンによる 
100万〜tooo万気圧の衝撃加圧。
In the case of the impact pressing method, a metal-coated magnetic alloy powder is inserted into a capsule and subjected to impact pressing to obtain a high-density compact. For example, by railgun
Shock pressurization of 1,000,000 to 1,000,000 atm.

ライフルガンによる衝撃加圧、火薬を用いた爆発成形等
が有効である。また、10万気圧の超高圧プレスによる
高圧成形も有効である。
Impact pressurization with a rifle gun, explosive molding using gunpowder, etc. are effective. Furthermore, high-pressure molding using an ultra-high pressure press of 100,000 atmospheres is also effective.

このようにして得られた磁性多結晶体においては第1の
層のM成分は磁性合金粉中に拡散する。
In the magnetic polycrystalline body thus obtained, the M component of the first layer diffuses into the magnetic alloy powder.

従って磁性合金粉表面にはM成分単独の被覆層が存在す
る場合もあるし、第1の層が全部拡散層にかわってしま
うこともある。いずれにせよ、磁性合金粉末表面におけ
るM成分量は内部に比べ濃度が高くなっていることにな
る(被覆層)。そして、第1図に示す如くこの被覆層(
2)を存する磁性合金粉末(1)がバインダ(3)によ
って結合された形態となる。多結晶体中におけるバイン
ダの存在割合は、1〜80体積%好ましくは5〜30体
積%である。存在割合が1体積%未満の場合にはバイン
ダの結合能力が小さく成形が困難であると同時に焼結時
には合金粉末間での相互拡散が進行して目的達成が困難
になる。また、80体積%を超える場合には磁性合金粉
末の割合が低下し、単位体積当りの磁気熱量効果が低下
するほか、磁界制御時の渦電流損失に起因する発熱によ
り冷却効果が著しく低下してしまう。
Therefore, a coating layer containing the M component alone may be present on the surface of the magnetic alloy powder, or the entire first layer may be replaced by a diffusion layer. In any case, the amount of M component on the surface of the magnetic alloy powder is higher than that inside (coating layer). Then, as shown in Fig. 1, this coating layer (
The magnetic alloy powder (1) containing 2) is bound by the binder (3). The proportion of the binder in the polycrystal is 1 to 80% by volume, preferably 5 to 30% by volume. If the existing proportion is less than 1% by volume, the binding ability of the binder is small and molding is difficult, and at the same time, during sintering, interdiffusion between the alloy powders progresses, making it difficult to achieve the purpose. In addition, if it exceeds 80% by volume, the proportion of magnetic alloy powder decreases, and the magnetocaloric effect per unit volume decreases, and the cooling effect significantly decreases due to heat generation caused by eddy current loss during magnetic field control. Put it away.

また、磁性合金粉末1種類の場合には優れた熱伝達性が
得られるか、更に、2種類以上の磁性合金粉末を用意し
て成形すると複数の異なる磁気転移点を有する混合磁性
多結晶体も得られる。Rの元素が異なる2種以上の磁性
合金粉末を要した場合、各磁性合金粉末における残部金
属は同一種もしくは異種のどちらでもよい。したがって
、用意される粉末は例えばDyNi2.ErNi2.H
oNi2 、DyHoNi2の組合せ;DyNi2゜D
yCo2の組合せのようになる。このように2種以上の
磁性合金粉末を用意して混合・成形することにより2つ
以上の磁気転移点を有する磁性多結晶体を得ることが可
能とする。従って広い温度範囲で磁気熱量効果を得るこ
とができる。
In addition, if one type of magnetic alloy powder is used, excellent heat transfer properties can be obtained, or if two or more types of magnetic alloy powder are prepared and molded, a mixed magnetic polycrystalline body with multiple different magnetic transition points can be obtained. can get. When two or more types of magnetic alloy powders having different R elements are required, the remaining metals in each magnetic alloy powder may be the same type or different types. Therefore, the powder prepared is, for example, DyNi2. ErNi2. H
Combination of oNi2 and DyHoNi2; DyNi2゜D
The result is a combination of yCo2. By preparing, mixing and molding two or more kinds of magnetic alloy powders in this manner, it is possible to obtain a magnetic polycrystalline body having two or more magnetic transition points. Therefore, magnetocaloric effects can be obtained over a wide temperature range.

(実施例) 実施例l Dy58重量%、残部Ntからなる合金を、アーク溶解
炉を用いて作製し、この合金をボールミル法で粒径6μ
m程度の微粉末に粉砕した。得られた微粉末に脱脂(1
,1,,1−)リクロロエタン)、活性化(pH10〜
11の活性化液)、洗浄(EtOH)を行った後、無電
解ニッケル(日本カニゼン製ブルーシューマー)をpH
8〜10.70℃以上、強撹拌の条件下で無電解メッキ
した。さらにNiを被覆した粉末を洗浄(EtoH)し
たのち無電解金(日本エンゲルハルト製アトメックスA
u)をpH4〜10.90’C強攪拌の条件下で、無電
解メッキ、第2図のような、内側の(2)の部分にNi
外側の(3)の部分にAuを被覆した粉末をつくった。
(Example) Example 1 An alloy consisting of 58% by weight Dy and the balance Nt was produced using an arc melting furnace, and this alloy was ball milled to a particle size of 6 μm.
It was ground into a fine powder of about 1.0 m in size. The obtained fine powder is degreased (1
,1,,1-)lichloroethane), activation (pH 10~
After washing (EtOH) and washing (EtOH), electroless nickel (Blue Schumer, manufactured by Nippon Kanigen Co., Ltd.) was
Electroless plating was carried out at a temperature of 8 to 10.70°C or higher with strong stirring. Furthermore, after washing the Ni-coated powder (EtoH), electroless gold (Atomex A manufactured by Engelhard Japan)
u) was electrolessly plated at pH 4 to 10.90'C under strong stirring conditions, and Ni was applied to the inner part (2) as shown in Figure 2.
A powder was prepared in which the outer portion (3) was coated with Au.

さらにこの粉末を洗浄(EtOH)し、乾燥した。この
メッキ処理により合金粉末表面にNi0.5μm(第1
の層)、Au0.5μm(第2の層)の被膜が形成され
た。
This powder was further washed (EtOH) and dried. This plating process coats the surface of the alloy powder with 0.5 μm of Ni (first
layer) and a 0.5 μm Au film (second layer) were formed.

Nf及びAuメッキを施した上記合金粉末をプレス圧1
0t/c12でプレス成形した後1100’cにてAr
ガス雰囲気中で焼結した。得られた焼結体のX線回折を
行なった結果Au−Ni、Au及び、DyNi2 、D
yN13の回折ピークが認められた。又、得られた焼結
体のSEM−EDXを行ない、線分析の結果、初期粒径
6μmに近い周期で組成変調していることを確認した。
The above alloy powder plated with Nf and Au was pressed at a pressure of 1
After press forming at 0t/c12, Ar was applied at 1100'c.
Sintered in a gas atmosphere. As a result of X-ray diffraction of the obtained sintered body, Au-Ni, Au, DyNi2, D
A diffraction peak of yN13 was observed. Further, the obtained sintered body was subjected to SEM-EDX, and as a result of line analysis, it was confirmed that the composition was modulated at a period close to the initial grain size of 6 μm.

また、実施例1の2テスラの磁場中における磁化測定結
果と、5テスラの磁場印加状態及び無磁場状態での比熱
(C)を測定し、磁気エントロピー変化量(68M)の
温度依存性を調べた結果を第3図に示す。図から明らか
なように、20に付近でDyN i2の磁気転移点が7
0に付近でDyN13の磁気転移点が観測された。また
実施例1の充填率は95%を超える高密度焼結体であり
、熱伝導度はDyN i2の302 mW/ca+−K
に対して二指大きい3W/cIi−にであった。なお焼
結体中のAuの存在割合は25体積%であった。
In addition, the magnetization measurement results in a 2 Tesla magnetic field in Example 1 and the specific heat (C) in a 5 Tesla magnetic field application state and in a no-magnetic field state were measured, and the temperature dependence of the magnetic entropy change (68M) was investigated. The results are shown in Figure 3. As is clear from the figure, the magnetic transition point of DyN i2 near 20
The magnetic transition point of DyN13 was observed near 0. Furthermore, the filling rate of Example 1 is a high-density sintered body exceeding 95%, and the thermal conductivity is 302 mW/ca+-K of DyN i2.
It was two fingers larger than 3W/cIi-. The proportion of Au in the sintered body was 25% by volume.

実施例2 Dy58重量%残部Niからなる合金(A)。Example 2 Alloy (A) consisting of 58% by weight Dy and balance Ni.

Er59重量%残部Niからなる合金(B)、各々別々
にアーク溶解炉を用いて作製し、ボールミール法で粒径
6μm程度の微粉末に粉砕した後、合金(A)粉末と合
金(B)粉末とをそれぞれ得、これを等モル比でミキサ
ーにより混合し、混合粉を得た。得られた混合粉に実施
例1と同様の処理を施して焼結体を得た。得られた焼結
体につき、2テスラの磁場中における磁化測定結果とに
5テスラの磁場印加状態及び無磁場状態での比熱(C)
を測定し、磁気エントロピー変化量(68M)の温度依
存性を調べた結果を、第4図に示す。図から明らかなよ
うに、5に付近でErNi2の磁気転移点が25に付近
で、D y N i 2の磁気転移点が観測された。
Alloy (B) consisting of 59% by weight of Er and the balance Ni was prepared separately using an arc melting furnace and ground into fine powder with a particle size of about 6 μm using a ball mill method, and then alloy (A) powder and alloy (B) were prepared. These powders were mixed in an equimolar ratio using a mixer to obtain a mixed powder. The obtained mixed powder was subjected to the same treatment as in Example 1 to obtain a sintered body. Regarding the obtained sintered body, the magnetization measurement results in a 2 Tesla magnetic field and the specific heat (C) in a 5 Tesla magnetic field application state and in a non-magnetic field state
Figure 4 shows the results of measuring the temperature dependence of the magnetic entropy change (68M). As is clear from the figure, the magnetic transition point of ErNi2 was observed near 5, and the magnetic transition point of D y N i 2 was observed near 25.

又、実施例2のX線回折を行った結果、Au。Moreover, as a result of performing X-ray diffraction in Example 2, Au.

Ni−Au、DyNi2.ErNi2のピークの他、D
yN13.ErN13被覆層の回折ピークも同時に確認
された。つまりこの組織形態は、第5図に示すようにそ
れぞれ、ErN13+N1(−Er)+NiAu、Dy
N13 +Ni (−Dい十Ni−Auより構成される
被覆層にて、DyNi2とErNi2が独立してAu層
中に存在しているものとなっており、これはAuのRN
 i 2への拡散が被覆層により抑制されたためと考え
られる。
Ni-Au, DyNi2. In addition to the ErNi2 peak, D
yN13. The diffraction peak of the ErN13 coating layer was also confirmed at the same time. In other words, these organizational forms are ErN13+N1(-Er)+NiAu, Dy
In the coating layer composed of N13 +Ni (-D)Ni-Au, DyNi2 and ErNi2 exist independently in the Au layer, which is due to the RN of Au.
This is thought to be because diffusion to i2 was suppressed by the coating layer.

[発明の効果] 以上説明したように本発明によれば、各々の磁性合金粉
末の磁気特性、特に低温における磁気熱量効果を維持し
つつ、熱伝導性に優れた磁性多結晶体を得ることができ
る。
[Effects of the Invention] As explained above, according to the present invention, it is possible to obtain a magnetic polycrystal with excellent thermal conductivity while maintaining the magnetic properties of each magnetic alloy powder, especially the magnetocaloric effect at low temperatures. can.

このような磁性多結晶体は、磁気冷凍用磁気作業物質、
又2に〜30に程度の極低温で使用される蓄冷体等の用
途に好適である。
Such magnetic polycrystals can be used as magnetic working materials for magnetic refrigeration,
It is also suitable for applications such as cold storage bodies used at extremely low temperatures of about 2 to 30 degrees centigrade.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図、第2図及び第5図は概略断面図、第3図及び第
4図は特性図。 代理人 弁理士 則 近 憲 佑 同       竹  花  喜久男 第  1 図 第  2 図 7emperajure (K) Tenpenature    (K)第  4 図
FIGS. 1, 2, and 5 are schematic sectional views, and FIGS. 3 and 4 are characteristic diagrams. Agent Patent Attorney Noriyuki Ken Yudo Takehana KikuoFigure 1Figure 2Figure 7Emperage (K) Tenpenature (K)Figure 4

Claims (15)

【特許請求の範囲】[Claims] (1)Y及びランタニド元素から選ばれた少なくとも一
種の希土類元素と、残部が実質的にNi、Co及びFe
から選ばれた少なくとも一種の磁性元素とから構成され
る磁性合金粉末と、この磁性合金粉末表面に形成され、
前記磁性合金に対しNi、Co及びFeから選ばれた少
なくとも一種の磁性元素の濃度の高い被覆層と、この被
覆層を有する磁性合金粉末を結合する非磁性金属からな
るバインダとを具備したことを特徴とする磁性多結晶体
(1) At least one rare earth element selected from Y and lanthanide elements, and the remainder is substantially Ni, Co and Fe.
A magnetic alloy powder composed of at least one magnetic element selected from the above, and a magnetic alloy powder formed on the surface of the magnetic alloy powder,
The magnetic alloy is provided with a coating layer having a high concentration of at least one magnetic element selected from Ni, Co and Fe, and a binder made of a non-magnetic metal that binds the magnetic alloy powder having the coating layer. Characteristic magnetic polycrystalline material.
(2)磁性合金中の希土類元素が20重量%〜99重量
%であることを特徴とする特許請求の範囲第1項記載の
磁性多結晶体。
(2) The magnetic polycrystalline body according to claim 1, wherein the rare earth element in the magnetic alloy is 20% to 99% by weight.
(3)磁性合金中の希土類元素としてGd、Tb、Dy
、Ho及びErから選ばれた少なくとも一種を含むこと
を特徴とする特許請求の範囲第1項記載の磁性多結晶体
(3) Gd, Tb, Dy as rare earth elements in the magnetic alloy
, Ho, and Er.
(4)前記バインダの存在量が1〜80vol%である
ことを特徴とする特許請求の範囲第1項記載の磁性多結
晶体。
(4) The magnetic polycrystalline body according to claim 1, wherein the amount of the binder is 1 to 80 vol%.
(5)前記バインダは4.2Kにおける熱伝導度が1W
/cm・K以上であることを特徴とする特許請求の範囲
第1項記載の磁性多結晶体。
(5) The binder has a thermal conductivity of 1W at 4.2K.
2. The magnetic polycrystalline material according to claim 1, wherein the magnetic polycrystalline material has a magnetic flux of at least /cm·K.
(6)前記バインダはAu、Ag及びCuから選ばれた
少なくとも一種であることを特徴とする特許請求の範囲
第1項記載の磁性多結晶体。
(6) The magnetic polycrystalline body according to claim 1, wherein the binder is at least one selected from Au, Ag, and Cu.
(7)前記磁性合金粉末を2種以上含有することを特徴
とする特許請求の範囲第1項記載の磁性多結晶体。
(7) The magnetic polycrystalline body according to claim 1, which contains two or more types of the magnetic alloy powder.
(8)前記被覆層はNi、Co及びFeからなることを
特徴とする特許請求の範囲第1項記載の磁性多結晶体。
(8) The magnetic polycrystalline body according to claim 1, wherein the coating layer is made of Ni, Co, and Fe.
(9)前記被覆層は、磁性合金粉末表面側が前記希土類
元素を含有することを特徴とする特許請求の範囲第8項
記載の磁性多結晶体。
(9) The magnetic polycrystalline body according to claim 8, wherein the coating layer contains the rare earth element on the surface side of the magnetic alloy powder.
(10)前記磁性合金粉末の粒径は1〜100μである
ことを特徴とする特許請求の範囲第1項記載の磁性多結
晶体。
(10) The magnetic polycrystalline body according to claim 1, wherein the particle size of the magnetic alloy powder is 1 to 100 microns.
(11)Yおよびランタニド元素から選ばれた少なくと
も一種の希土類元素と、残部が実質的にNi、Co及び
Feから選ばれた少なくとも一種の磁性元素とから構成
される磁性合金粉末表面に、Ni、Co及びFeから選
ばれた少なくとも一種の磁性元素からなる第1の層を形
成する第1の工程と;第1の層上にバインダとなる非磁
性金属からなる第2の層を形成する第2の工程と;第2
の工程を経た磁性合金粉末を成形する第3の工程とを具
備したことを特徴とする磁性多結晶体の製造方法。
(11) Ni, Ni, a first step of forming a first layer made of at least one magnetic element selected from Co and Fe; a second step of forming a second layer made of a non-magnetic metal serving as a binder on the first layer; The second step
A method for manufacturing a magnetic polycrystalline body, comprising: a third step of molding the magnetic alloy powder that has undergone the steps of.
(12)前記第1の層の膜厚が0.005μm以上であ
ることを特徴とする特許請求の範囲第11項記載の磁性
多結晶体の製造方法。
(12) The method for manufacturing a magnetic polycrystalline body according to claim 11, wherein the first layer has a thickness of 0.005 μm or more.
(13)前記第2の層の膜厚が0.01μm以上である
ことを特徴とする特許請求の範囲第11項記載の磁性多
結晶体の製造方法。
(13) The method for manufacturing a magnetic polycrystalline body according to claim 11, wherein the second layer has a thickness of 0.01 μm or more.
(14)前記第1の層及び第2の層をメッキ法又は気相
成長法により形成することを特徴とする特許請求の範囲
第11項記載の磁性多結晶体の製造方法。
(14) The method for manufacturing a magnetic polycrystalline body according to claim 11, wherein the first layer and the second layer are formed by a plating method or a vapor phase growth method.
(15)前記第3の工程は焼結法又は衝撃加圧成形法を
用いることを特徴とする特許請求の範囲第11項記載の
磁性多結晶体の製造方法。
(15) The method for manufacturing a magnetic polycrystalline body according to claim 11, wherein the third step uses a sintering method or an impact pressing method.
JP61198906A 1986-08-27 1986-08-27 Cold storage body and method of manufacturing the same Expired - Fee Related JP2739935B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61198906A JP2739935B2 (en) 1986-08-27 1986-08-27 Cold storage body and method of manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61198906A JP2739935B2 (en) 1986-08-27 1986-08-27 Cold storage body and method of manufacturing the same

Publications (2)

Publication Number Publication Date
JPS6355906A true JPS6355906A (en) 1988-03-10
JP2739935B2 JP2739935B2 (en) 1998-04-15

Family

ID=16398910

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61198906A Expired - Fee Related JP2739935B2 (en) 1986-08-27 1986-08-27 Cold storage body and method of manufacturing the same

Country Status (1)

Country Link
JP (1) JP2739935B2 (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04505778A (en) * 1990-06-04 1992-10-08 ザ ダウ ケミカル カンパニー Method of manufacturing metal bonded magnets
JPH0719790A (en) * 1993-02-22 1995-01-20 Tektronix Inc Preparation of core for heat exchanger
JP2005120391A (en) * 2003-10-14 2005-05-12 Hitachi Metals Ltd Method for manufacturing magnetic material
JP2010531968A (en) * 2008-05-16 2010-09-30 ヴァキュームシュメルツェ ゲーエムベーハー ウント コンパニー カーゲー Magnetic heat exchange structure and method of manufacturing magnetic heat exchange structure
JP2013153165A (en) * 2013-01-22 2013-08-08 Vacuumschmelze Gmbh & Co Kg Complex structure having magnetocalorically active material and production method thereof
US8518194B2 (en) 2008-10-01 2013-08-27 Vacuumschmelze Gmbh & Co. Kg Magnetic article and method for producing a magnetic article
US8551210B2 (en) 2007-12-27 2013-10-08 Vacuumschmelze Gmbh & Co. Kg Composite article with magnetocalorically active material and method for its production
US8938872B2 (en) 2008-10-01 2015-01-27 Vacuumschmelze Gmbh & Co. Kg Article comprising at least one magnetocalorically active phase and method of working an article comprising at least one magnetocalorically active phase
JP2016009838A (en) * 2014-06-26 2016-01-18 日本電気株式会社 Thermoelectric conversion structure and method for manufacturing the same
US9524816B2 (en) 2010-08-18 2016-12-20 Vacuumschmelze Gmbh & Co. Kg Method of fabricating a working component for magnetic heat exchange
US9773591B2 (en) 2009-05-06 2017-09-26 Vacuumschmelze Gmbh & Co. Kg Article for magnetic heat exchange and method of fabricating an article for magnetic heat exchange
CN107855518A (en) * 2017-11-14 2018-03-30 东北大学 A kind of preparation method of the hot composite of magnetic bonded by low-melting alloy

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023228822A1 (en) * 2022-05-26 2023-11-30 株式会社三徳 Magnetic refrigeration composite material and production method thereof, and magnetic refrigeration device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51115694A (en) * 1975-02-19 1976-10-12 Hitachi Metals Ltd Earth rare permanent magnet and manufactured method
JPS54152619A (en) * 1978-05-23 1979-12-01 Seiko Epson Corp Permanent magnet

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51115694A (en) * 1975-02-19 1976-10-12 Hitachi Metals Ltd Earth rare permanent magnet and manufactured method
JPS54152619A (en) * 1978-05-23 1979-12-01 Seiko Epson Corp Permanent magnet

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04505778A (en) * 1990-06-04 1992-10-08 ザ ダウ ケミカル カンパニー Method of manufacturing metal bonded magnets
JPH0719790A (en) * 1993-02-22 1995-01-20 Tektronix Inc Preparation of core for heat exchanger
JP2005120391A (en) * 2003-10-14 2005-05-12 Hitachi Metals Ltd Method for manufacturing magnetic material
US8551210B2 (en) 2007-12-27 2013-10-08 Vacuumschmelze Gmbh & Co. Kg Composite article with magnetocalorically active material and method for its production
US9666340B2 (en) 2007-12-27 2017-05-30 Vacuumschmelze Gmbh & Co. Kg Composite article with magnetocalorically active material and method for its production
JP2010531968A (en) * 2008-05-16 2010-09-30 ヴァキュームシュメルツェ ゲーエムベーハー ウント コンパニー カーゲー Magnetic heat exchange structure and method of manufacturing magnetic heat exchange structure
US8518194B2 (en) 2008-10-01 2013-08-27 Vacuumschmelze Gmbh & Co. Kg Magnetic article and method for producing a magnetic article
US8938872B2 (en) 2008-10-01 2015-01-27 Vacuumschmelze Gmbh & Co. Kg Article comprising at least one magnetocalorically active phase and method of working an article comprising at least one magnetocalorically active phase
US9773591B2 (en) 2009-05-06 2017-09-26 Vacuumschmelze Gmbh & Co. Kg Article for magnetic heat exchange and method of fabricating an article for magnetic heat exchange
US9524816B2 (en) 2010-08-18 2016-12-20 Vacuumschmelze Gmbh & Co. Kg Method of fabricating a working component for magnetic heat exchange
JP2013153165A (en) * 2013-01-22 2013-08-08 Vacuumschmelze Gmbh & Co Kg Complex structure having magnetocalorically active material and production method thereof
JP2016009838A (en) * 2014-06-26 2016-01-18 日本電気株式会社 Thermoelectric conversion structure and method for manufacturing the same
US10461238B2 (en) 2014-06-26 2019-10-29 Nec Corporation Thermoelectric conversion structure and method for making the same
CN107855518A (en) * 2017-11-14 2018-03-30 东北大学 A kind of preparation method of the hot composite of magnetic bonded by low-melting alloy

Also Published As

Publication number Publication date
JP2739935B2 (en) 1998-04-15

Similar Documents

Publication Publication Date Title
US4985072A (en) Polycrystalline magnetic substances for magnetic refrigeration and a method of manufacturing the same
EP1463068B1 (en) Magnetic composite material and method for producing the same
EP1867744B1 (en) Magnetic alloy and method for producing same
EP0193743B1 (en) Magnetic refrigerant for magnetic refrigeration
JPS6355906A (en) Magnetic polycrystal and manufacture thereof
EP1016701B1 (en) Cold accumulating material and cold accumulation refrigerator using the same
CN102077303A (en) Open-celled, porous shaped body for heat exchangers
JPH01310269A (en) Low-temperature heat accumulator
JP2004537852A (en) Materials for magnetic cooling, preparation and application
JP2582753B2 (en) Manufacturing method of laminated magnetic body
JP2828978B2 (en) Cold storage material and method for producing the same
WO1999020956A1 (en) Cold-accumulating material and cold-accumulating refrigerator
US20210287831A1 (en) Magnetic calorific composite material and method for manufacturing thereof
JP5509731B2 (en) Rare earth nitride, method for producing the same, magnetic refrigeration material and cold storage material
US5462610A (en) Lanthanide Al-Ni base Ericsson cycle magnetic refrigerants
JPH05239447A (en) Amorphous material for cold storage
EP3564337A1 (en) Rare earth regenerator material, and regenerator and refrigerator each provided with same
JPH0765823B2 (en) Freezing method
JPH05203272A (en) Cryogenic cold accumulation material and cryogenic cold accumulator using same
EP0704264B1 (en) Composite ultrafine particles and method for production thereof
JPS63179052A (en) Manufacture of magnetic polycrystalline substance
JP3055674B2 (en) Heat storage materials and low-temperature heat storage
JPH06240241A (en) Cold-reserving agent for cryogenic temperature and cold-reserving apparatus for cryogenic temperature using the same
JPH0765136B2 (en) Magnetic sintered body
JPH031050A (en) Cold heat storage apparatus

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees