JPS6056092A - Method and apparatus for continuously electroplating alloy - Google Patents

Method and apparatus for continuously electroplating alloy

Info

Publication number
JPS6056092A
JPS6056092A JP16579583A JP16579583A JPS6056092A JP S6056092 A JPS6056092 A JP S6056092A JP 16579583 A JP16579583 A JP 16579583A JP 16579583 A JP16579583 A JP 16579583A JP S6056092 A JPS6056092 A JP S6056092A
Authority
JP
Japan
Prior art keywords
plating
strip
plating solution
alloy
anode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP16579583A
Other languages
Japanese (ja)
Other versions
JPH0437158B2 (en
Inventor
Tetsuaki Tsuda
津田 哲明
Kazuo Asano
和夫 浅野
Atsuyoshi Shibuya
渋谷 敦義
Minoru Nishihara
西原 実
Kenichi Yanagi
謙一 柳
Mitsuo Kato
光雄 加藤
Katsuhiko Yamada
勝彦 山田
Teijiro Fujisaka
藤坂 貞二郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Nippon Steel Corp
Original Assignee
Mitsubishi Heavy Industries Ltd
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd, Sumitomo Metal Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP16579583A priority Critical patent/JPS6056092A/en
Priority to KR1019840005462A priority patent/KR890001111B1/en
Priority to DE19843432821 priority patent/DE3432821A1/en
Priority to US06/647,738 priority patent/US4601794A/en
Priority to FR8413713A priority patent/FR2551467B1/en
Priority to GB08422528A priority patent/GB2147009B/en
Publication of JPS6056092A publication Critical patent/JPS6056092A/en
Publication of JPH0437158B2 publication Critical patent/JPH0437158B2/ja
Granted legal-status Critical Current

Links

Abstract

PURPOSE:To manufacture continuously an alloy electroplated steel sheet having stable performance by using isoluble anodes as anodes, specifying the distance between each of the anodes and a strip, and feeding a plating soln. to the space between the anodes in a direction opposite to the traveling direction of the strip. CONSTITUTION:A horizontal plating vessel 1 provided with insoluble anode materials 2, 2 on the insides of the top and bottom is used. A strip A is plated while blowing a plating soln. into the vessel 1 from feeding inlets 3, 3 in a direction opposite to the traveling direction of the strip A. The distance between each of the materials 2, 2 and the strip A is set at 10-50cm.

Description

【発明の詳細な説明】 この発明は、例えばZn−N1系、Zn、−Fe i等
の合金をヌト“す゛ツブvr−電析させる連続式合金電
気メツキ方法および装置に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a continuous alloy electroplating method and apparatus for vertically depositing Zn--N1 alloys, Zn, -Fe i, etc. alloys.

近時、自動車、家電、建材等の分野において、上記のよ
うな各種の合金電気メツキ鋼板が、耐食性をにじめ、塗
装性、加工性、溶接性等種々の性質にすぐれることから
俄かに注目を浴び、現在その実用化が推進されつつある
Recently, in the fields of automobiles, home appliances, building materials, etc., various alloy electroplated steel sheets such as those mentioned above have suddenly become popular due to their excellent properties such as corrosion resistance, paintability, workability, and weldability. has attracted attention, and its practical application is currently being promoted.

ところが、かかる合金電気メツキ鋼板は一般に、その製
造面において次のような問題がある。すなわち、 ■ 連続式電解槽による鋼板の合金電気メッキにおいて
は、諸々のメッキ操業条件の変動バラツキが合金メッキ
の品質に鋭敏に反映でれる傾向がある。とくに、電解槽
内のメッキ液のヌトリップ界面近傍での流動状況が変動
すると、得られる合金メッキ皮膜組成や合金析呂相、更
にはメッキ結晶の粒径或いは形態、皮膜中の内部応力等
の変動を来たし、合金メッキの前記諸性能が不安定とな
り、問題である。メッキ液の流動状況は、ヌトリッフ”
の走行速度の影響で変化するものであるが、実際のメツ
キラインにおいてこのストリップ走行速度はかなシの変
動が避けられず、このためメッキ液の流動状況の変動は
事実上不可避なものでめり、このような関係から均一で
安定した性能の合金メッキ鋼板はそもそも得難いもので
ある。
However, such alloy electroplated steel sheets generally have the following problems in terms of manufacturing. That is, (1) In alloy electroplating of steel sheets using a continuous electrolytic cell, fluctuations in various plating operating conditions tend to be sensitively reflected in the quality of the alloy plating. In particular, if the flow condition of the plating solution near the Nutrip interface in the electrolytic bath changes, the composition of the resulting alloy plating film, the alloy deposition phase, the grain size or morphology of the plating crystals, the internal stress in the film, etc. will change. As a result, the various performances of the alloy plating become unstable, which is a problem. The flow condition of the plating solution is "Nutliff"
However, in an actual plating line, slight variations in the strip running speed are unavoidable, and therefore fluctuations in the plating solution flow condition are virtually unavoidable. Because of this relationship, it is difficult to obtain alloy-plated steel sheets with uniform and stable performance.

■ また近年、電気メツキ設備の建設費高騰の傾向を受
けて、メッキ槽の総メッキ長〔(メッキ槽の数)×(有
効メッキ長/1糟当f))〕を極力短縮しようとする動
きがるる。かかる状況の中で最近、メッキ槽の電流密度
を高くして高電流密度にてメッキ操業する、いわゆる高
電流密度操業が多用の傾向Klるが、この高電流密度操
業になると、ストリップ界面近傍でのメッキ液の流動状
況が悪い場合には、合金メッキに限らず一般にメッキ皮
膜の析出はプントフィト状或いは粉末状の析出(ヤケ、
コゲと通称される)となり、平滑で密着性のよいメッキ
皮膜が得られなくなる傾向がある。
■ In addition, in recent years, in response to the trend of rising construction costs for electroplating equipment, there has been a movement to shorten the total plating length of plating tanks [(number of plating tanks) x (effective plating length/1 plating force f)] as much as possible. Garuru. Under these circumstances, there has recently been a tendency to use so-called high current density operation, in which plating is performed at a high current density by increasing the current density of the plating tank. If the flow condition of the plating solution is poor, the precipitation of the plating film in general, not just in alloy plating, will be puntophyte-like or powder-like precipitation (staining, discoloration, etc.).
(commonly known as scorch), which tends to make it impossible to obtain a smooth and well-adhered plating film.

しかもこの高電流密度操業下では、合金メッキの場合に
は、メッキ液の流動は、例えばZn単体のメッキのとき
のようにとにかく大きければそれでよいというものでは
なく、適正な条件というものカする。すなわち、メッキ
液の流動状態がメッキの皮膜組成や析出相に係わってぐ
るからであり、例えばZn−Nj−(Ni 5〜20 
wt%)やZn−Fe(Fe10〜4 Q wt%)の
Zn系の合金(金属間化合物)メッキで云えば、メッキ
液の流動が小さくなるとコゲ状メッキを呈する前にメッ
キ皮膜の耐パウダリング性(加工性)の劣化を来たし、
また逆に大きくなりすぎるとメッキ皮膜にη相が混在し
てくるために耐食性、溶接性の悪化がみられるものであ
る。
Furthermore, under this high current density operation, in the case of alloy plating, the flow of the plating solution is not simply large enough, as in the case of plating only Zn, for example, but appropriate conditions are required. That is, the flow state of the plating solution is related to the plating film composition and the precipitated phase. For example, when Zn-Nj-(Ni 5-20
In the case of Zn-based alloy (intermetallic compound) plating such as Zn-Fe (Fe10-4Q wt%) or Zn-Fe (Fe10-4Q wt%), when the flow of the plating solution becomes small, the powdering resistance of the plating film may be reduced before the appearance of burnt plating. This results in deterioration of properties (workability).
On the other hand, if it becomes too large, the η phase will be present in the plating film, resulting in deterioration in corrosion resistance and weldability.

■ 加えて更に、上記のような高電流密度操業では、陽
極として可溶性陽極を用いたとすると、陽極の消耗が早
くその取替え補給の作業が頻繁に必要となり、ために操
業停止時間や取替人員工数が嵩み生産性の低下、人件費
の増大を招く結果となる。またとくに合金メッキの場合
には、可溶性陽極でにメッキ浴組成の管理が却って難し
くなる。
■ In addition, in high current density operations such as those mentioned above, if a soluble anode is used as an anode, the anode wears out quickly and requires frequent replacement and replenishment, resulting in increased downtime and man-hours for replacement. This results in a decrease in productivity and an increase in labor costs. In addition, particularly in the case of alloy plating, it becomes rather difficult to control the plating bath composition using a soluble anode.

こうしたことから、合金メッキの高電流密度操業では、
陽極は不溶性とするのが主流でおる。
For these reasons, in high current density operations for alloy plating,
The anode is generally insoluble.

ところで、この不溶性陽極の材料としては完全なものは
突在せず、現在のところ貴金属或いはその酸化物(Pt
、Ru、工r、Au等)、鉛を主成分とLテAg、 S
n、 Sb、■n、Tt、Hg、As、Sr、Ca、B
a等の1種以上を添加した鉛合金の何れかが一般に使用
でれている。貴金属系の材料は高価であるため、例えば
リードフレームのような電子材料のメッキにのみ使用さ
れ、鋼板のメッキにおいては専ら鉛合金の方が採用され
る。ところがこの鉛合金系の不溶性陽極は、酸性メッキ
液との接触で化学溶解反応や電解酸化反応を呈し僅かす
ってはあるが溶解してゆくとともに、陽極表面に生成す
るP’b0.2皮膜が操業中時折粒状に剥離脱落する現
象を生じる。脱落したPb02粒はストリップ面に付着
し通電ロールでの挟圧で、いわゆる押込疵となり、メッ
キ製品の歩留シを悪化させる原因となる。
By the way, there is no perfect material for this insoluble anode, and at present precious metals or their oxides (Pt
, Ru, Ru, Au, etc.), with lead as the main component, LteAg, S
n, Sb, n, Tt, Hg, As, Sr, Ca, B
Any of the lead alloys to which one or more of A and the like are added is generally used. Because noble metal materials are expensive, they are used only for plating electronic materials such as lead frames, and lead alloys are exclusively used for plating steel plates. However, when this lead alloy-based insoluble anode comes into contact with an acidic plating solution, it undergoes a chemical dissolution reaction or an electrolytic oxidation reaction and dissolves, albeit slightly, and a P'b0.2 film forms on the anode surface. During operation, particles sometimes peel off and fall off. The fallen Pb02 grains adhere to the strip surface and become so-called indentation flaws due to the pinching pressure between the energized rolls and cause deterioration of the yield of plated products.

■ また高電流密度操業下でこのような不溶性陽極を使
用すると、陽極で発生する大量の酸素ガス気泡や陰極(
ストリップ)面で発生する水素ガス気泡を極間から速か
に除去するようにしなけhば、メッキ電圧の増大をはじ
め、メッキ皮膜の付着ムラや組成の変動が生じることに
なる。
■ Also, when such an insoluble anode is used under high current density operation, a large amount of oxygen gas bubbles generated at the anode and the cathode (
Unless the hydrogen gas bubbles generated on the surface of the strip are quickly removed from between the electrodes, the plating voltage will increase, and uneven adhesion and compositional fluctuations of the plating film will occur.

このように、合金電気メツキ鋼板の製造には種々の問題
があり、かかる問題の解決は、昨今の合金電気メツキ鋼
板の需要増大に対処する上で不可欠なことである。
As described above, there are various problems in the production of alloy electroplated steel sheets, and solving these problems is essential in meeting the recent increase in demand for alloy electroplated steel sheets.

ざて従来より、先述の高電流@度操業を意図した電気メ
ツキ方法(装置〕としては、様々なものが知られている
が、これらは何れも合金メッキを実施するものとしてみ
れば一長一短で、満足のゆくものではない。f′なわち
、代表的なものを列挙すれば以下のとおシである。
A variety of electroplating methods (devices) have been known for the purpose of high-current operation as described above, but all of these have advantages and disadvantages when viewed from the perspective of performing alloy plating. This is not satisfactory.The following are representative examples of f'.

■)第1図に示す如く、上下内面を不溶性陽極材料(2
)(2)で購成された水平型メッキ槽(1〕を用い、こ
のメッキ槽内に供給口(3)(3)からストリップ(2
)の走行方向に)に対し自流の方向にメッキ液を吹込み
ながらメッキを行う装置(特公昭50−8020号〕。
■) As shown in Figure 1, the upper and lower inner surfaces are covered with insoluble anode material (2
) Using the horizontal plating tank (1) purchased in (2), add the strip (2) from the supply port (3) (3) into this plating tank
) A device that performs plating while blowing a plating solution in the direction of its own flow (in the direction of travel) (Special Publication No. 50-8020).

これは、確かに7トリツプ界面近傍のメッキ液の流動を
高く維持して、高電流密度操業下でコゲ状メッキを防止
するという意味においては有効であるが、陽極(2)と
ストリップ(8)の極間からのガス抜きが十分に行えず
、また陽極表面からのP’b 02粒に起因する異物押
込疵も避けられない。因みに、このように陽極(2)を
メッキ槽(1〕の一部として組込んでしまうのは、不溶
性陽極と云えども先述のように溶解してゆく一種の消耗
品であることを考えると、実際上補修の面でも問題があ
る。
This is certainly effective in the sense of maintaining a high flow of plating solution near the 7-trip interface and preventing burnt-like plating under high current density operation; It is not possible to sufficiently vent gas from between the electrodes, and foreign matter intrusion defects caused by P'b02 grains from the anode surface are also unavoidable. Incidentally, the reason why the anode (2) is incorporated as part of the plating bath (1) in this way is that even though it is an insoluble anode, it is a kind of consumable item that dissolves as mentioned above. There are also problems in terms of practical repairs.

■)第2図に示す如く、ストリップ(8)に対向配置さ
れた電極<2) <21の背面側に処理液室(4)〔4
〕を設けるとともに、前記電極(2)(2)に多数の孔
(5)を穿設して、そこから7トリツプ(Aに処理液を
吹付けながら処理する方法(特公昭5 :ll−18−
167号)。これは、前記同様メッキ液の流動の増加に
よるコゲ状メッキの防止の他に、極間からのガス抜きを
有効に行、するものである。しかしながら、このように
ストリップ(A)vL−メッキ液を高速噴流として吹付
けると、その噴流衝突点近傍ではメッキ液流がTmpi
ngingJet流となり、極端に流動のきつい部分が
電極(2Jの巾方向もしくは長手方向に不均一に分布す
ることになるため、合金メッキの場合には析出(ζ目に
影響し、″具体的にはη相混在のメッキが生じ易いこと
が問題となる。
■) As shown in Figure 2, the processing liquid chamber (4) [4
], as well as drilling a large number of holes (5) in the electrodes (2) (2), and spraying the treatment liquid onto the electrodes (A) through the holes (2). −
No. 167). This not only prevents burnt-like plating due to increased flow of the plating solution as described above, but also effectively vents gas from between the electrodes. However, when the strip (A) vL-plating solution is sprayed as a high-speed jet in this way, the plating solution flow reaches Tmpi near the jet collision point.
ngingJet flow, and the parts with extremely tight flow are unevenly distributed in the width direction or longitudinal direction of the electrode (2J), so in the case of alloy plating, precipitation (affects the The problem is that plating containing η phase is likely to occur.

■)例えば第3図(イ)に示す如く、ヌI−’Jッフ゛
(A)而に対向して、電極面巾方向のスリット孔等をも
つ−ノズ/L′(6)を備えた電極(2)を配置し、そ
のノヌ諏しく6)からストリップ面に対し電解液を高速
噴Mδせながらメッキする方法(特公昭57−1475
9号)。
■) For example, as shown in Figure 3 (a), an electrode is provided with a nozzle/L' (6) having a slit hole or the like in the width direction of the electrode, facing the nozzle/L' (A). (2), and plating while spraying electrolyte Mδ at high speed from 6) onto the strip surface (Japanese Patent Publication No. 57-1475
No. 9).

この方法も、基本的に■)と同傾向のもので重力、メッ
キ液の流動状況が電極の長手方向に不均一な分布となる
。とくに図に示すように電解液の吹出方向がストリップ
(8)の走行方向(a)に対し向流方向の向流スリツI
−ノズル(6)を電極長手方向に複数個配列したような
場合には、メッキ液の噴流が同図(ロ)(符号(6)は
ノズル孔)K矢印(至)で示す如く相互に干渉し合う部
分が生じ、結果的に向流と横流の組合せとなり、横流部
分では流動が極端に弱くなる一方、噴流直撃部分付近で
はこれが過大となフ、合金メッキ皮膜の組成や析出相が
不均一となってしまう。また向流と横流とが合成された
斜め方向にはメッキムラの発生が避けられない。
This method also basically has the same tendency as (2), and the gravity and flow conditions of the plating solution result in non-uniform distribution in the longitudinal direction of the electrode. In particular, as shown in the figure, there is a countercurrent slit I in which the blowing direction of the electrolyte is countercurrent to the running direction (a) of the strip (8).
- When multiple nozzles (6) are arranged in the longitudinal direction of the electrode, the jets of plating solution may interfere with each other as shown by the K arrow (to) in the same figure (B) (symbol (6) is the nozzle hole). This results in a combination of countercurrent and crossflow, and while the flow becomes extremely weak in the crossflow region, it becomes excessive near the area directly hit by the jet, resulting in non-uniformity in the composition and precipitated phase of the alloy plating film. It becomes. Furthermore, uneven plating cannot be avoided in the diagonal direction where countercurrent and crosscurrent are combined.

更にまた、図示のような竪型メッキ槽では、重力の関係
で陽極(2Jとストリップ(A)との極間に電解液を充
満δせた状態を維持するのが容易ではない。
Furthermore, in a vertical plating tank as shown in the figure, it is not easy to maintain a state in which the electrolyte is filled δ between the anode (2J) and the strip (A) due to gravity.

とくにダウンパス側(X/ )では、ストリップの走行
による下向きの液流作用があるためきわめて難しい。ま
た仮りにそれを実現し得たとしても、極間を充満させる
のに使用する電解液量がアツプパス側(Xx)とダウン
パス側(X/)とでは大きく異なることVC,なシ、ス
トリップ界面付近でのメッキ液の流動状況に両パヌ間で
大きな相違を生じるものであシ、シたがって合金メッキ
の場合には均一的なメッキ皮膜の析出は望み得ないこと
となる。
Particularly on the down path side (X/ ), it is extremely difficult because there is a downward liquid flow effect due to the running of the strip. Furthermore, even if this could be achieved, the amount of electrolyte used to fill the gap between the electrodes would be significantly different between the up-pass side (Xx) and the down-pass side (X/). There is a large difference in the flow condition of the plating solution in the vicinity between the two panes, and therefore, in the case of alloy plating, uniform deposition of a plating film cannot be expected.

のみならず、第1図、第2図のものも含めてそもそもこ
のようにメッキ液を噴流としてストリップ面に吹付ける
噴流メッキ方式では、電極(2)とストリップ(A)間
に供給されたメッキ液は大量の液滴(5plash )
となってメッキ液を回収する受槽等へ落下することにな
るが、この際メッキ液がFe2+イオンを含む(Zn−
Fe合金メッキ用等)の場合には、空気酸化が起こクメ
ツキ液中のFeJ+イオンが増加してしまうという問題
が生じる。しかも操業中継続的に流下する大全の液滴は
、ロール駆動モーター、位置検出計測機器、導電帯、通
電ロールのカーボンブラシ等、メッキ周辺の機器の腐食
−をもたらす他、作業員の職場衛生環境を悪化δせる原
因ともなる。
In addition, in the jet plating method, which sprays the plating solution as a jet onto the strip surface, including those shown in Figures 1 and 2, the plating that is supplied between the electrode (2) and the strip (A) is The liquid is a large amount of droplets (5plash)
This causes the plating solution to fall into a receiving tank where the plating solution is collected, but at this time the plating solution contains Fe2+ ions (Zn-
(for Fe alloy plating, etc.), a problem arises in that air oxidation occurs and FeJ+ ions in the plating solution increase. Moreover, the droplets of Taquan that continuously fall during operation not only cause corrosion of equipment surrounding plating, such as roll drive motors, position detection measurement equipment, conductive bands, and carbon brushes of energized rolls, but also create a sanitary workplace environment for workers. It also causes deterioration of δ.

噴流メッキ方式はこの他にも、噴流衝突点近傍が部分的
に負圧となり周囲から空気を泡として巻込み易く、上記
FeJ+イオンを含むようなメッキ液の場合にはこの空
気巻込みによりその酸化が著しく促進でれるといった不
利がめる。
In addition, the jet plating method has a negative pressure in the vicinity of the jet impact point, which tends to entrain air from the surroundings as bubbles, and in the case of a plating solution that contains the FeJ+ ions mentioned above, this air entrainment causes oxidation. There are disadvantages such as significant acceleration of

本発明は、上記諸問題を一挙に解決し、安定した性能の
合金電気メツキ鋼板を連続的に得ることができる合金電
気メツキ方法および装置の提供を目的とするものである
The object of the present invention is to provide an alloy electroplating method and apparatus that can solve the above-mentioned problems at once and continuously obtain alloy electroplated steel sheets with stable performance.

噴流メッキは先述のようにメッキ液をヌトリツブに対し
吹付は供給するものでメッキ洛中に浸漬しない、いわゆ
る非浸漬型であるが、これとげ異なシストリップをメッ
キ浴中に浸漬する浸漬型の一つに、竪型メッキ槽方式が
ある。これは、基本的には第4図に示す如く、ストリッ
プ(ト)を入側コンダクタロー#(7a)を経てメッキ
槽(8)内のメッキ浴中に導入浸漬しくダウンパス(X
I) ) 、浴中のシンクロ−/I/(9)を迂回させ
て引上げ(アップパス(XI)出側コンダクタロー/I
/(71))を経て導@呂し、この際、ダウンパス(X
I)とアップパス(X、+)においてストリップ(A)
を挾むようにして配置した陽極(2)(2Jによってメ
ッキを行うものである。でてこの竪型メッキ槽方式であ
るが、これは先に述べた非浸漬型に較べて次のような利
点がある。すなわち、浸漬型であるため、先に述べたよ
うに陽極とストリップとの阪間にメッキ液を充満させる
困難な操作を必要としない許りか、その極間からのメッ
キ液ヌブラッシュの発生や噴流ノズルからの噴流衝突点
近傍での空気の巻込みに伴9問題もない。更にまた、こ
の竪型メッキ槽方式では、極間に生じるガス気泡が自ら
に作用する浮力によって上昇移動し自然排出系れるメリ
ットもあり、加えて陽極からのpbo、2粒等の異物に
よる押込疵発生に関しても、第1図に示した横型メッキ
槽(メッキ液向流吹込み)方式では通電ロール(金属製
)による挟圧のために多発の傾向がある(特開昭57−
210984号参照)のに対し、この竪型メッキ槽方式
では異物をストリップとの間に噛込む可能性のあるシン
−クロール(9)がゴム製のため遥かに軽微に止められ
るものである。
As mentioned above, jet plating is a so-called non-immersion type in which the plating solution is sprayed onto the Nutritube without immersing it in the plating bath, but this is one of the immersion type in which the Nutritube is immersed in the plating bath. There is a vertical plating tank method. Basically, as shown in FIG.
I)), bypass the synchronizer /I/(9) in the bath and pull it up (up pass (XI) outlet conductor row /I
/(71)), and at this time, down pass (X
I) and uppass (X, +) in the strip (A)
Plating is carried out using anodes (2) (2J) arranged in such a way as to sandwich the plating tank.This vertical plating tank method has the following advantages compared to the non-immersion type mentioned above. In other words, since it is an immersion type, there is no need for the difficult operation of filling the space between the anode and the strip with plating solution as described above, and there is no need for the generation of plating solution nubrush from between the electrodes. There are no problems associated with air being entrained near the jet jet impact point from the jet nozzle.Furthermore, in this vertical plating tank method, gas bubbles generated between the poles move upward due to the buoyancy force acting on themselves and are naturally discharged. In addition, the horizontal plating tank (counter-current blowing of plating solution) method shown in Figure 1 has the advantage of eliminating indentation defects due to foreign matter such as PBO and two particles from the anode. There is a tendency for this to occur frequently due to the pressure caused by the
210984), in this vertical plating tank system, the sink roll (9) that may cause foreign matter to get caught between the strip and the strip is made of rubber, so it can be stopped much more easily.

本発明者らは、この浸漬型の竪型メッキ槽方式の利点に
着目し、同方式の合金電気メッキへの適用を意図して、
その極間でのメッキ液の流動現象について、種々突験、
調査を行った結果、ダウンパス(XI) 、アップパフ
(ん)ともにメッキ液をストリップ走行方向(a)VC
対し向流の向きで吹込み供給してやれば、各パスのヌト
リッブ走行方向に均一でかつ両パヌ間においても差がす
く、シかもライン速度の変動に対しても大きな変化を示
ざlい、つまシ合金メッキ皮膜の安定析出にきわめて都
合のよいメッキ液の流動状態を現出せしめ得るという知
見を得た。すなわち、メッキ析出挙動への影響という点
から云って重要なのは、ストリップ(陰極)界面近傍で
のメッキ液の流動状況である。
The present inventors focused on the advantages of this immersion type vertical plating tank system, and intended to apply the same system to alloy electroplating.
Various experiments were carried out regarding the flow phenomenon of the plating solution between the electrodes.
As a result of the investigation, it was found that the plating solution was applied to both the down pass (XI) and up puff (XI) in the strip running direction (a) VC.
On the other hand, if the nutrib is blown and supplied in a counter-current direction, it will be uniform in the running direction of the nutrib in each pass, and there will be little difference between both pans, and it will not show a large change even when the line speed fluctuates. We have found that it is possible to create a fluid state of the plating solution that is extremely favorable for stable deposition of a silver alloy plating film. That is, from the point of view of the influence on the plating precipitation behavior, what is important is the flow state of the plating solution near the strip (cathode) interface.

具体的には、走行ストリップ上に設定した移動座標系基
準のストリップ界面でのメッキ液の流速勾配に)ッ=。
Specifically, the flow velocity gradient of the plating solution at the strip interface with respect to the moving coordinate system set on the traveling strip.

、つまり CI VF−Vs l ) 51 =。,In other words CI VF-Vs l) 51 =.

δy ここに、yニストリップ面から陽極へ向けてとった距離
(極間における位置 を示す) ■F:極間におけるメッキ液の流速分 布を示す速度ベクトル ■S:ヌトリップの走行速度ベクトル がメッキ析出挙動を律速するものであるが、このような
場合、メッキ析出挙動への影響因子という意味でのメッ
キ液の流動状況を代表する量としては、ストリップ近傍
でメッキ液の流速勾配り)の絶対値が最小となる位置の
流速をVFmとしたとき、Vpm −vs = VB 上式にて表わ芒れる相対速度(VR)を考えるのが最も
簡便でかつ的確である。第5図は、浸漬型の竪型メッキ
槽方式におけるメッキ液の流速分布を例示する図で、印
はメッキ液吹込みなし、(ロ)はメッキ液の向流方向へ
の吹込みあり、の各場合を示す(図中、(ト)ニストリ
ップ、(2):陽極)が、前記VBとは要するに、この
印、(ロ)各図において示さ−れるような速度ベクトル
である。すなわち、メッキ吹込みなし、同じく向流方向
への吹込みあり、ではその何れの場合にも、向流方向の
向@をもち、その大きさくVR)(= 1VR1)は、
7トリツプ走行速度(絶対値) (Vs)とストリップ
近傍でのbulk液流の向流方向最大速度(Vym)(
向流方向を正、順流方向を負の値とする)との和Vs 
+VFmO値を。
δy Here, the distance taken from the y strip surface to the anode (indicates the position between the electrodes) ■F: Velocity vector indicating the flow velocity distribution of the plating solution between the electrodes ■S: The traveling speed vector of the Nutrip is the distance between the electrodes during plating deposition In this case, the absolute value of the flow velocity gradient of the plating solution in the vicinity of the strip is the quantity that represents the flow condition of the plating solution in the sense of influencing factors on the plating deposition behavior. When the flow velocity at the position where is minimum is VFm, Vpm - vs = VB It is easiest and most accurate to consider the relative velocity (VR) expressed by the above equation. Figure 5 is a diagram illustrating the flow velocity distribution of the plating solution in an immersion-type vertical plating tank system, where the mark indicates no plating solution injection, and (b) indicates the plating solution is blown in the countercurrent direction. (In the figures, (g) Ni strip, (2): anode), the above-mentioned VB is basically this mark, and (b) the velocity vector as shown in each figure. In other words, if there is no plating blowing, or if there is blowing in the countercurrent direction, in either case, the direction @ is in the countercurrent direction, and its magnitude VR) (= 1VR1) is:
7 Trip running speed (absolute value) (Vs) and maximum countercurrent velocity of bulk liquid flow near the strip (Vym) (
(the countercurrent direction is a positive value and the forwardflow direction is a negative value)
+VFmO value.

とる。Take.

このような相対速度(VR)とストリップ走行速度(ラ
イン速度(Vs) )との関係を、浸漬型の竪型メッキ
槽方式の電気メツキラインについて実験的に調査したそ
の結果を示したのが、第6図である。図において、P/
はメッキ液吹込みなしの場合、Paは向流方向へ流届で
2 m”/minの吹込みを行った場合、をそれぞれ示
している。
The relationship between the relative speed (VR) and the strip running speed (line speed (Vs)) was experimentally investigated on an electroplating line using an immersion type vertical plating tank, and the results were presented in this paper. This is Figure 6. In the figure, P/
Pa indicates the case where the plating solution is not blown, and Pa indicates the case where the plating solution is blown at a flow rate of 2 m''/min in the countercurrent direction.

メッキ液吹込みなしの(P/)では、相対速度(VR)
はライン速ff(VS)の上昇につれ1次関数的に増加
する傾向を示しているが、一定量の向流吹込みを行った
(Pa)ではこれが、実用レベルのライン速度50〜2
00 m1m’xnの開において大きな変化を示さず安
定した値となっている。これは、向流方向への吹込み6
pの場合にはライン速度(Vs)の増加につれ、ストリ
ップに伴なわれてストリップ走行方向へ進むメッキ液流
が増大して向流方向への吹込み流が相殺δれる傾向が強
ぐなり、向流方向への極間メッキ液流速(VF)が低下
してゆくことによるものと考えられる。何れにしろ、浸
漬型の竪型メッキ槽におけるメッキ液の向流吹込みが、
メッキ析出挙動への影響因子としてのメッキ液の流動状
況を安定化する上で有効であるこが理解でれる。
For (P/) without plating solution injection, relative velocity (VR)
shows a tendency to increase linearly as the line speed ff (VS) increases, but when a constant amount of countercurrent blowing (Pa) is performed, this increases at a practical level line speed of 50~2
00 m1m'xn, the value remains stable without showing any major changes. This is due to the countercurrent blowing 6
In the case of p, as the line speed (Vs) increases, the plating liquid flow accompanying the strip in the strip running direction increases, and the blowing flow in the countercurrent direction tends to cancel out δ, This is thought to be due to the decreasing flow velocity (VF) of the interelectrode plating solution in the countercurrent direction. In any case, the countercurrent injection of the plating solution in the immersion type vertical plating tank
It can be seen that this is effective in stabilizing the flow condition of the plating solution, which is an influencing factor on the plating precipitation behavior.

すなわち本発明は以上のような知見に基〈ものであって
、以下の■、■を要旨とする。
That is, the present invention is based on the above-mentioned findings, and its gist is the following (1) and (2).

■ 浸漬型の竪型メッキ槽方式(第4図)にょるストリ
ップの連続電気メッキにおいて、陽極(2)として不溶
性陽極を用い、その陽極(2〕とストリップ(5)の極
間距離(h)を10〜5 Q wwに設定するとともに
、その極間にメッキ液をストリップ走行方向に対し向流
の向きで供給することを特徴とする連続式合金電気メツ
キ方法。
■ In continuous electroplating of strips using the immersion type vertical plating bath method (Figure 4), an insoluble anode is used as the anode (2), and the distance between the anode (2) and the strip (5) (h) A continuous alloy electroplating method characterized in that the plating solution is set between 10 and 5 Q ww, and a plating solution is supplied between the poles in a countercurrent direction to the strip running direction.

■ 第4図に示した形式の竪型メッキ槽を有する連続電
気メツキ装置であって、ダウンパス(X/)、アンプパ
ス(XJ)のそれぞれのパスの陽極(2)のストリップ
出側にストリップ(A)と陽極(2)の間にメッキ液を
ストリップ走行方向に対し向流の向きで吹込み供給する
吹出し装置QOQlを備えたことを特徴とする連続式合
金電気メツキ装置。
■ A continuous electroplating device having a vertical plating bath of the type shown in Fig. 4, in which strips ( A continuous alloy electroplating device comprising a blowing device QOQl which blows and supplies a plating solution between A) and an anode (2) in a direction countercurrent to the running direction of the strip.

上記■の発明において、極間距離ね)の設定範囲を10
〜50龍としたのは、次の理由による。すなわち、第7
図は極間距離ね)とメッキ電圧との関係を示す実験結果
である。このデータは次の実験で得た。冷延コイル(板
厚0.4酊、板巾300酊)を素材とし、第4図に示し
た本発明の装置においてダウンパス(X/)、アンプパ
ス(x2)トもにメッキ液の向流吹込みを行いつつ、下
記の電解条件にてZn−M系合金メッキを行い、この際
極間距離(h)を種々変更した。
In the above invention (■), the setting range of the distance between poles is set to 10
The reason for setting the number to 50 dragons is as follows. That is, the seventh
The figure shows the experimental results showing the relationship between the distance between the electrodes) and the plating voltage. This data was obtained in the following experiment. A cold-rolled coil (thickness: 0.4 mm, width: 300 mm) is used as a material, and in the apparatus of the present invention shown in Fig. 4, the plating solution is applied in countercurrent to both the down pass (X/) and the amplifier pass (x2). While blowing, Zn-M alloy plating was performed under the following electrolytic conditions, and the distance between electrodes (h) was variously changed at this time.

く電解条件〉 メッキ浴:〔N1′+〕/CZn2+〕濃i −1= 
/L/比2.0−2.5 。
Electrolysis conditions> Plating bath: [N1'+]/CZn2+] concentration i -1=
/L/ratio 2.0-2.5.

浴温60℃、浴pH2、電流密度60〜120A/侃2
、メッキ液吹込み流量0.1 rr+/min、ライン
速度20〜200 m/mj−no 同図の結果から、極間距離ね)がlQn+未満になると
、メッキ電圧が急激に上昇することが分る。
Bath temperature 60℃, bath pH 2, current density 60-120A/K2
, plating solution injection flow rate 0.1 rr+/min, line speed 20 to 200 m/mj-no From the results in the same figure, it can be seen that when the distance between electrodes) becomes less than lQn+, the plating voltage increases rapidly. Ru.

これは、極間のガス気泡密度の増大によるものである。This is due to the increased density of gas bubbles between the poles.

すなわち、極間距離ね〕が100未満では、浮力による
ガス気泡の脱離と上昇移動が期待できる竪型メッキ槽に
おいてもガス抜は性に限界が生じ、メッキ電圧の上昇、
メッキ付着ムヲやピンホールの発生、更には合金メッキ
皮膜組成変動等の不都合を来たすこととなる。
In other words, if the distance between the electrodes is less than 100, there will be a limit to the performance of degassing even in a vertical plating tank where gas bubbles can be expected to detach and move upward due to buoyancy, resulting in an increase in plating voltage and
This results in problems such as poor plating adhesion, the formation of pinholes, and furthermore, variations in the composition of the alloy plating film.

一方、この極間距離ノ)が501ffをこえると、メッ
キ液抵抗による電圧損失が過大となフ経済的に不利であ
る。また極間距離ね)が大きくなってくると、メッキ液
の吹込量も適宜増大させる必要が生じ、メッキ液供給ポ
ンフ”の必要容Mが大きくなり、このような点からも極
間距離但)を5041ごえとするのは得策ではない。
On the other hand, if the distance between the electrodes exceeds 501 ff, the voltage loss due to the resistance of the plating solution becomes excessive, which is economically disadvantageous. Also, as the distance between electrodes increases, it becomes necessary to increase the amount of plating solution blown in, and the required capacity M of the plating solution supply pump increases.From this point of view, the distance between electrodes also increases. It is not a good idea to use 5041 as a response.

次に、極間へのメッキ液吹込み方向としては、ストリッ
プ走行方向に対し自流の方向とする必要があるが、この
点については先に述べた理由による。この向流吹込みを
採用すれば、メッキ液の流11E7)!Jツブ走行速度
と合成されてメッキ液の流動が促進てれる傾向とな−リ
、またメッキ液の吹込み流量の増減をもってストリップ
とメッキ液の相対速度(VR)を制御することも可能で
ある。なお本発明に云う向流とは、第8図(イ)に矢印
(b)で示すようにストリップ゛の走行方向(a)と完
全平行な向流(perfectly para工1el
 cou、nter fIow )のみ々らず、同図(
ロ)に示すようにやや拡大する向流(S工1ghtly
 divergent counter flow )
や同図(ハ)に示す如く逆にやや収束、する向流(sl
ghtlyconvergent counter f
lOVil )等をも含むものである。
Next, the direction in which the plating solution is blown into the gap between the electrodes needs to be in the direction of its own flow relative to the strip running direction, and this is for the reason mentioned above. If this countercurrent blowing is adopted, the plating solution will flow 11E7)! The flow of the plating solution tends to be promoted when combined with the traveling speed of the J-tube, and it is also possible to control the relative velocity (VR) between the strip and the plating solution by increasing or decreasing the flow rate of the plating solution. . Note that the countercurrent referred to in the present invention refers to a countercurrent that is perfectly parallel to the running direction (a) of the strip, as shown by the arrow (b) in FIG. 8(a).
cou, inter fIow), the same figure (
As shown in (b), the countercurrent expands slightly (S
divergent counter flow)
On the contrary, as shown in the same figure (c), there is a countercurrent (sl) that converges slightly.
ghtlyconvergent counter f
lOVil), etc.

このように、浸漬型の竪型メッキ槽においてメッキ液の
向流吹込みを行う本発明の方法では、横流が混在したυ
、局部的に過流動状態を生じたシする噴流吹付は方式の
第2図、第3図に示した従来例に較べ格段に安定均一な
メッキ液の流動状況が得られ、しかもこの流動状況を、
極間のガス抜きについて配慮することなく、合金メッキ
組成や析出相の安定化という効果の面だけから管理する
ことが可能でアク、シたがって安定した性能の合金メッ
キ鋼板を得ることが可能となるものである。
In this way, in the method of the present invention in which the plating solution is injected countercurrently into a vertical immersion plating tank, υ
Compared to the conventional example shown in Figures 2 and 3 of the method, jet spraying that causes a localized overflow state allows a much more stable and uniform flow of the plating solution to be obtained. ,
It is possible to control the effect of stabilizing the alloy plating composition and the precipitated phase without considering the degassing between the electrodes, making it possible to obtain alloy-plated steel sheets with stable performance. It is what it is.

次に、本発明の装置について云えば、第4図に示したと
おυメッキ液を吹付供給する吹出装置として、向流ノズ
ルQOαOを備えるものであるが、このノズルとしては
第9図((イ)に示す如くその吹出し方向(C)がスト
リップ体)面との平行に近ければ近いほど(すなわち、
角度θが小さいほど)メッキ液流動の均一性を確保する
上で有利であるが、現実にはストリップ(A)との接触
による損耗や据付設置スペース等の開法もあシ、吹出し
角(めで15〜600程度は実用上必要となってくる。
Next, regarding the apparatus of the present invention, as shown in Fig. 4, it is equipped with a countercurrent nozzle QOαO as a blowing device for spraying and supplying the plating solution. ), the closer the blowing direction (C) is to parallel to the surface of the strip body (i.e.,
The smaller the angle θ), the more uniform the flow of the plating solution is. However, in reality, the blowout angle ( About 15 to 600 is practically necessary.

同図(ロ)に示すような水鳥のクチバシ状のノズル(1
0)は、上記吹出し角(のを低減するのに有効で、その
使用が推奨されるものである。ノズル先端の開口形状に
ついては、第1θ図(6)に示す平行スリット孔αつが
一般的であるが、この他に同図(ロ)に示す円形スロッ
ト(slot) Qのを多数並設したものでも、また同
図(ハ)に示すように開口巾(蜀が長手方向にゆるやか
に変化するようなスリット孔α[有]でも使用できる。
A waterfowl beak-shaped nozzle (1
0) is effective in reducing the above-mentioned blowout angle, and its use is recommended. Regarding the opening shape of the nozzle tip, the parallel slit hole α shown in Figure 1θ (6) is generally used. However, in addition to this, it is also possible to have a large number of circular slots (Q) arranged side by side as shown in Figure (B), or a case where the opening width (Slot) changes gradually in the longitudinal direction as shown in Figure (C). It can also be used with a slit hole α [with].

要は、ストリップ(ト)の巾方向に均一なメッキ液流速
分布が実現できるものであればよい。
In short, any material that can realize a uniform plating solution flow velocity distribution in the width direction of the strip (G) is sufficient.

なお本発明のメッキ方法及び装置は、Zn −Nj−。Note that the plating method and apparatus of the present invention are applicable to Zn-Nj-.

Zn−Feのみならず、その他のZn系メッキ、例えば
Zn−Ni−Fe、 Zn−Co−Cr、 Zn−Cr
、 Zn−Mn。
Not only Zn-Fe, but also other Zn-based platings, such as Zn-Ni-Fe, Zn-Co-Cr, Zn-Cr
, Zn-Mn.

Zn−Tj−等、更IC1d 5n−Cu、 5n−P
I)、’ Fe =Zn。
Zn-Tj-, etc., IC1d 5n-Cu, 5n-P
I), 'Fe=Zn.

Fe−Ni、 Fe−5n等、あらゆる合金メッキをそ
の適用対象とするものである。
It is applicable to all alloy platings such as Fe-Ni and Fe-5n.

次に本発明の実施例について説明する。Next, examples of the present invention will be described.

〔実施例1〕 板厚Q、4絹、板巾3QQsmの冷延コイ/I/を用い
、本発明に基いて第4図に示した浸漬型の竪型メッキ槽
においてダウンパス(X/ )、アップパス(Xコ〕と
もに向流ノズルQO(10からのメッキ液の吹込み(両
パスとも吹込み量:3→’mj−n )を行い、或いは
行なわずに下記の電解条件でZn −Ni、系合金電気
メッキを行った。
[Example 1] Using a cold-rolled carp /I/ with a plate thickness of Q, 4 silk, and a plate width of 3QQsm, a down pass (X/ ) was carried out in a submerged vertical plating tank shown in FIG. The plating solution was blown into the counter-current nozzle QO (10 (injection amount for both passes: 3→'mj-n) in both up-passes (X-co), or without it, and Zn- was deposited under the following electrolytic conditions. Ni, based alloy electroplating was performed.

く電解条件〉 メッキ浴: 〔Ni”)/(’Zn”:l濃度モル比2
.0〜2.5.浴温60℃、浴pH2、電流密fff6
0−120AA’、極間距離25鼎で、フィン速度を種
々変更。
Electrolysis conditions> Plating bath: [Ni”)/(’Zn”: l concentration molar ratio 2
.. 0-2.5. Bath temperature 60°C, bath pH 2, current density fff6
0-120AA', distance between poles 25 degrees, and various fin speed changes.

得られた各メッキ鋼板についてメッキ皮膜の組成を化学
分析法で調査した結果を第11図に示す。
FIG. 11 shows the results of investigating the composition of the plating film on each of the obtained plated steel sheets by chemical analysis.

第11図において、メッキ液吹込みなしの場合(S/)
では、フィン速度の変化によるメッキ組成の戻動バラツ
キが大きい。とぐにその低速領域においてはP相とα相
の混相状態となっていた。これに対し、向流吹込みを行
った本発明例(s2)では、フィン速度の変動にも拘わ
らず安定したN1含有曾のP相Zn −Ni合金メッキ
を得ることができた。゛〔実施例2〕 板厚Q、 3 wz 、板巾250寵の薄鋼板コイルを
用い、第4図の装置において、メッキ液吹込量を6rr
P/m1nとした点を除いては〔実施例1〕と全く同様
の条件でメッキ吹込みを行い、或いは行わず下記の電解
条件にてZn−Fe系合金メッキ(付着量:20ル嘗)
を行った。
In Figure 11, without plating solution injection (S/)
In this case, there is large back variation in the plating composition due to changes in fin speed. Immediately, in that low speed region, a mixed phase state of P phase and α phase occurred. On the other hand, in the present invention example (s2) in which countercurrent blowing was performed, stable N1-containing P-phase Zn--Ni alloy plating could be obtained despite fluctuations in fin speed.゛[Example 2] A thin steel plate coil with a plate thickness Q of 3 wz and a plate width of 250 mm was used, and the amount of plating solution blown was 6 rr in the apparatus shown in Fig. 4.
Plating was carried out under the same conditions as [Example 1] except that P/m1n was used, or Zn-Fe alloy plating was carried out under the following electrolytic conditions (coating amount: 20 ml).
I did it.

く電解条件〉 メッキ浴: 〔Fe”)/〔Zn”) is度モル比1
.0−2.5.浴温50″C2浴pH2、電流密度50
〜150A/L5)n″で、フィン速度を種々変更。
Electrolytic conditions> Plating bath: [Fe”)/[Zn”) IS degree molar ratio 1
.. 0-2.5. Bath temperature 50″C2 bath pH 2, current density 50
~150A/L5)n'', various fin speeds were changed.

得られたメッキ鋼板について下記の附パウダリング性試
験を実施し、その加工性を調査した。
The following powdering property test was conducted on the obtained plated steel sheet to investigate its workability.

く耐パウダリング試験〉 巾50111 、長さ200龍の試験片のメッキ面に 
“セロテープを貼付し、lO朋f径の丸棒に沿わせて1
80°内曲げを行い、しかるのちこの試験片を曲げ戻し
、テープを剥離し、このときテープ面に付着したメッキ
粉末の分を調べ、殆ど付着のないものを良好とする。
Powdering resistance test> On the plated surface of a test piece with a width of 50111 mm and a length of 200 mm.
“Attach cellophane tape and place it along the round rod with a diameter of 1.
The test piece was bent inward by 80°, then the test piece was bent back, the tape was peeled off, and the amount of plating powder adhering to the tape surface was examined, and one with almost no adhesion was considered good.

試験結果に基いて耐パウダリング性が良好となるメッキ
電流密度とフィン速度の領域を示したのが第12図であ
る。
FIG. 12 shows the range of plating current density and fin speed where the powdering resistance is good based on the test results.

同図において、破線R/のハツチング側がメッキ液吹込
みなしの場合の耐パウダリング性良好域でろシ、実線R
Jのハツチング側が向流吹込みを行った場合の同じく良
好域を示している。Zn−Fe系合金メッキ皮膜は傾向
として、電流密度が高く、フィン速度が低いときに耐パ
ウダリング性の悪化を来たすものであるが、上記耐パウ
ダリング性の比較から、浸漬型の竪型メッキ槽における
メッキ液の向流吹込みがZn−Fe系合金電気メツキ皮
膜性能の安定化にきわめて有効なことが理解できる。
In the same figure, the hatched side of the broken line R/ is the area with good powdering resistance when no plating solution is injected, and the solid line R
The hatching side of J shows the same good range when countercurrent blowing is performed. Zn-Fe alloy plating tends to have poor powdering resistance when the current density is high and the fin speed is low; however, from the above comparison of powdering resistance, immersion type vertical plating It can be seen that countercurrent injection of the plating solution into the tank is extremely effective in stabilizing the performance of the Zn-Fe alloy electroplating film.

なお、この実験における電気メッキでは、メッキ浴中の
Fe’+イオンがFeJ+イオンに空気酸化する速度に
0.1 kV/hr以下という低位に止められ、メッキ
浴はきわめて容易に安定な状態を維持しつづけることが
できた。因みに別の実験によれば、非浸漬型メッキ方式
の場合には、同じメッキ浴でも、第1図に示した横型槽
でFe3+生成空気酸化速度が1〜3にいr程度となシ
、また第3図(イ)のような竪型糟ではこれが5〜10
 #/hr程度と著しいFe’♀の生成がみられた。
In addition, in the electroplating in this experiment, the rate of air oxidation of Fe'+ ions in the plating bath to FeJ+ ions was kept at a low level of 0.1 kV/hr or less, and the plating bath maintained a stable state very easily. I was able to keep going. Incidentally, according to another experiment, in the case of a non-immersion plating method, even in the same plating bath, the Fe3+ production air oxidation rate was about 1 to 3 r in the horizontal tank shown in Figure 1, and For a vertical pot like the one shown in Figure 3 (a), this is 5 to 10.
Significant production of Fe'♀ was observed at approximately #/hr.

このように本発明は、安定した性能の合金電気メツキ鋼
板を連続製造することを可能にするものでめり、したが
って各種合金電気メツキ鋼板の品質向上並びに製造歩留
りの改善に多大に寄与するものである。
As described above, the present invention makes it possible to continuously produce alloy electroplated steel sheets with stable performance, and therefore greatly contributes to improving the quality and manufacturing yield of various alloy electroplated steel sheets. be.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図、第2図は水平型メッキ槽方式のメッキ装置を示
し、第1図はメッキ液向流吹込み方式、第2図にメッキ
液を陽極面から吹込む方式、全各示している。第3図(
イ)は非浸漬型の竪型メッキ槽方式のメッキ装置を示し
、同図(ロ)は極間でのメッキ液流を示す説明図、第4
図は本発明に係る浸漬型の竪型メッキ槽方式の装置を示
す縦断側面図、第5図は浸漬型の竪型メッキ方式におけ
るメッキ液の流速分布図で、(イ)はメッキ液吹込みな
し、(ロ)は同じく向流方向への吹込み、bD、の各場
合を示す。第6図は同上方式におけるライン速度(VS
)とメッキ液のヌトリップに対する相対速度(VR)と
の関係を示す実験結果、第7図は同上方式における極間
距離(ロ)とメッキ電圧との関係を示す図、第8図(イ
)〜(ハ)は本発明の方法におけるメッキ液の向流吹込
みの3つの例を示す説明図、第9図(イ)、(ロ)は本
発明のメッキ装置に使用する向流ノズルの具体例を2つ
示す断面模式図、第10図(イ)〜(/今は同上向流ノ
ズルについてそのノズル孔形状の3つの例を示す斜視図
、第11図は本発明法および従来法で得たZn −Ni
、系合金電気メツキ鋼板についてメッキ皮膜のNi含有
量を調査した結果を示す図、第12図は本発明法および
従来法で得たZn−Fe系合金電気メツキ鋼板について
耐パウダリング性を調査した結果であυ、良好な剛パウ
ダリング性が得られるメッキ電流密度とフィン速度の領
域を示す図である。図中11:水平型メッキ槽)2:陽
極、3:メッキ液供給口、4:処理液室、5:孔、6:
ノズル、7:コンダクタロール、8:竪型メッキ槽、1
0:向流不ズル 出願人 住友金属工業株式会社 出願人 三菱重工業株式会社 第6図 一−ヤストリップ尤行圭崖 Vs (m/m+n)第 
7 図 柚M頚#(h) 第8図 第9図 第10図 第 12 図 ライン速度(T7s ) 第H図 ラインを度(7s)
Figures 1 and 2 show a horizontal plating tank type plating device, Figure 1 shows a counter-current injection method of the plating solution, and Figure 2 shows a method in which the plating solution is blown from the anode surface. . Figure 3 (
A) shows a non-immersion type vertical plating tank type plating equipment, and FIG.
The figure is a vertical side view showing an immersion-type vertical plating tank system apparatus according to the present invention, and FIG. 5 is a flow velocity distribution diagram of the plating solution in the immersion-type vertical plating method. , (b) also show the cases of blowing in the countercurrent direction, bD. Figure 6 shows the line speed (VS
) and the relative velocity (VR) of the plating solution with respect to Nutrip. Figure 7 is a diagram showing the relationship between the distance between the electrodes (b) and the plating voltage in the same method as above, and Figures 8 (a) - (C) is an explanatory diagram showing three examples of countercurrent injection of plating solution in the method of the present invention, and FIGS. 9(A) and (B) are specific examples of the countercurrent nozzle used in the plating apparatus of the present invention. Figures 10(a) to 10 are perspective views showing three examples of nozzle hole shapes for the same upward flow nozzle. Zn-Ni
Figure 12 shows the results of investigating the Ni content of the plating film on Zn-Fe alloy electroplated steel sheets obtained by the method of the present invention and the conventional method. This is a diagram showing the range of plating current density and fin speed in which good rigid powdering properties can be obtained. (11 in the figure: Horizontal plating tank) 2: Anode, 3: Plating solution supply port, 4: Processing solution chamber, 5: Hole, 6:
Nozzle, 7: Conductor roll, 8: Vertical plating tank, 1
0: Countercurrent flow applicant Sumitomo Metal Industries Co., Ltd. Applicant Mitsubishi Heavy Industries Co., Ltd.
7 Figure M neck# (h) Figure 8 Figure 9 Figure 10 Figure 12 Figure line speed (T7s) Figure H line angle (7s)

Claims (2)

【特許請求の範囲】[Claims] (1) ヌトリッブをダウンパスとアップパスでメッキ
浴に浸漬通過でせ、その両パスにおいて7トリツプの両
側に陽極を対向配置して連続的に合金電気メッキを行う
方法において、前記陽極として不溶性陽極を用い、その
陽極とストリップ間の極間距離を10〜50龍に設定す
るとともに、その極間にメッキ液をストリップ走行方向
に対し向流の向きで供給することを特徴とする連続式合
金電気メツキ方法。
(1) In a method in which Nutribu is immersed in a plating bath in down-pass and up-pass, and in both passes, alloy electroplating is carried out continuously by arranging anodes facing each other on both sides of the 7-trip, in which an insoluble anode is used as the anode. A continuous alloy electric current is used, and the distance between the anode and the strip is set to 10 to 50 mm, and the plating solution is supplied between the electrodes in a direction countercurrent to the running direction of the strip. Metsuki method.
(2) ストリップ°をダウンパスとアップ”パスでメ
ッキ浴中に浸漬配置した不溶性陽極間に通過きせる連続
電気メツキ装置であって、前記ダウン、アップの各パス
の陽極のストリップ出側にストリップと陽極の間にメッ
キ液をストリップ走行方向に対し向流の向きで供給する
吹出し装置を備えたことを特徴とする連続式合金電気メ
ツキ装置。
(2) A continuous electroplating device in which a strip is passed between an insoluble anode immersed in a plating bath in a down pass and an up pass, the strip being passed between the strip and the anode on the strip exit side of the anode in each of the down and up passes. A continuous alloy electroplating device comprising a blowing device that supplies a plating solution between anodes in a direction countercurrent to the strip running direction.
JP16579583A 1983-09-07 1983-09-07 Method and apparatus for continuously electroplating alloy Granted JPS6056092A (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP16579583A JPS6056092A (en) 1983-09-07 1983-09-07 Method and apparatus for continuously electroplating alloy
KR1019840005462A KR890001111B1 (en) 1983-09-07 1984-09-06 Method and apparatus for continuous electroplating of alloys
DE19843432821 DE3432821A1 (en) 1983-09-07 1984-09-06 METHOD AND DEVICE FOR CONTINUOUS GALVANIC ALLOY DEPOSITION
US06/647,738 US4601794A (en) 1983-09-07 1984-09-06 Method and apparatus for continuous electroplating of alloys
FR8413713A FR2551467B1 (en) 1983-09-07 1984-09-06 METHOD AND APPARATUS FOR CONTINUOUS ELECTROLYTIC DEPOSITION OF ALLOYS
GB08422528A GB2147009B (en) 1983-09-07 1984-09-06 Method and apparatus for continuous electroplating of alloys

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16579583A JPS6056092A (en) 1983-09-07 1983-09-07 Method and apparatus for continuously electroplating alloy

Publications (2)

Publication Number Publication Date
JPS6056092A true JPS6056092A (en) 1985-04-01
JPH0437158B2 JPH0437158B2 (en) 1992-06-18

Family

ID=15819132

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16579583A Granted JPS6056092A (en) 1983-09-07 1983-09-07 Method and apparatus for continuously electroplating alloy

Country Status (1)

Country Link
JP (1) JPS6056092A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61221398A (en) * 1985-03-23 1986-10-01 ヘツシユ・シユタール・アクチエンゲゼルシヤフト Vertical zinc plating electrolytic cell for modification processing of steel strip
US5236566A (en) * 1991-09-24 1993-08-17 Nippon Steel Corporation Vertical type stream plating apparatus
JP2009074126A (en) * 2007-09-20 2009-04-09 Dowa Metaltech Kk Plating method and device therefor
JP2011149053A (en) * 2010-01-21 2011-08-04 Sumitomo Metal Mining Co Ltd Continuous electrolytic plating apparatus, continuous electrolytic plating method and method of producing metalized resin film

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS497116U (en) * 1972-04-21 1974-01-22
JPS503531U (en) * 1973-05-07 1975-01-14

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS497116U (en) * 1972-04-21 1974-01-22
JPS503531U (en) * 1973-05-07 1975-01-14

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61221398A (en) * 1985-03-23 1986-10-01 ヘツシユ・シユタール・アクチエンゲゼルシヤフト Vertical zinc plating electrolytic cell for modification processing of steel strip
US5236566A (en) * 1991-09-24 1993-08-17 Nippon Steel Corporation Vertical type stream plating apparatus
JP2009074126A (en) * 2007-09-20 2009-04-09 Dowa Metaltech Kk Plating method and device therefor
JP2011149053A (en) * 2010-01-21 2011-08-04 Sumitomo Metal Mining Co Ltd Continuous electrolytic plating apparatus, continuous electrolytic plating method and method of producing metalized resin film

Also Published As

Publication number Publication date
JPH0437158B2 (en) 1992-06-18

Similar Documents

Publication Publication Date Title
KR890001111B1 (en) Method and apparatus for continuous electroplating of alloys
US4514266A (en) Method and apparatus for electroplating
JPS58197292A (en) Production of steel plate plated with gamma zinc-nickel alloy in high efficiency
CN110325669A (en) Alkaline plating bath electrodepositing zinc and Zinc alloy coated method by the degradation reduction of organic bath additive
KR20190022766A (en) METHOD OF MANUFACTURING MOLDED METAL PLATED KINGDOM AND MOLDED METAL PLATING APPARATUS
JPS6056092A (en) Method and apparatus for continuously electroplating alloy
US4762602A (en) Method and apparatus for processing metal strip in vertical electroplating cells
US4518474A (en) Device for the electrolytic treatment of metal strip
US4325790A (en) Process for manufacturing electro-galvanized steel strip
JPH07150320A (en) Hot dip metal coating method and device thereof
JPS6215635B2 (en)
KR100485808B1 (en) electroplating bath for copper-nickel alloy and method for manufacturing thin film using said electroplating bath
JP6558418B2 (en) Electroplated steel sheet manufacturing method and electroplated steel sheet manufacturing apparatus
JPH07113154A (en) Method and device for hot-dipping
JPH0130919B2 (en)
KR100418404B1 (en) Vertical type electro plating apparatus using insoluble anode
JPH0660433B2 (en) Method for producing zinc-based alloy electroplated steel sheet
JP6589748B2 (en) Electroplated steel sheet manufacturing method and electroplated steel sheet manufacturing apparatus
JPS60131992A (en) Method and device for continuous type alloy electroplating
JPH07145465A (en) Hot dip metal coating method and device
JPH07150321A (en) Hot dip metal coating device
Lindsay et al. Electrogalvanizing
JPH07145464A (en) Method and device for hot dip metal coating
JP2009024249A (en) Electroplating apparatus and method for producing plating member
JPH0331796B2 (en)