JPS58197292A - Production of steel plate plated with gamma zinc-nickel alloy in high efficiency - Google Patents

Production of steel plate plated with gamma zinc-nickel alloy in high efficiency

Info

Publication number
JPS58197292A
JPS58197292A JP8003282A JP8003282A JPS58197292A JP S58197292 A JPS58197292 A JP S58197292A JP 8003282 A JP8003282 A JP 8003282A JP 8003282 A JP8003282 A JP 8003282A JP S58197292 A JPS58197292 A JP S58197292A
Authority
JP
Japan
Prior art keywords
plating
bath
zinc
nickel alloy
plated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8003282A
Other languages
Japanese (ja)
Other versions
JPS6119719B2 (en
Inventor
Kango Sakai
酒井 完五
Katsushi Saito
斉藤 勝士
Hirobumi Nakano
寛文 中野
Ryoichi Yoshihara
良一 吉原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP8003282A priority Critical patent/JPS58197292A/en
Publication of JPS58197292A publication Critical patent/JPS58197292A/en
Publication of JPS6119719B2 publication Critical patent/JPS6119719B2/ja
Granted legal-status Critical Current

Links

Abstract

PURPOSE:To produce a steel plate which is plated with a zinc-nickel alloy of gamma structure having good quality with high efficiency, by performing electric zinc-nickel alloy plating under a specific condition while ejecting an electrolyte between electrode surfaces and the traveling steel plate. CONSTITUTION:An electrolyte is injected to the surface of a traveling strip 1 from electrode pads 4 held in a space so as to face each other in proximity to the strip 1 in an electrolytic cell 2 to plate said surface with a lower roll as an electricity conducting roll. The plating bath consisting of 400-700g/l the sum of ZnSO4.7H2O and NiSO4.6H2O, 1.0-2.0 Ni/Zn ratio, and 5-20g/l H2SO4 is used, and the plating is accomplished under the condition of >=60 deg.C, >=1m/sec relative speed with the strip 1 and the plating bath, and 100-250A/dm<2>, more preferably 150-200A/dm<2> current density.

Description

【発明の詳細な説明】 本発明は高効率で品質の良いガンマ−組織のNi −Z
n合金メッキ鋼板を製造する方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention provides highly efficient and high quality gamma-structured Ni-Z
The present invention relates to a method of manufacturing an n-alloy plated steel sheet.

電気匪鉛メッキ鋼板は、その優れた特性から家庭電気製
品、建材、ショーケース、自動販売機、等の防錆素材と
して多岐に使用されている。特に近年、自動車々体に対
する社会的要求から車体の耐久性の向上が急速にクロー
ズアップされている。
Due to its excellent properties, electrolytic lead-plated steel sheet is used in a wide variety of applications as a rust-preventing material for home appliances, building materials, showcases, vending machines, etc. Particularly in recent years, improvements in the durability of vehicle bodies have been rapidly focused on due to social demands for vehicle bodies.

この要求に答える素材として亜鉛メッキ鋼板の需要が伸
びている。自動車々体の腐食は、内部および外部塗装面
両面に生じており、特に下延シの内部袋構造部、突き合
せ部は腐食が激しく車体に穴明きが生ずる。構造的にこ
の部分は、リン酸塩処理皮膜及び電着塗膜が不充分もし
くは全く未塗装状態が生ずるためである。従って、従来
の亜鉛メッキでは、かなシメツキ厚の高い鋼板が必要で
あった。
Demand for galvanized steel sheets is increasing as a material that meets this demand. Corrosion of automobile bodies occurs on both the internal and external painted surfaces, and the corrosion is particularly severe at the inner bag structure and butt parts of the lower part, causing holes in the car body. Structurally, this is because the phosphate treatment film and electrodeposition coating are insufficient or completely unpainted in this area. Therefore, conventional galvanizing requires a steel plate with a high kana plating thickness.

一方、外面部の腐食は小石等の衝撃やその他物理的な作
用で塗膜に傷が入りその傷を発端としてスキャプコロー
ジョン、フィリフォームコロージョン等の外面部が生ず
る。外面部に対しては、亜鉛メッキが有効であるが、鉄
面との接触腐食や、塗装後の性能が不充分である点等か
ら、純亜鉛メッキに代る合金亜鉛メッキ鋼板が要求され
ている。
On the other hand, corrosion on the outer surface occurs when the paint film is scratched by impact with pebbles or other physical action, and these scratches cause scap corrosion, filliform corrosion, etc. on the outer surface. Galvanizing is effective for the external surface, but alloy galvanized steel sheets are required as an alternative to pure galvanizing due to corrosion caused by contact with steel surfaces and insufficient performance after painting. There is.

内面部に対しても純亜鉛メッキでは前述した如く厚メッ
キ品になることのため、溶接性、再資源化に悪影響があ
り、又、近年のカチオン電着化の変化で薄メッキ厚の合
金メッキが要求されている。
Pure zinc plating on the inner surface also results in a thick plated product as mentioned above, which has a negative impact on weldability and recycling.Also, due to recent changes in cationic electrodeposition, alloy plating with a thinner plating thickness is required. is required.

自動車4体に限らず、従来使用された分野においても品
質の優れた合金亜鉛メッキ思考が急速になされている。
The idea of high-quality alloy galvanizing is rapidly being developed not only for automobiles but also in fields where it has been used conventionally.

    ′ これ等の社会的要求に対処出来る合金亜鉛メッキ鋼板の
具備条件としては、広範囲の腐食環境に対して薄メッキ
で耐食性および塗装後の耐久性に優れ、溶接性、溶着性
が良く、且つ、コストの安い素材でなければならない。
' The requirements for alloy galvanized steel sheets that can meet these social demands are that they are thinly plated in a wide range of corrosive environments, have excellent corrosion resistance and durability after painting, have good weldability and weldability, and It must be a low-cost material.

これ等の要求に対処出来る合金メッキ鋼板としてNj−
Zn系の合金亜鉛メッキ鋼板を挙げることが出来る。N
i−Zn合金メッキ鋼板は特にγ組織のNi7〜20%
好ましくはNi1O〜15%の組成は品質的に優れてい
る。
Nj- is an alloy plated steel sheet that can meet these demands.
Examples include Zn-based alloy galvanized steel sheets. N
The i-Zn alloy plated steel sheet has 7 to 20% Ni in the γ structure.
Preferably, a composition of Ni1O to 15% is excellent in quality.

亜鉛メッキ系の鋼板の製造方法としては、溶融メッキ法
と電気メツキ法に大別され連続的に大量k に製造され、その生産量は年間500万tにも及んでい
る。浴融亜鉛メッキプロセスは厚メッキ品の製造に通し
ており、目付量40 y/m+以上の純亜鉛メッキ鋼板
、Fe −Zn熱拡散合金メッキ鋼板等の製品が建材、
自動車等に使用されている。一方電気亜鉛メツキプロセ
スでは、厚メツキ製品の製造は、電力費の増大、T/H
の低下等の理由でコストの高い製品となるため通常は目
付量10〜20g汐の薄メツキ製品が製造される。電気
メツキプロセスは溶融メッキプロセスに比べ鋼材の機械
的性質への影響が少ないこと、片面メッキを製造し易い
、広範囲な合金メッキ製品を製造出来る利点を持ってお
り、前述した現代の自動車4体を特徴とする請求に答え
る。素材の製造プロセスとして有利である。しかしなが
ら、基本的に電気的々還元力でメッキするためコスト高
に々る宿命を内含している。従って電力費の安いT/f
(の高い高効率な生産力法を開発する必要がある。その
ためには、極間を近接し高い電流密度で電気メッキを行
う製造方法即ち、高効率電解が不可欠である。更に加え
て、前原した”茹<、自動車4体等を中心した合金メッ
キ鋼板を高効率で製造する方法を確立することが急務で
ある。
The manufacturing methods for galvanized steel sheets are broadly divided into hot-dip plating and electroplating, and they are manufactured continuously in large quantities, with the annual production amount reaching 5 million tons. The bath dip galvanizing process is used to manufacture thick plated products, and products such as pure galvanized steel sheets with a basis weight of 40 y/m+ and Fe-Zn heat diffusion alloy plated steel sheets are used as building materials,
Used in automobiles, etc. On the other hand, in the electrogalvanizing process, the production of thickly plated products requires increased electricity costs, T/H
Since the cost of the product is high due to a decrease in the surface area, thin plating products with a basis weight of 10 to 20 g are usually produced. Compared to the hot-dip plating process, the electroplating process has the advantages of having less influence on the mechanical properties of steel materials, making it easy to produce single-sided plating, and being able to produce a wide range of alloy-plated products. Respond to claims that feature. This is advantageous as a material manufacturing process. However, since plating is basically done using electrical reducing power, the cost is high. Therefore, the power cost is low T/f
It is necessary to develop a high-efficiency production method for (highly efficient) production. To this end, a manufacturing method in which electroplating is performed at high current density with adjacent electrodes, that is, high-efficiency electrolysis, is indispensable. There is an urgent need to establish a highly efficient method for producing alloy-plated steel sheets, mainly used for automobiles, etc.

電気メッキにおいて電流密度を上げると電解槽において
は、可溶性アノードの場合の陽極不動態化、不陽性陽極
の場合のガス留り電圧上昇、電流効率確保難などの問題
、品質力面ではメッキやけ、むら、結晶粗大化による表
面粗れ、ピンホール、ヌケ、密着不良更に合金メッキで
は均一組成が得られないなどの問題を慮起し、電流密度
DK=20〜50 A/dm’が限界電流密度であった
Increasing the current density in electroplating causes problems such as anode passivation in the case of a soluble anode, an increase in gas retention voltage in the case of a non-positive anode, difficulty in ensuring current efficiency, and in terms of quality, plating burns, Considering problems such as unevenness, surface roughness due to crystal coarsening, pinholes, missing spots, poor adhesion, and the inability to obtain a uniform composition with alloy plating, the current density DK = 20 to 50 A/dm' is the limit current density. Met.

1)電極とストリップとを近接化出来ること、2)ガス
除去が出来るセルとすること、3)大電流通電法テムの
機能を持たせたこと。
1) The electrode and the strip can be placed close to each other, 2) The cell can remove gas, and 3) It has the function of a large current energization system.

々どの条件を満すものを用いて、高電流密度メッキを行
うに際して、■メッキ浴として、1)高伝導度であるこ
と、  2)流速に依存しない浴であること(むらが生
じたシ)3)電流効率が良いこと、 4)メッキやけ、
むらのないこと、  5)合金組成の変動がないこと。
When performing high current density plating using a plating bath that satisfies the following conditions: 1) It must have high conductivity, 2) It must be a bath that does not depend on the flow rate (no unevenness occurs). 3) Good current efficiency, 4) Plating burnout,
5) No variation in alloy composition.

など前記高電流密度メッキに対応した亜鉛−二ツケル合
金メッキ浴の開発を目的としてなされたものである。
The purpose of this work was to develop a zinc-Nitskel alloy plating bath compatible with the above-mentioned high current density plating.

即ち本発明は電極面と被メッキ面との間に電解液を噴出
せしめて、極面と被メッキ面との間に液を保持しながら
電気亜鉛−ニッケル合金めっきを行う方法において、め
っき浴としてZn5O,・7H20とN i S 04
 @6 H2Oとの和が400〜700り/1゜の相対
速度を1.0 m//sec、以上でメッキすることを
特徴とする高効率Ni −Zn合金メッキ鋼板の製造方
法である。本発明により外観が良く、合金組成分安定し
た亜鉛−ニッケル合金メッキを高効率で製造することが
できる。
That is, the present invention provides a method for performing electrolytic zinc-nickel alloy plating by jetting an electrolytic solution between an electrode surface and a surface to be plated and maintaining the liquid between the electrode surface and the surface to be plated. Zn5O, 7H20 and N i S 04
This is a method for producing a highly efficient Ni--Zn alloy plated steel sheet, characterized by plating at a relative speed of 1.0 m//sec or more at a sum of @6 H2O of 400 to 700 r/1°. According to the present invention, zinc-nickel alloy plating with good appearance and stable alloy composition can be manufactured with high efficiency.

次に本発明について更に詳細に説明する。本発明は高電
流密度による亜鉛−Ni合金メッキが可能になった点に
最も時数を有する。その結果メッキの析出速度が高く厚
メッキが可能となった。従来技術は極間距離が25〜5
0団: DK30〜50A/dm’が限度であった。そ
の理由として限度以上に電流密度を上げると六めつきや
け〃、Aめつきむら〃、Nめつき結晶粗大化〃が生じ、
さらに、合金組成が電流密度によって変化するため高電
流密度によるNi−Zn合金メッキ鋼板の製造は不可能
であった。本発明を実施する場合にはプロセス的には、 例えば本出願人がすでに開発している高電流密度操業可
能なセル(%開昭56−127789に開示)を使用し
、メッキ浴としてZnSO4・7H20とN i S 
04・6H20の和が400〜700 t/lで、且つ
H2SO45〜20 f/l 、 Ni/Zn比1.0
〜2.0から々る浴を使用することで実施できる。即ち
本発明を実施する場合の電解装置の例を第1図で説明す
る。電解装置はストリップ1を電解液3に浸漬すること
なく空間に保持した状態で通板させる電解槽2と、該電
解槽2内の所定位置に、前記ストリップ1面に対向して
近接して配置しかつストリップ面に電解液を噴射すると
共゛に該流体によりストリップ面に静圧を作用せしめる
ノズル孔を形成した電極パッド4とからなる。
Next, the present invention will be explained in more detail. The present invention has the greatest advantage in that it has become possible to perform zinc-Ni alloy plating using high current density. As a result, the deposition rate of plating is high and thick plating is possible. In the conventional technology, the distance between poles is 25 to 5.
Group 0: DK 30-50 A/dm' was the limit. The reason for this is that when the current density is increased beyond the limit, six-metal burn, uneven A-metal, and coarse-grained N-metal crystals occur.
Furthermore, since the alloy composition changes depending on the current density, it has been impossible to manufacture Ni-Zn alloy plated steel sheets at high current densities. When carrying out the present invention, for example, a cell capable of high current density operation which has already been developed by the present applicant (disclosed in 1989-127789) is used, and ZnSO4.7H20 is used as a plating bath. and N i S
04・6H20 sum is 400-700 t/l, H2SO45-20 f/l, Ni/Zn ratio 1.0
It can be carried out by using a ~2.0 Karakara bath. That is, an example of an electrolytic apparatus for carrying out the present invention will be explained with reference to FIG. The electrolytic device includes an electrolytic tank 2 in which the strip 1 is passed through the electrolytic solution 3 while being held in a space without being immersed in the electrolytic solution 3, and a predetermined position in the electrolytic tank 2, which is arranged close to and facing the surface of the strip 1. It also comprises an electrode pad 4 formed with a nozzle hole for injecting electrolyte onto the strip surface and applying static pressure to the strip surface using the fluid.

このように電解槽内でのストリップを電解液に浸漬せず
に空間に保持せしめ、しかも槽内の所定位置にストリッ
プ面に対向して配置した静圧パッドとしても機能を併せ
もつ電極パッドにより、ストリップ面に電解メッキ液を
噴射して電解処理を実施することを特色としている。し
たがって、この電解槽は従来の浸漬タイプと全く異質で
あって、電解液が充満しておらず、しかも電解を行左う
ための電極が中空のボックス構造であってそのノズル孔
からストリップに向って電解液を噴出するものであるか
ら、浸漬タイプに見られた種々の不利益が解消されると
共に、下ロールをもコンダクタ−ロールとし7て利用で
き、加えてストリップの振動を防止してかつ形状不良を
矯正して安定した選歌が行々えるメリットが得られる。
In this way, the strip in the electrolytic tank is held in space without being immersed in the electrolyte, and the electrode pad also functions as a static pressure pad placed at a predetermined position in the tank facing the strip surface. The feature is that electrolytic treatment is carried out by spraying electrolytic plating solution onto the strip surface. Therefore, this electrolytic cell is completely different from the conventional immersion type, in that it is not filled with electrolyte, and the electrodes for conducting electrolysis have a hollow box structure and extend from the nozzle hole toward the strip. Since the electrolyte is spouted out by the immersion type, various disadvantages seen in the immersion type are eliminated, and the lower roll can also be used as a conductor roll. This has the advantage of correcting shape defects and allowing stable song selection.

以上、本発明で使用できるメッキ装置の1例を、示した
が、本発明はこの例に限定されるものではなく、電極面
と被メッキ面との間に電解液を噴射して電極面と被メッ
キの間にメッキ液を保持しながら、ストリップと電解液
の相対速度を1 、0 rr1Aec以上にしてメッキ
できる装置であれば良い。
Although one example of a plating apparatus that can be used in the present invention has been shown above, the present invention is not limited to this example, and the electrolytic solution is injected between the electrode surface and the surface to be plated. Any device that can perform plating at a relative speed of 1.0 rr1 Aec or more between the strip and the electrolytic solution while holding the plating solution between the plates to be plated may be used.

そのような条件に適合するその他の例として特公昭50
−8020に開示したようにストリップの進向方向と自
流的にストリップと電極間に電解液を噴射する電解メッ
キ装置、又特願昭55−176518に開示したように
電極の中央部からストリップ面に電解液を噴射する装置
などがあげられる。さらに本出願・人が特許出願中の特
願昭57−18836に開示した静圧流体パッドを備え
た水平電解装置があげられる。又本発明においては極間
距離は近接化するほど好ましい。その理由としては例え
ば電流密度を100 k/drr?又は26 o A7
dm’に設定した場合に極間距離が大きいと極間電圧は
20〜30Vをこえてしまい電力費、整流器の容量が大
きくなり実用的ではない。本発明は極間電圧を少くとも
20V未満望ましくはIOV以下を目標としている。従
って極間距離を近接化するほど(好ましくは15+o+
以下)極間電圧が減少し、結果としてコストを大巾に節
減することができる。
Another example that meets such conditions is
As disclosed in Japanese Patent Application No. 8020, there is an electrolytic plating device that injects an electrolytic solution between a strip and an electrode in a self-current manner in the advancing direction of the strip. Examples include devices that spray electrolyte. Further, there is a horizontal electrolyzer equipped with a hydrostatic fluid pad disclosed in Japanese Patent Application No. 57-18836, which is currently pending. Further, in the present invention, it is preferable that the distance between the poles be closer. The reason for this is, for example, if the current density is 100 k/drr? or 26 o A7
dm' and the distance between the electrodes is large, the voltage between the electrodes exceeds 20 to 30 V, which increases the power cost and the capacity of the rectifier, which is not practical. The present invention aims at a voltage between electrodes of at least less than 20V, preferably less than IOV. Therefore, the closer the distance between poles (preferably 15+o+
(below) The inter-electrode voltage is reduced, resulting in significant cost savings.

従って極間距離を小さくするほどコスト的には有利であ
るが極間きよりを極端に小さくするとストリップと電極
が接触するおそれがあるので極間きよりは5配が実用上
の限界といえる。
Therefore, the smaller the distance between the electrodes, the more advantageous it is in terms of cost, but if the distance between the electrodes is made too small, there is a risk that the strip and the electrode will come into contact with each other.

なお本発明では前記のように極間距離をなるべく近接化
してメッキを行うが、メッキ中のストリップの振動や位
置変動或はカテナリーを少なくして極間距離をより縮少
するために、前記説明した特開昭56−127789と
特願昭57−18836に示したような静圧流体パッド
を有するメッキ装置を用いて静圧流体でスlリップを支
持しながらメッキを行うことが最も好ましい。その結果
ストリップは電極間の中心に静圧で自動的にセンターリ
ングされるので極間距離を大巾に短縮できしかも安定し
てメッキを行うことができる。(この場合には最高25
0A/drr?での電解が可能である)以上説明したよ
う々電解装置を用いて電極面と被メッキ面との間に電解
液を噴出せしめて極間と被メッキ面との間に液を保持し
彦がらメッキを行なう場合にはNガス溜り〃がなく極間
距離が近接可能であるので通電抵抗が小さくなるため電
圧の上昇を抑制することが可2能となる。さらに相対ス
ピード(ラインスピード−流速)によるイオン供給、液
置換効率がよいこと々どのため高電流密度によるメッキ
が可能となる。以下本発明のメッキ浴について説明する
In the present invention, as described above, plating is performed by making the distance between the electrodes as close as possible, but in order to further reduce the distance between the electrodes by reducing the vibrations, positional fluctuations, and catenaries of the strip during plating, the distance between the electrodes is reduced as described above. It is most preferable to carry out plating while supporting the slip with a hydrostatic fluid using a plating apparatus having a hydrostatic fluid pad as shown in Japanese Patent Laid-Open No. 56-127789 and Japanese Patent Application No. 57-18836. As a result, the strip is automatically centered between the electrodes by static pressure, making it possible to greatly shorten the distance between the electrodes and to perform stable plating. (In this case up to 25
0A/drr? The electrolysis device described above is used to spray an electrolytic solution between the electrode surface and the surface to be plated, and to maintain the liquid between the electrodes and the surface to be plated. When plating is performed, there is no N gas accumulation and the distance between the poles can be made close, so that the resistance to conduction becomes small and it becomes possible to suppress the rise in voltage. Furthermore, the relative speed (line speed - flow rate) provides good ion supply and liquid replacement efficiency, making it possible to perform plating with high current density. The plating bath of the present invention will be explained below.

本発明者らは前記の高効率が可能な電解槽を開発したが
、実際にNi −Zn合金メッキを行うと、まだ解決す
べき課題があることが分った。
Although the present inventors have developed an electrolytic cell capable of achieving the above-mentioned high efficiency, it has been found that there are still problems to be solved when actually performing Ni--Zn alloy plating.

以下Ni −Zn合金メッキの課題と本発明の方法につ
いて詳述する。
Below, the problems of Ni-Zn alloy plating and the method of the present invention will be explained in detail.

亜鉛は水素過電圧が高い性質から高い電流効率でメッキ
出来る特性がある。しかし、N1  は水素過電圧が低
く、合金メッキにおいては電流効率が低くなる。−力メ
ツキヤケ、液抵抗を下げるためには硫酸の添加が効果的
であるが、水素の発生が多くなり電流効率は著しく低下
する欠点がある。
Zinc has the property of being able to be plated with high current efficiency due to its high hydrogen overvoltage. However, N1 has a low hydrogen overvoltage, resulting in low current efficiency in alloy plating. -Addition of sulfuric acid is effective in reducing force discoloration and liquid resistance, but has the drawback that hydrogen is generated in large quantities and current efficiency is significantly reduced.

そこで本発明者等は近接高電流密度電解に対応した亜鉛
−ニッケル合金メッキ浴を新規に見い出すことによって
前記の未題を解決することができた。
Therefore, the present inventors were able to solve the above-mentioned unsolved problem by discovering a new zinc-nickel alloy plating bath that is compatible with close proximity high current density electrolysis.

本発明においては浴にH2SO,を5〜20 fl/L
l/間時に、金属イオン濃度の上昇を向上せしめている
。一般には低P Rにすると水素が出やすくなシミ流動
室が低下する。特にNcが析出するめつきでは水素が発
生し易く、従来ではPHの低下は電流効率に対して負効
果をもたらすと考えられていた。しかしながらP Hを
低くした本発明浴では低電流密度では従来通シであるが
、高電流密度の場合には逆に良ぐ々ることか解った。
In the present invention, H2SO is added to the bath at 5 to 20 fl/L.
1/h, the increase in metal ion concentration is improved. Generally, when the PR is set low, the stain flow chamber where hydrogen is likely to come out is reduced. Particularly in plating where Nc is precipitated, hydrogen is likely to be generated, and it was conventionally thought that a decrease in pH would have a negative effect on current efficiency. However, it has been found that the bath of the present invention with a low PH value is conventional at low current densities, but is not good at high current densities.

第2図は本発明浴(曲線1)と従来実施されている高P
 H1低濃度浴(曲線2)とを使用し、電流効率と電流
密度との関係を比較したものである。
Figure 2 shows the present invention bath (curve 1) and the conventional high P bath.
The relationship between current efficiency and current density is compared using H1 low concentration bath (curve 2).

本発明1はZn 804 ’ 7H20+N i 80
4 ” 6H20”’480 ?/l (Ni/Zn 
= 1.5 ) Na25o、=100 ?/L。
Invention 1 is Zn 804' 7H20+N i 80
4” 6H20”’480? /l (Ni/Zn
= 1.5) Na25o, = 100? /L.

H2SO,10f/l、 P H= 1の浴を用い温度
60℃、流速1 m/secでメッキを行った。比較2
はZ n S 0!・7H20+ NiSO4・6H2
0= 300 ?/l (Ni/Zn =1.5)、N
a2S、041,00 f/7.I(28042f/L
  P H=2.5の浴を用い浴温60℃通常の浸漬法
でメッキを行った。本発明1は100Vd771″以上
の高電流密度でも電流効率は82%以上を確保できる。
Plating was performed using a bath of H2SO, 10 f/l, P H = 1 at a temperature of 60°C and a flow rate of 1 m/sec. Comparison 2
Z n S 0!・7H20+ NiSO4・6H2
0=300? /l (Ni/Zn = 1.5), N
a2S, 041,00 f/7. I (28042f/L
Plating was carried out using a bath having a pH of 2.5 and a bath temperature of 60° C. by a normal dipping method. The present invention 1 can ensure current efficiency of 82% or more even at a high current density of 100Vd771'' or more.

しかしながら電流密度が300 A/drr?では本発
明浴においても電流効率の低下やメッキむらが生じはじ
めるため、本発明の好ましい電流密度は100〜250
A7d靜、最も好ましくは150〜200A/drr?
である。
However, the current density is 300 A/drr? Therefore, the current density of the present invention is preferably 100 to 250.
A7d quiet, most preferably 150-200A/drr?
It is.

更に合金めっきを均一組成にする条件として従来の考え
力は、 ■電流密度を一定にする。
Furthermore, the conventional thinking is that the conditions for making alloy plating have a uniform composition are: 1. Keep the current density constant.

■浴組成を一定にする(濃度、PH) ■錯塩を加える。緩衝剤を加える。■Keep the bath composition constant (concentration, pH) ■Add complex salts. Add buffer.

■流速を一定にする。■Keep the flow velocity constant.

■温度も一定にする。■Keep the temperature constant.

などの設定条件が多く非常に生産し難いものであった。It was very difficult to produce because of the many setting conditions such as.

本発明においては錯塩、緩衝剤を添加せず単純組成浴で
低P H(H2SO,5〜20 t/l )温度(60
℃以上)、流速ニストリップとの相対速度を一定値以上
(1m/s )、高濃度浴(Zn 804 ” 7H2
0十N15O+・6l−120= 400〜700 ?
/l )で広い浴組成(Ni/Zn比= 1〜2)とい
う広い管理条件下で電流密度て依存したシめつき条件を
見出した。
In the present invention, a bath with a simple composition is used without adding complex salts or buffers, at a low pH (H2SO, 5-20 t/l) and a temperature (60 t/l).
℃ or higher), the relative velocity with the Nitrip is higher than a certain value (1 m/s), and the high concentration bath (Zn 804" 7H2
01N15O+・6l-120=400~700?
Under a wide controlled condition of a wide range of bath compositions (Ni/Zn ratio = 1 to 2), the current density-dependent clinching conditions were found.

また高電流密度用電解槽は高流速で、メッキ液噴射を行
なうため、噴出ノズル部における流速とその他の部分の
流速が異なってくる。合金メッキにおいてはこの流速と
メッキ皮膜合金組成とはかなりの相関を示しメッキむら
等が発生する。特に従来用いていた浴条件ではこの傾向
が強く現れてしまい、噴出ノズルの位置設定ノズル形状
が非常にシビアである。しかし本発明の浴条件ではこの
流速と合金組成との関連はあtb見られなくなシ噴出ノ
ズルの位置設定ノズル形状は自在である。
Furthermore, since the electrolytic cell for high current density sprays the plating solution at a high flow rate, the flow rate at the jet nozzle portion differs from the flow rate at other parts. In alloy plating, there is a significant correlation between the flow rate and the alloy composition of the plating film, resulting in uneven plating. This tendency is particularly strong under conventional bath conditions, and the nozzle shape for setting the position of the ejection nozzle is very severe. However, under the bath conditions of the present invention, this relationship between flow rate and alloy composition is no longer observed, and the nozzle shape for setting the position of the ejection nozzle can be freely determined.

後述する相対スピードと合わせて本発明の浴条件を用い
ることによって外観の良い合金組成の安定した亜鉛−ニ
ッケル合金メッキを従来浴条件に比べてはるかに広い範
囲の操業条件で容易に製造することが可能である。
By using the bath conditions of the present invention in conjunction with the relative speed described below, zinc-nickel alloy plating with a stable alloy composition and good appearance can be easily produced under a much wider range of operating conditions than conventional bath conditions. It is possible.

Zn −Ni合金メッキで最も耐食性の良いNi量は1
0〜15%の範囲である。第3図はメッキ皮膜中のN1
%と電解液のNi/Zn比との関係を示すものである。
The most corrosion-resistant Ni amount in Zn-Ni alloy plating is 1.
It ranges from 0 to 15%. Figure 3 shows N1 in the plating film.
% and the Ni/Zn ratio of the electrolytic solution.

これよりメッキ中の斜線で示したNi量10〜15%を
満足するためにはNi/Zn比比を1.0〜2゜Oに調
整する必要がある。
From this, in order to satisfy the Ni content of 10 to 15% shown by diagonal lines during plating, it is necessary to adjust the Ni/Zn ratio to 1.0 to 2°O.

まだ、第4.5図は合金メッキ層中のN1%と電解液−
ストリップ間の相対速度■との関係を示す。第4図は本
発明の条件であり、第5図は比較の浴条件の例である。
Still, Figure 4.5 shows the relationship between N1% in the alloy plating layer and the electrolyte.
The relationship between the relative speed between the strips and ■ is shown. FIG. 4 shows the conditions of the present invention, and FIG. 5 shows an example of comparative bath conditions.

(メッキ浴は第2図における場合と同一浴を使用)第5
図より比較浴を用いた場合、電流密度DK(曲線1は2
00 A/dm”曲線2は100A/d7?Z″ )に
よってN1%が犬きぐ変化し、この傾向は相対速度Vを
増加してもほとんど安定し々い。従って操業条件によっ
て得られるNi%が変化してしまい製品品質が安定せず
、品質管理が困難である。しかしながら第4図に示すよ
うに本発明の浴条件を用いればNi%はDKに対して非
常に良い安定性を示し、特にV−1rrv/s以上にな
ると電流密度を変えてもNi最適量である10〜15%
組成のメッキを安定して行なうことが可能である。
(The same plating bath as in Figure 2 is used) 5th
From the figure, when using the comparison bath, the current density DK (curve 1 is 2
00 A/dm'' curve 2 is 100 A/d7? Therefore, the Ni% obtained varies depending on the operating conditions, resulting in unstable product quality and difficulty in quality control. However, as shown in Fig. 4, if the bath conditions of the present invention are used, Ni% exhibits very good stability with respect to DK, and especially when the current density exceeds V-1rrv/s, the optimal amount of Ni is maintained even if the current density is changed. Some 10-15%
It is possible to perform plating with a stable composition.

従って本発明の浴条件はNi −Zn合金メッキを行な
う上で操業条件範囲が広く実用的である。しかし力から
本発明浴条件でもV = 1 m/s以下では要求され
るNi%が必ずしも得られない。
Therefore, the bath conditions of the present invention have a wide range of operating conditions and are practical for Ni--Zn alloy plating. However, due to the force, even under the bath conditions of the present invention, the required Ni% cannot necessarily be obtained when V = 1 m/s or less.

また浴温については浴の電導度は温度と供に高くなるた
め浴温は高いほど電解電圧は下り、電力費を消滅するこ
とが可能である。またメッキ外観に対しても浴温は高い
方が良ぐ力る傾向にあるため、本発明条件では浴温を6
0℃以上にするのが最も好ましい。
Regarding bath temperature, since the conductivity of the bath increases with temperature, the higher the bath temperature, the lower the electrolytic voltage will be, making it possible to eliminate electricity costs. In addition, the higher the bath temperature, the better the appearance of the plating.
Most preferably the temperature is 0°C or higher.

第6図ばH2SO,量と電導度K及び電流効率7との関
係を示す。これよりH2SO4量の増加とともにKは直
線的に増加し、電解電圧も下がるが、H2S04が20
1//lを越えると7が急激に低下してしまい実用的で
はなくなる。
FIG. 6 shows the relationship between the amount of H2SO, conductivity K, and current efficiency 7. From this, K increases linearly as the amount of H2SO4 increases, and the electrolytic voltage also decreases, but when H2SO4
If it exceeds 1//l, the value of 7 will drop sharply, making it impractical.

また第7図はZ n S 04 ’ 7H20+ N 
IS 04 ” 6I(20量とに、7の関係を示すが
、これよシZ n S 04・7H2゜十N15O,・
6H20の増加は電導度を若干減少させ、特に700 
y/を以上になると急激な低下を示す。
Also, Figure 7 shows Z n S 04' 7H20+ N
IS 04 ” 6I (20 shows the relationship of 7 with quantity, but this is Z n S 04・7H2゜10N15O,・
An increase in 6H20 slightly decreases the conductivity, especially at 700
When the value exceeds y/, a rapid decrease occurs.

また、7についてはZn SO4” 7H20+ N 
i SO4・6H204009/を以上で80%以上の
高効率となる。従ッテZnSO4” 7H20十N i
 804 ’ 6H20の量は400〜700 f/l
の範囲が最適である。
Also, for 7, Zn SO4” 7H20+ N
i SO4・6H204009/ or more results in high efficiency of 80% or more. ZnSO4” 7H20N i
The amount of 804' 6H20 is 400-700 f/l
The range of is optimal.

第8図はH2SO4及びZn 804 ’ 7H20十
N 1804 ”6H20とメッキ外観の関係を示す。
FIG. 8 shows the relationship between H2SO4 and Zn 804'7H201804''6H20 and the plating appearance.

図中にOで示すものがメッキ外観が良好である。これよ
りH2SO45?/を以上、且つZnSO4@ ’7I
(2o + N15O+ ・6H20400f//を以
上で良好なメッキ外観が得られる。
Those indicated by O in the figure have a good plating appearance. H2SO45 from this? / or more, and ZnSO4@'7I
(2o + N15O+ ・6H20400f// or more will give a good plating appearance.

以上第6.7.8図より本発明浴はH2S04−5〜2
07/11ZnSO4・7H20+Nl5O4II6H
20−400〜700 ?/lに限定される。
From the above Figure 6.7.8, the baths of the present invention are H2S04-5 to 2.
07/11ZnSO4・7H20+Nl5O4II6H
20-400~700? /l.

尚、本発明の合金メッキはZn −Niを主成分とする
高効率製造方法であるが、要求特許等によシ第3、第4
成分として合金成分を添加した場合もしくは不純物とし
て入る場合も同様の条件でZn−Niを主成分とする合
金メッキを製造可能である。
The alloy plating of the present invention is a highly efficient manufacturing method using Zn-Ni as the main component, but according to the requested patents, etc.
Even when an alloy component is added as an ingredient or included as an impurity, alloy plating containing Zn-Ni as a main component can be manufactured under the same conditions.

これらの添加成分としてはFe、 Co、 Cr 等で
ある。許容される含有量としては浴中でNi/Zn比が
1〜2におけるZn量の1/2以下である。
These additional components include Fe, Co, Cr, etc. The permissible content is 1/2 or less of the amount of Zn when the Ni/Zn ratio is 1 to 2 in the bath.

以上本発明について詳細に述べた、以下実施例を上げ本
発明を説明する。
The present invention has been described in detail above, and the present invention will be explained below with reference to Examples.

実施例1 第1図に示した電解装置を用いて第1表に示す浴条件、
メッキ条件で合金メッキを行った。その結果第1表に示
す如き結果を得た。本発明例Nl 1.2.3.4、は
γ組織のNi−Zn合金メッキ皮膜が高効率で得られ、
被膜中のNi含量は安定していた。又皮膜の外観も良好
であった。これに対して従莱の浴を用いた比較例である
Nl 5、Nα6、Nα7はいずれも電流効率が悪く、
メッキ皮膜外観もメッキやけが発生して劣っていた。
Example 1 Using the electrolyzer shown in FIG. 1, the bath conditions shown in Table 1,
Alloy plating was performed under the plating conditions. As a result, the results shown in Table 1 were obtained. Inventive example Nl 1.2.3.4, a Ni-Zn alloy plating film with a γ structure was obtained with high efficiency,
The Ni content in the coating was stable. The appearance of the film was also good. On the other hand, Nl 5, Nα6, and Nα7, which are comparative examples using Jurai's bath, all have poor current efficiency;
The appearance of the plating film was also poor due to plating burns.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明に用いる流体パッド法による電解セルの
一例である。ス) IJツブに対向配置したパッド3に
設けたスリットよりメッキ液を噴出させ、ストップとパ
ッド間にメッキ液を保持し近接で高電流密度で電解する
。 第2図は本発明条件による1と比較条件2との電流密度
と陰極電流効率の関係を示す。 第3図は電流密度200 A/drr?相対流速1.5
m/s e Cの時の浴中のNi/Zn比とメッキ被膜
中のNi含有率%を示す図である。 第4図は浴中のNi/Zn比が1.5電流密度200に
/dtr?の時の相対流速Vとメッキ被膜中のN1含有
率を示す本発明条件による図である。 第5図は、第4図に対応した本発明条件に入らない浴条
件で行った場合の図である。 第6〜8図は本発明の浴条件の決定を明らかに示した図
である。 第6図は、浴中のH2SO4濃度と電導塵におよび電流
効率Nの関係を示す。 第7図は浴中の(Zn804−7H20+’NiSO4
−6H20)の濃度と電導塵におよび電流効率Nの関係
を示す図である。 又、第8図はH2SO4および(Zn 804 ・7H
20十N i 804 ・6H20) (1”)濃度と
電流密度200 A/dnl −T:行った時のメッキ
外観の関係を示す図である。 ■ ストリップ 2 電解槽 3 電解液 4 電極パッド 葬 / 図 特開昭58−197292 (7) $ 4 ピ ート \\       φl−,。 策         窄 区 α〕 擬 手続補正書(方式) %式% 1、事件の表示 昭和57年特許願第80032号 2、発明の名称 高効率ガンマ−亜鉛ニッケル合金めっき鋼板の製造方法 3補正をする者 事件との関係  特許出願人 住 所  東京都千代田区大手町2丁目6番3号名称 
(665)新日本製鐵株式会社 代表者 武 1)  豊 4代 理 人 〒105  置(503)4877住 
所  東京都港区西新橋1−12−1第1森ビル8階6
、補正の対象 明細書の発明の名称のオキ Z補正の内容 明a書の発明の名称を「高効率ガンマ−亜鉛ニッケル合
金めっき鋼板の製造方法」と訂正する。 (2) 手続補正書 昭和57年9月7 日 特許庁長官 若 杉 和 夫 殿 1事件の表示 昭和57年特許願第80032号 2発明の名称 高効率ガンマ−亜鉛ニッケル合金めっき鋼板の製造方法 6補正をする者 事件との関係  特許出願人 住 所  東京都千代田区大手町2丁目6番3号名称 
(665)新日本製鐵株式会社 代表者 武 1)  豊 4、代 理 人 〒105  置(503)4877住
 所  東京都港区西新橋1−12−1 第1森ビル8
階Z補正の内容 (1)特許請求の範囲を下記の通り補正する。 「電極面と被めっき面との間に電解液を噴出せしめて極
面と被めっき面との間に液を保持しながら電気亜鉛ニッ
ケル合金めっきを行う方法においてめっき浴としてZn
804.’7H20とN i So、争6H20との和
が400〜7 D O!Vl、 Ni/Zn比10〜2
0、H2SO45〜20 Vlから々る浴を用い、浴温
60℃以上、ス) IJ >プとめつき浴の相対速度が
1 y7H/sec 以上、電流密度100〜250 
A、/dm2でめっきを行うことを特徴とする高効率ガ
ンマ−亜鉛ニッケル合金めっき鋼板の製造方法。」 (2)
FIG. 1 is an example of an electrolysis cell using the fluid pad method used in the present invention. S) Spout the plating solution from the slit provided in the pad 3 placed opposite the IJ tube, hold the plating solution between the stop and the pad, and conduct electrolysis at high current density in close proximity. FIG. 2 shows the relationship between current density and cathode current efficiency under conditions 1 according to the present invention and under comparative conditions 2. Figure 3 shows a current density of 200 A/drr? Relative flow rate 1.5
FIG. 3 is a diagram showing the Ni/Zn ratio in the bath and the Ni content percentage in the plating film at m/s e C. Figure 4 shows that the Ni/Zn ratio in the bath is 1.5 and the current density is 200/dtr? FIG. 3 is a diagram showing the relative flow velocity V and the N1 content in the plating film under the conditions of the present invention. FIG. 5 is a diagram corresponding to FIG. 4 when the bath conditions were not included in the conditions of the present invention. Figures 6-8 clearly illustrate the determination of bath conditions according to the present invention. FIG. 6 shows the relationship between H2SO4 concentration in the bath, conductive dust, and current efficiency N. Figure 7 shows (Zn804-7H20+'NiSO4) in the bath.
-6H20) concentration, conductive dust, and current efficiency N. In addition, Figure 8 shows H2SO4 and (Zn 804 ・7H
200 N i 804 ・6H20) (1") Concentration and current density 200 A/dnl -T: This is a diagram showing the relationship between plating appearance when performed. ■ Strip 2 Electrolytic tank 3 Electrolyte 4 Electrode pad mounting / Figure JP-A-58-197292 (7) $ 4 Pete \\ φl-,. Strategy Narrowing Area α〕 Pseudo-procedural Amendment (Method) % Formula % 1. Indication of Case 1980 Patent Application No. 80032 2. Invention Name of Highly Efficient Gamma-Zinc Nickel Alloy Coated Steel Sheet Production Method 3 Relationship to the Amendment Case Patent Applicant Address 2-6-3 Otemachi, Chiyoda-ku, Tokyo Name
(665) Nippon Steel Corporation Representative Takeshi 1) Yutaka 4th generation Masato Address: (503) 4877, 105
Address: 6th floor, 8th floor, Daiichi Mori Building, 1-12-1 Nishi-Shinbashi, Minato-ku, Tokyo
, the title of the invention in the specification to be amended is corrected; the title of the invention in the statement of contents of the amendment is corrected to "method for manufacturing high-efficiency gamma-zinc-nickel alloy coated steel sheet". (2) Procedural amendment September 7, 1980 Kazuo Wakasugi, Commissioner of the Patent Office 1. Indication of the case 1982 Patent Application No. 80032 2. Name of the invention Method for manufacturing highly efficient gamma-zinc nickel alloy coated steel sheet 6 Relationship with the case of the person making the amendment Patent applicant address 2-6-3 Otemachi, Chiyoda-ku, Tokyo Name
(665) Nippon Steel Corporation Representative Takeshi 1) Yutaka 4, Agent 105 (503) 4877 Address Daiichi Mori Building 8, 1-12-1 Nishi-Shinbashi, Minato-ku, Tokyo
Contents of the Z-level amendment (1) The claims are amended as follows. ``In a method of electrolytic zinc-nickel alloy plating in which an electrolyte is jetted between the electrode surface and the surface to be plated and the liquid is maintained between the electrode surface and the surface to be plated, Zn is used as the plating bath.
804. The sum of '7H20 and N i So, 6H20 is 400-7 DO! Vl, Ni/Zn ratio 10-2
0, H2SO45-20 Vl using a liquid bath, bath temperature 60°C or higher, relative speed of plating bath 1y7H/sec or higher, current density 100-250
A method for producing a highly efficient gamma-zinc-nickel alloy plated steel sheet, characterized in that plating is carried out at A,/dm2. ” (2)

Claims (1)

【特許請求の範囲】[Claims] 電極面と被めっき面との間に電解液を噴出せしめて極面
と被めっき而との間に液を保持しながら電気亜鉛−ニッ
ケル合金めっきを行う方法においてめっき浴としてZn
 804 ’ 7H20とN i So、 ・6H20
との和が4oO〜700 f/l 、 Ni/Zn比1
.0〜2.0、H2SO45〜207/lからなる浴を
用い、浴温60℃以上、ストリップとめつき浴の相対速
度が1m/sec以上、電流密度100〜250 A7
’drr?でめつきを行うことを特徴とする高効率ガン
マ−亜鉛−ニッケル合金めっき鋼板の製造方法。
Zn is used as a plating bath in a method of electrolytic zinc-nickel alloy plating by jetting an electrolytic solution between the electrode surface and the surface to be plated and maintaining the liquid between the electrode surface and the surface to be plated.
804' 7H20 and N i So, ・6H20
The sum is 4oO~700 f/l, Ni/Zn ratio 1
.. 0 to 2.0, using a bath consisting of H2SO45 to 207/l, bath temperature 60°C or higher, relative speed of strip and plating bath 1 m/sec or higher, current density 100 to 250 A7
'drr? 1. A method for producing a highly efficient gamma-zinc-nickel alloy plated steel sheet, the method comprising plating the steel sheet.
JP8003282A 1982-05-14 1982-05-14 Production of steel plate plated with gamma zinc-nickel alloy in high efficiency Granted JPS58197292A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8003282A JPS58197292A (en) 1982-05-14 1982-05-14 Production of steel plate plated with gamma zinc-nickel alloy in high efficiency

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8003282A JPS58197292A (en) 1982-05-14 1982-05-14 Production of steel plate plated with gamma zinc-nickel alloy in high efficiency

Publications (2)

Publication Number Publication Date
JPS58197292A true JPS58197292A (en) 1983-11-16
JPS6119719B2 JPS6119719B2 (en) 1986-05-19

Family

ID=13706920

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8003282A Granted JPS58197292A (en) 1982-05-14 1982-05-14 Production of steel plate plated with gamma zinc-nickel alloy in high efficiency

Country Status (1)

Country Link
JP (1) JPS58197292A (en)

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58204195A (en) * 1982-05-25 1983-11-28 Nippon Kokan Kk <Nkk> Manufacture of steel plate electroplated with ni-zn alloy and provided with superior workability and corrosion resistance
JPS62136590A (en) * 1985-12-10 1987-06-19 Kawasaki Steel Corp Production of zn-ni alloy plated steel sheet
JPH01316490A (en) * 1988-06-16 1989-12-21 Kawasaki Steel Corp Production of zn-ni alloy plated steel strip
JPH02228492A (en) * 1989-03-02 1990-09-11 Nkk Corp Production of zinc alloy electroplated steel sheet
JP2009504914A (en) * 2005-08-12 2009-02-05 アイソトロン コーポレイション Composition-modulated composite material and method for forming the same
EP2354277A1 (en) * 2010-02-08 2011-08-10 Dalic Method for protecting a metal substrate against corrosion and abrasion, and metal substrate obtained through said method
US9938629B2 (en) 2008-07-07 2018-04-10 Modumetal, Inc. Property modulated materials and methods of making the same
US10253419B2 (en) 2009-06-08 2019-04-09 Modumetal, Inc. Electrodeposited, nanolaminate coatings and claddings for corrosion protection
US10472727B2 (en) 2013-03-15 2019-11-12 Modumetal, Inc. Method and apparatus for continuously applying nanolaminate metal coatings
US10513791B2 (en) 2013-03-15 2019-12-24 Modumental, Inc. Nanolaminate coatings
US10662542B2 (en) 2010-07-22 2020-05-26 Modumetal, Inc. Material and process for electrochemical deposition of nanolaminated brass alloys
JP2020132910A (en) * 2019-02-14 2020-08-31 Jfeスチール株式会社 METHOD FOR PRODUCING ELECTRIC Zn-Ni ALLOY PLATED STEEL SHEET
US10781524B2 (en) 2014-09-18 2020-09-22 Modumetal, Inc. Methods of preparing articles by electrodeposition and additive manufacturing processes
US10808322B2 (en) 2013-03-15 2020-10-20 Modumetal, Inc. Electrodeposited compositions and nanolaminated alloys for articles prepared by additive manufacturing processes
US10844504B2 (en) 2013-03-15 2020-11-24 Modumetal, Inc. Nickel-chromium nanolaminate coating having high hardness
US11180864B2 (en) 2013-03-15 2021-11-23 Modumetal, Inc. Method and apparatus for continuously applying nanolaminate metal coatings
US11286575B2 (en) 2017-04-21 2022-03-29 Modumetal, Inc. Tubular articles with electrodeposited coatings, and systems and methods for producing the same
US11293272B2 (en) 2017-03-24 2022-04-05 Modumetal, Inc. Lift plungers with electrodeposited coatings, and systems and methods for producing the same
US11365488B2 (en) 2016-09-08 2022-06-21 Modumetal, Inc. Processes for providing laminated coatings on workpieces, and articles made therefrom
US11519093B2 (en) 2018-04-27 2022-12-06 Modumetal, Inc. Apparatuses, systems, and methods for producing a plurality of articles with nanolaminated coatings using rotation
US11692281B2 (en) 2014-09-18 2023-07-04 Modumetal, Inc. Method and apparatus for continuously applying nanolaminate metal coatings

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7101469B2 (en) * 2004-11-10 2006-09-05 Atotech Deutschland Gmbh Metal pieces and articles having improved corrosion resistance

Cited By (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6138274B2 (en) * 1982-05-25 1986-08-28 Nippon Kokan Kk
JPS58204195A (en) * 1982-05-25 1983-11-28 Nippon Kokan Kk <Nkk> Manufacture of steel plate electroplated with ni-zn alloy and provided with superior workability and corrosion resistance
JPS62136590A (en) * 1985-12-10 1987-06-19 Kawasaki Steel Corp Production of zn-ni alloy plated steel sheet
JPH01316490A (en) * 1988-06-16 1989-12-21 Kawasaki Steel Corp Production of zn-ni alloy plated steel strip
JPH02228492A (en) * 1989-03-02 1990-09-11 Nkk Corp Production of zinc alloy electroplated steel sheet
JP2009504914A (en) * 2005-08-12 2009-02-05 アイソトロン コーポレイション Composition-modulated composite material and method for forming the same
US10961635B2 (en) 2005-08-12 2021-03-30 Modumetal, Inc. Compositionally modulated composite materials and methods for making the same
US9115439B2 (en) 2005-08-12 2015-08-25 Modumetal, Inc. Compositionally modulated composite materials and methods for making the same
US10689773B2 (en) 2008-07-07 2020-06-23 Modumetal, Inc. Property modulated materials and methods of making the same
US9938629B2 (en) 2008-07-07 2018-04-10 Modumetal, Inc. Property modulated materials and methods of making the same
US11242613B2 (en) 2009-06-08 2022-02-08 Modumetal, Inc. Electrodeposited, nanolaminate coatings and claddings for corrosion protection
US10544510B2 (en) 2009-06-08 2020-01-28 Modumetal, Inc. Electrodeposited, nanolaminate coatings and claddings for corrosion protection
US10253419B2 (en) 2009-06-08 2019-04-09 Modumetal, Inc. Electrodeposited, nanolaminate coatings and claddings for corrosion protection
FR2956123A1 (en) * 2010-02-08 2011-08-12 Dalic METHOD FOR PROTECTING A METAL SUBSTRATE AGAINST CORROSION AND ABRASION, AND METAL SUBSTRATE OBTAINED BY THIS METHOD.
EP2354277A1 (en) * 2010-02-08 2011-08-10 Dalic Method for protecting a metal substrate against corrosion and abrasion, and metal substrate obtained through said method
US10662542B2 (en) 2010-07-22 2020-05-26 Modumetal, Inc. Material and process for electrochemical deposition of nanolaminated brass alloys
US10844504B2 (en) 2013-03-15 2020-11-24 Modumetal, Inc. Nickel-chromium nanolaminate coating having high hardness
US10808322B2 (en) 2013-03-15 2020-10-20 Modumetal, Inc. Electrodeposited compositions and nanolaminated alloys for articles prepared by additive manufacturing processes
US11851781B2 (en) 2013-03-15 2023-12-26 Modumetal, Inc. Method and apparatus for continuously applying nanolaminate metal coatings
US11118280B2 (en) 2013-03-15 2021-09-14 Modumetal, Inc. Nanolaminate coatings
US11168408B2 (en) 2013-03-15 2021-11-09 Modumetal, Inc. Nickel-chromium nanolaminate coating having high hardness
US11180864B2 (en) 2013-03-15 2021-11-23 Modumetal, Inc. Method and apparatus for continuously applying nanolaminate metal coatings
US10513791B2 (en) 2013-03-15 2019-12-24 Modumental, Inc. Nanolaminate coatings
US10472727B2 (en) 2013-03-15 2019-11-12 Modumetal, Inc. Method and apparatus for continuously applying nanolaminate metal coatings
US10781524B2 (en) 2014-09-18 2020-09-22 Modumetal, Inc. Methods of preparing articles by electrodeposition and additive manufacturing processes
US11560629B2 (en) 2014-09-18 2023-01-24 Modumetal, Inc. Methods of preparing articles by electrodeposition and additive manufacturing processes
US11692281B2 (en) 2014-09-18 2023-07-04 Modumetal, Inc. Method and apparatus for continuously applying nanolaminate metal coatings
US11365488B2 (en) 2016-09-08 2022-06-21 Modumetal, Inc. Processes for providing laminated coatings on workpieces, and articles made therefrom
US11293272B2 (en) 2017-03-24 2022-04-05 Modumetal, Inc. Lift plungers with electrodeposited coatings, and systems and methods for producing the same
US11286575B2 (en) 2017-04-21 2022-03-29 Modumetal, Inc. Tubular articles with electrodeposited coatings, and systems and methods for producing the same
US11519093B2 (en) 2018-04-27 2022-12-06 Modumetal, Inc. Apparatuses, systems, and methods for producing a plurality of articles with nanolaminated coatings using rotation
JP2020132910A (en) * 2019-02-14 2020-08-31 Jfeスチール株式会社 METHOD FOR PRODUCING ELECTRIC Zn-Ni ALLOY PLATED STEEL SHEET

Also Published As

Publication number Publication date
JPS6119719B2 (en) 1986-05-19

Similar Documents

Publication Publication Date Title
JPS58197292A (en) Production of steel plate plated with gamma zinc-nickel alloy in high efficiency
US11274373B2 (en) Method for the production of a metal strip coated with a coating of chromium and chromium oxide using an electrolyte solution with a trivalent chromium compound
CA2892114C (en) Chromium-chromium oxide coatings applied to steel substrates for packaging applications and a method for producing said coatings
US5834128A (en) Organic film-coated zinc plated steel sheet
TW201842211A (en) Method for the galvanic deposition of zinc and zinc alloy coatings from an alkaline coating bath with reduced degradation of organic bath additives
KR20110032540A (en) Nickel flash plating solutions, zinc-electroplated steel sheet and manufacturing method thereof
JPS61127891A (en) Manufacture of galvanized steel sheet
JPS5993900A (en) Galvanized steel sheet having excellent weldability
US4518474A (en) Device for the electrolytic treatment of metal strip
JPS5867886A (en) Steel article coated with iron-zinc alloy plating layer having concentration gradient and manufacture thereof
KR960015229B1 (en) Method of manufacturing plated steel sheet with zn-cr composite plating
JPS6254099A (en) Composite-plated steel sheet having superior spot welability and corrosion resistance and its manufacture
JPS62238399A (en) Manufacture of one-side electroplated steel sheet
JPS5837192A (en) Post-treatment for non-plated surface of steel plate electroplated with zinc on one side
JPS6215635B2 (en)
JPS60131992A (en) Method and device for continuous type alloy electroplating
JPS6056092A (en) Method and apparatus for continuously electroplating alloy
JPH06336691A (en) Production of galvanized steel sheet with super high current density excellent in corrosion resistance and workability
KR100244631B1 (en) Zn-fe alloy electro-plating steel plate manufacturing method with superior corrosion resistence and formability after painting
JPS58133395A (en) After-treatment of uncoated surface of single-surface zinc-electroplated steel sheet
JPH02258984A (en) Equipment for producing electrogalvanized steel sheet having excellent weldability
JPH0543796B2 (en)
JPS5940915B2 (en) Method of single-sided electroplating of metal strips
Steel-A z 2t Galvanized
JPH0130919B2 (en)