JPS6055469B2 - Method for producing fiber-reinforced silicon nitride sintered body - Google Patents

Method for producing fiber-reinforced silicon nitride sintered body

Info

Publication number
JPS6055469B2
JPS6055469B2 JP57167224A JP16722482A JPS6055469B2 JP S6055469 B2 JPS6055469 B2 JP S6055469B2 JP 57167224 A JP57167224 A JP 57167224A JP 16722482 A JP16722482 A JP 16722482A JP S6055469 B2 JPS6055469 B2 JP S6055469B2
Authority
JP
Japan
Prior art keywords
silicon nitride
sintered body
nitride powder
dispersion
whiskers
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP57167224A
Other languages
Japanese (ja)
Other versions
JPS5954680A (en
Inventor
保夫 樋端
和夫 上野
信幸 玉利
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP57167224A priority Critical patent/JPS6055469B2/en
Publication of JPS5954680A publication Critical patent/JPS5954680A/en
Publication of JPS6055469B2 publication Critical patent/JPS6055469B2/en
Expired legal-status Critical Current

Links

Description

【発明の詳細な説明】 本発明は繊維強化型窒化ケイ素焼結体の製造方法に関し
、その目的とするところは1000℃以上の高温におい
ても優れた強度を有し且つ品質安定性及び均質性に優れ
た窒化ケイ素焼結体を提供することにある。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing a fiber-reinforced silicon nitride sintered body, and its purpose is to have excellent strength even at high temperatures of 1000°C or higher, and to maintain quality stability and homogeneity. The object of the present invention is to provide an excellent silicon nitride sintered body.

窒化ケイ素(Si3N4)を主成分とする窒化ケイ素系
セラミクスは、強度、耐酸化性、耐摩耗性、耐熱衝撃特
性等に優れているのでガスタービン用耐熱部材、熱交換
器用材料として、また耐摩耗性に優れているので各種形
態のダイカスト型材やノズル等の材料として注目されて
いる。
Silicon nitride ceramics, whose main component is silicon nitride (Si3N4), have excellent strength, oxidation resistance, abrasion resistance, thermal shock resistance, etc., so they are used as heat-resistant parts for gas turbines, materials for heat exchangers, and wear-resistant materials. Because of its excellent properties, it is attracting attention as a material for various types of die-casting shapes and nozzles.

しかしこの様な優れた特徴を持つにもかかわらず、Si
3N。
However, despite having such excellent characteristics, Si
3N.

セラミクスの広汎な応用を阻害している一つの大きな要
素は、材料的に金属類と比較して品質安定性及び均質性
に極めて乏しいことである。これはセラミクスが一般に
脆性材料であり、微少な加工傷や内部にある不純物、組
織の不均一により容易に応力集中が起こり、低荷重で破
断してしまうためである。このため材料として優れた品
質安定性及び均質性が要求される自動車、航空機あるい
は原子炉などのシステムに対してこれらセラミクスを用
いることは因難であり、品質安定性及び均質性の向上が
強く望まれているのが現状である。一般に、脆性セラミ
クスに材料としての粘りを付与し品質安定性及び均質性
を向上させる一つの方法として、脆性セラミクスに高強
度の繊維を配合する所謂繊維強化法が知られている。
One of the major factors hindering the widespread application of ceramics is that they are extremely poor in quality stability and homogeneity compared to metals. This is because ceramics are generally brittle materials, and stress concentration easily occurs due to minute processing scratches, internal impurities, and non-uniform structures, causing them to break under low loads. For this reason, it is difficult to use these ceramics for systems such as automobiles, aircraft, or nuclear reactors, which require excellent quality stability and homogeneity as materials, and it is strongly desired to improve quality stability and homogeneity. The current situation is that In general, a so-called fiber reinforcement method in which high-strength fibers are blended into brittle ceramics is known as one method for imparting material viscosity to brittle ceramics and improving quality stability and homogeneity.

この方法は、高強度繊維をセラミクス材料内部に分散さ
せることにより、微少な亀裂の成長を妨害し、残留気孔
や不純物の影響を減少*せて、品質安定性及び均質性を
向上させようとするものである。しかしながら、本発明
者らの研究によれば、Si。N。セラミクスに対しては
、炭素繊維や窒化ケイ素、窒化ホウ素、アルミナ等のセ
ラミクス繊維を高強度繊維として配合した場合において
も、品質安定性及び均質性に優れたセラミクス材料は得
られず、ノまた該材料は強度的にも不充分であることが
判明した。本発明は斯かる現状に鑑みてなされたものて
あり、従来全く得られなかつた、金属類に匹敵する極め
て高い品質安定性及び均質性を有し、しかも; 100
0℃以上の高温においても優れた強度を有するSi3N
This method aims to improve quality stability and homogeneity by dispersing high-strength fibers inside the ceramic material to prevent the growth of micro-cracks and reduce the effects of residual pores and impurities. It is something. However, according to the research of the present inventors, Si. N. Regarding ceramics, even when ceramic fibers such as carbon fiber, silicon nitride, boron nitride, and alumina are blended as high-strength fibers, ceramic materials with excellent quality stability and homogeneity cannot be obtained; The material was also found to be insufficient in strength. The present invention has been made in view of the current situation, and has extremely high quality stability and homogeneity comparable to metals, which have never been available before, and furthermore;
Si3N has excellent strength even at high temperatures of 0°C or higher
.

焼結体の製造法を提供するものである。即ち本発明は、
窒化ケイ素粉末の水及び/又は有機溶剤分散液と繊維状
炭化ケイ素結晶の水及び/又は有機溶剤分散液とをそれ
ぞれフィルターを通過させて後、窒化ケイ素粉末に対し
繊維状炭化ケイ素結晶が5〜5踵量%となるように混合
し、次いで成形、焼結することを特徴とする繊維強化型
窒化ケイ素焼結体の製造方法に係る。本発明で用いられ
る窒化ケイ素粉末において、その粒径としては特に限定
がなく従来公知のものを広く使用できる。本発明におい
ては、平均粒径が0.1〜10PTrI.程度のものを
使用するのがよく、特に平均粒径が0.1〜3μm程度
のものを使用するのが好ましい。また本発明で用いられ
る繊維状炭化ケイ素結晶(以下これをRSiCウイスカ
ーョという)の長さや太さについては何ら限定されない
が、通常長さ10〜500μ瓦、太さ0.1〜5μm程
度のものが使用される。本発明では窒化ケイ素粉末とS
iCウィスカーをそれぞれ水及び/又は有機溶剤に分散
せしめる。
A method for manufacturing a sintered body is provided. That is, the present invention
After each of the water and/or organic solvent dispersion of silicon nitride powder and the water and/or organic solvent dispersion of fibrous silicon carbide crystals is passed through a filter, the amount of fibrous silicon carbide crystals is 5 to 5% relative to the silicon nitride powder. It relates to a method for producing a fiber-reinforced silicon nitride sintered body, which comprises mixing the ingredients so that the heel weight is 5%, followed by molding and sintering. The particle size of the silicon nitride powder used in the present invention is not particularly limited, and a wide variety of conventionally known particles can be used. In the present invention, the average particle size is 0.1 to 10 PTrI. It is preferable to use particles with an average particle size of about 0.1 to 3 μm. Furthermore, the length and thickness of the fibrous silicon carbide crystals (hereinafter referred to as RSiC whiskers) used in the present invention are not limited at all; used. In the present invention, silicon nitride powder and S
The iC whiskers are each dispersed in water and/or an organic solvent.

有機溶媒としてはセラミクスの分野において通常使用さ
れているものを広く使用でき、例えばメタノール、エタ
ノール等のアルコール類、アセトン等のケトン類、ベン
ゼン、トルエン、キシレン等に芳香族炭化水素類、ヘキ
サン、石油エーテル等の脂肪族炭化水素類、四塩化炭素
、トリクロロエタン等のハロゲン化炭化水素類等を挙げ
ることができる。水及び/又は有機溶媒に分散させる窒
化ケイ素粉末又はSiCウィスカーの量としては特に限
定されないが、通常窒化ケイ素粉末やSiCウィスカー
を体積にして5唯以上、好ましくは100倍以上の水乃
至有機媒体に分散させるのがよい。分.散させるべき窒
化ケイ素粉末力GiCウィスカーの量が多過ぎると、ス
ラリー濃度が高くなり、そのため分散が均一になり難く
なり、また後の混合操作上も不都合になる。分散方法と
しては特に限定がなく、この分野で従来公知の方法を広
く適用で二き、例えば機械的攪拌による方法、振動によ
る方法、超音波照射による方法等を挙げることができる
。分散操作を長時間続けるとSiCウィスカーの損傷を
与える恐れがあるため、通常1時間以内、好ましくは2
紛以内に分散操作を完了するのが望tましい。次に本発
明では、窒化ケイ素粉末の分散液とSiCウィスカーの
分散液とをそれぞれフィルターに通過させる。
As the organic solvent, a wide range of organic solvents commonly used in the ceramics field can be used, including alcohols such as methanol and ethanol, ketones such as acetone, aromatic hydrocarbons such as benzene, toluene, xylene, hexane, and petroleum. Examples include aliphatic hydrocarbons such as ether, halogenated hydrocarbons such as carbon tetrachloride, and trichloroethane. The amount of silicon nitride powder or SiC whiskers to be dispersed in water and/or organic solvent is not particularly limited, but usually the amount of silicon nitride powder or SiC whiskers is dispersed in water or organic medium at least 5 times, preferably at least 100 times the volume. It is better to disperse. Minute. If the amount of silicon nitride powder GiC whiskers to be dispersed is too large, the slurry concentration will be high, making it difficult to achieve uniform dispersion and also causing inconvenience in subsequent mixing operations. The dispersion method is not particularly limited, and methods conventionally known in this field can be widely applied, such as methods using mechanical stirring, methods using vibration, and methods using ultrasonic irradiation. If the dispersion operation is continued for a long time, it may damage the SiC whiskers, so it is usually within 1 hour, preferably 2 hours.
It is desirable to complete the distribution operation in a timely manner. Next, in the present invention, the silicon nitride powder dispersion and the SiC whisker dispersion are respectively passed through a filter.

これは分散液中に含まれる不純物粒子力迅1Cウィスカ
ーの擬集塊を除去するために行なわれるものである。フ
ィルターの開口径としては用いられる窒化ケイ素粉末や
SiCウィスカーの種類等により異なソー概には言えな
いが、通常開口径が20〜100μm程度、好ましくは
20〜70μm程度のフィルターを使用するのがよい。
フィルターの開口径が大き過ぎると分散液から不純物粒
子やSiCウィスカーの擬集塊を除去し難くなる傾向と
なる。またフィルターの開口径が小さ過ぎる)と窒化ケ
イ素粉末やSiCウィスカーまでもが分散液から除去さ
れる恐れが生ずる。本発明では次に窒化ケイ素粉末の分
散ASiCウィスカーの分散液とを混合する。
This is done in order to remove pseudo-agglomerates of impurity particles and 1C whiskers contained in the dispersion. The opening diameter of the filter varies depending on the type of silicon nitride powder and SiC whiskers used, etc. Although it is difficult to generalize, it is usually best to use a filter with an opening diameter of about 20 to 100 μm, preferably about 20 to 70 μm. .
If the opening diameter of the filter is too large, it tends to be difficult to remove impurity particles and SiC whisker pseudoagglomerates from the dispersion. Furthermore, if the opening diameter of the filter is too small, there is a risk that even silicon nitride powder and SiC whiskers may be removed from the dispersion. In the present invention, the silicon nitride powder is then mixed with a dispersion of dispersed ASiC whiskers.

両者の混合割合としては、窒化ケイ素粉末に対し“びI
Cウィスカーが重量で5〜50%となるように混合する
ことが必要である。窒化ケイ素粉末と混合されるSiC
ウィスカーの量が5重量%に満たない場合及び5瞳量%
を越える場合のいずれにおいても、所望の焼結体を得る
ことができない。本発明においては、窒化ケイ素粉末に
対してSiCウィスカーが重量で10〜40%となるよ
うに混合するのが特に好ましい。窒化ケイ素粉末やSi
Cウィスカーが分散している状態でない場合には、両者
の分散液の混合後も両者は均一に混じらす、その結果得
られる焼結体に2層分離して残り、所望の焼結体が得ら
れない恐れもある。このため上記2種の分散液を混合す
るに当つては、フィルターを通過させた後なるべく短時
間内に両者を混合するのが望ましい。本発明ではこのよ
うに窒化ケイ素粉末の分散液とSiCウィスカーの分散
液とをそれぞれフィルターを通過させ、その後にこれら
の分散液を混合することを必須としている。仮に窒化ケ
イ素の分散液とSiCウィスカーの分散液とを混合し、
この混合液をフィルター通過させたとしても、所望の焼
結体を得ることは不可能である。本発明のSi,N,焼
結体を製造するに当り、粘結剤や更に必要に応じて焼結
助剤を配合するのがよい。
As for the mixing ratio of the two,
It is necessary to mix the C whisker so that it accounts for 5 to 50% by weight. SiC mixed with silicon nitride powder
When the amount of whiskers is less than 5% by weight and 5% pupil amount
In either case, the desired sintered body cannot be obtained. In the present invention, it is particularly preferable to mix SiC whiskers in an amount of 10 to 40% by weight based on the silicon nitride powder. Silicon nitride powder or Si
If the C whiskers are not in a dispersed state, even after mixing the two dispersions, the two should be mixed uniformly, and the resulting sintered body will remain separated into two layers, resulting in the desired sintered body. There is also a fear that it may not be possible. Therefore, when mixing the above two types of dispersions, it is desirable to mix them within as short a time as possible after passing through the filter. In the present invention, it is essential to pass the silicon nitride powder dispersion and the SiC whisker dispersion through the filters, and then to mix these dispersions. If a silicon nitride dispersion and a SiC whisker dispersion are mixed,
Even if this liquid mixture is passed through a filter, it is impossible to obtain the desired sintered body. In producing the Si, N, sintered body of the present invention, it is preferable to add a binder and, if necessary, a sintering aid.

粘結剤及び焼結助剤としてはこの分野で従来公知のもの
を広く使用できる。粘結剤としては、例えばポリビニル
アルコール、アクリル樹脂、セルロース、アルギン酸ソ
ーダ等を挙げることができる。また焼結助剤としては、
例えばMgO、Al2C3、ZrO2、Y2O3、La
2O3等の酸化物、AINlBeN2等の窒化物等を挙
げることができる。粘結剤の使用量としては特に制限が
なく広い範囲内から適宜選択できるが、通常窒化ケイ素
粉末とSiCウィスカーとの総量に対して0.1〜2重
量%程度、好ましくは0.5〜1.5重量%の割合で使
用するのがよい。また焼結助剤の使用量としても特に限
定されないが、通常窒化ケイ素粉末に対して3〜3鍾量
%、好ましくは10〜3鍾量%の割合で使用するのがよ
い。また斯かる焼結助剤を使用しなくても本発明の所期
の効果が発揮されることは勿論のことである。粘結剤や
焼結助剤の添加時期としては特に限定がなく、予め窒化
ケイ素粉末の分散液又はSiCウィスカーの分散液に添
加しておいてもよいし、これらの分散液を混合した後混
合液に添加してもよい。窒化ケイ素粉末、SiCウィス
カー、粘結剤及び焼結助剤からなるペーストは、従来公
知の成形方法、例えば射出成形、押出し成形等により所
定形状に成形され、得られた成形体は、加熱又は減圧下
に予備乾燥され、次いで600℃以下に加熱して粘結剤
が除去される。
A wide variety of binders and sintering aids that are conventionally known in this field can be used. Examples of the binder include polyvinyl alcohol, acrylic resin, cellulose, and sodium alginate. In addition, as a sintering aid,
For example, MgO, Al2C3, ZrO2, Y2O3, La
Examples include oxides such as 2O3 and nitrides such as AINlBeN2. The amount of the binder to be used is not particularly limited and can be appropriately selected within a wide range, but it is usually about 0.1 to 2% by weight, preferably 0.5 to 1% by weight based on the total amount of silicon nitride powder and SiC whiskers. It is preferable to use it in a proportion of .5% by weight. The amount of the sintering aid to be used is not particularly limited, but it is usually used at a rate of 3 to 3 weight percent, preferably 10 to 3 weight percent, based on the silicon nitride powder. It goes without saying that the desired effect of the present invention can be achieved even without using such a sintering aid. There is no particular limitation on the timing of adding the binder or sintering aid, and they may be added to the silicon nitride powder dispersion or SiC whisker dispersion in advance, or they may be added after these dispersions are mixed. It may be added to the liquid. A paste consisting of silicon nitride powder, SiC whiskers, a binder, and a sintering aid is molded into a predetermined shape by a conventionally known molding method, such as injection molding or extrusion molding, and the resulting molded body is heated or depressurized. The adhesive is pre-dried and then heated to below 600°C to remove the binder.

更に乾燥した成形体は加圧又は非加圧下通常1600〜
185(代)程度、好ましくは1700〜1800℃程
度の温度で焼結される。斯くして本発明の繊維強化型S
i3N,焼結体が製造される。本発明の方法によれば、
品質安定性及び均質性に優れると共に、1000℃以上
の高温においても優れた強度を有するSi3N4焼結体
を製造し得る。それ故本発明で得られるSi3N,焼結
体は、高温下で用いられる機械部品の製造を可能とする
ばかりでなく、優れた品質安定性、均質性を有している
ために各種の構造用材料として広範な応用を可能とする
ものである。以下に実施例及び比較例を挙げる。
Furthermore, the dried molded product is usually 1600~1600 under pressure or non-pressure.
It is sintered at a temperature of about 185°C, preferably about 1700 to 1800°C. Thus, the fiber-reinforced type S of the present invention
i3N, a sintered body is manufactured. According to the method of the invention,
It is possible to produce a Si3N4 sintered body that has excellent quality stability and homogeneity, and also has excellent strength even at high temperatures of 1000° C. or higher. Therefore, the Si3N sintered body obtained by the present invention not only enables the production of mechanical parts used at high temperatures, but also has excellent quality stability and homogeneity, so it can be used for various structural applications. This enables a wide range of applications as a material. Examples and comparative examples are listed below.

実施例1 Si3N,粉末(イ).5〜2μWL)10踵量部に、
焼結助剤としてY2O3l踵部及びLa2O3l5重量
部を加え、体積にして50@の水中にて超音波を5分間
照射して均一に分散させる。
Example 1 Si3N, powder (a). 5-2μWL) 10 heel volume part,
Y2O3l heel and 5 parts by weight of La2O3l are added as sintering aids, and ultrasonic waves are irradiated for 5 minutes in water having a volume of 50 @ to uniformly disperse them.

Si3N,粉末に対して30重量部相当のSiCウィス
カー(太さ0.1〜5μm1長さ50〜500pwL,
)を体積にして10皓の水中に攪拌により分散させる。
分散状態でSi,N4粉末及びSiCウィスカーをそれ
ぞれ開口径100μ几のフィルターを通過させ直ちに両
者を混合する。その後、2重量部のポリビニルアルコー
ルを加え、十分に混合してペーストとした。得られたペ
ーストを減圧ろ過法により薄板状に成形し、130℃で
10時間乾燥した後、400k9/Cltの加圧下18
00℃で焼結して100%相対密度の焼結体を得た。得
られた焼結体の室温曲げ強度、高温(1300℃)曲げ
強度、室温強度測定値に基づく、材料の信頼性の尺度で
あるワイブル数(Trt.)及び室温強度測定値のバラ
つきの標準偏差を第1表に示す。
SiC whiskers (thickness 0.1 to 5 μm, length 50 to 500 pwL,
) was made into a volume and dispersed in 10 liters of water by stirring.
The Si, N4 powder and SiC whiskers in a dispersed state are each passed through a filter with an opening diameter of 100 μl, and the two are immediately mixed. Thereafter, 2 parts by weight of polyvinyl alcohol was added and thoroughly mixed to form a paste. The obtained paste was formed into a thin plate shape by vacuum filtration method, dried at 130°C for 10 hours, and then heated at 18°C under a pressure of 400k9/Clt.
A sintered body having a relative density of 100% was obtained by sintering at 00°C. The Weibull number (Trt.), which is a measure of material reliability, and the standard deviation of the variation in room temperature strength measurements based on the room temperature bending strength, high temperature (1300°C) bending strength, and room temperature strength measurements of the obtained sintered body are shown in Table 1.

ワイブル数瓦は大きい程、強度のバラつきは小さい。尚
室温曲げ強度はJISRl6Ol−1981により、ま
た高温曲げ強度はこれに準じて測定した。実施例2フィ
ルターとして開口径53μmを用いた以外は実施例1と
同様にして焼結体を得た。
The larger the Weibull number tile, the smaller the variation in strength. Note that the bending strength at room temperature was measured according to JISRl6Ol-1981, and the bending strength at high temperature was measured according to this. Example 2 A sintered body was obtained in the same manner as in Example 1 except that the filter had an opening diameter of 53 μm.

得られた焼結体の物性を第1表に併せて示す。比較例1 SiCウィスカーを使用しない以外は実施例1と・同様
にして焼結体を得た。
The physical properties of the obtained sintered body are also shown in Table 1. Comparative Example 1 A sintered body was obtained in the same manner as in Example 1 except that SiC whiskers were not used.

Claims (1)

【特許請求の範囲】[Claims] 1 窒化ケイ素粉末の水及び/又は有機溶剤分散液と繊
維状炭化ケイ素結晶の水及び/又は有機溶剤分散液とを
それぞれフィルターを通過させて後、窒化ケイ素粉末に
対し繊維状炭化ケイ素結晶が5〜50重量%となるよう
に混合し、次いで成形、焼結することを特徴とする繊維
強化型窒化ケイ素焼結体の製造方法。
1. After passing the water and/or organic solvent dispersion of silicon nitride powder and the water and/or organic solvent dispersion of fibrous silicon carbide crystals through filters, 5% of the fibrous silicon carbide crystals are mixed with the silicon nitride powder. 1. A method for producing a fiber-reinforced silicon nitride sintered body, which comprises mixing to a content of 50% by weight, followed by molding and sintering.
JP57167224A 1982-09-24 1982-09-24 Method for producing fiber-reinforced silicon nitride sintered body Expired JPS6055469B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57167224A JPS6055469B2 (en) 1982-09-24 1982-09-24 Method for producing fiber-reinforced silicon nitride sintered body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57167224A JPS6055469B2 (en) 1982-09-24 1982-09-24 Method for producing fiber-reinforced silicon nitride sintered body

Publications (2)

Publication Number Publication Date
JPS5954680A JPS5954680A (en) 1984-03-29
JPS6055469B2 true JPS6055469B2 (en) 1985-12-05

Family

ID=15845740

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57167224A Expired JPS6055469B2 (en) 1982-09-24 1982-09-24 Method for producing fiber-reinforced silicon nitride sintered body

Country Status (1)

Country Link
JP (1) JPS6055469B2 (en)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4961757A (en) * 1985-03-14 1990-10-09 Advanced Composite Materials Corporation Reinforced ceramic cutting tools
JPS62187170A (en) * 1986-02-14 1987-08-15 財団法人産業創造研究所 Method of mixing sintering aid into mixture of silicon nitride particle/silicon carbide whisker
US4789277A (en) * 1986-02-18 1988-12-06 Advanced Composite Materials Corporation Method of cutting using silicon carbide whisker reinforced ceramic cutting tools
JPS62202872A (en) * 1986-02-28 1987-09-07 住友電気工業株式会社 Ceramic formed body and manufacture
JPS63134567A (en) * 1986-11-21 1988-06-07 株式会社豊田中央研究所 Ceramic composite body
JPH0672055B2 (en) * 1986-12-05 1994-09-14 日産自動車株式会社 β-SiC whisker / β-Si Ⅱ below 3 ▼ below 4 composite manufacturing method
FR2610921B1 (en) * 1987-02-16 1991-10-04 Aerospatiale COMPOSITE CERAMIC MATERIAL WITH REINFORCEMENT FILAMENTS, AND METHOD FOR MANUFACTURING SUCH MATERIAL
EP0295228B1 (en) * 1987-06-09 1992-03-25 Sandvik Aktiebolag Whisker reinforced ceramic cutting tool
US4840763A (en) * 1987-08-06 1989-06-20 Ltv Aerospace And Defense Company Method for the production of reinforced composites
US5187127A (en) * 1987-09-18 1993-02-16 Kabushiki Kaisha Toshiba Fiber-reinforced silicon nitride ceramic
WO1989004735A1 (en) * 1987-11-25 1989-06-01 Ceramics Process Systems Corporation Process of preparing sintered shapes containing reinforcement
US5095730A (en) * 1988-03-30 1992-03-17 Advanced Composite Materials Corporation Whisker reinforced ceramic material working tools
JP2659409B2 (en) * 1988-07-29 1997-09-30 マツダ株式会社 Manufacturing method of ceramic sliding member
US5002439A (en) * 1990-02-14 1991-03-26 Advanced Composite Materials Corporation Method for cutting nonmetallic materials
SE507706C2 (en) * 1994-01-21 1998-07-06 Sandvik Ab Silicon carbide whisker reinforced oxide based ceramic cutter
US6905992B2 (en) 2002-07-30 2005-06-14 Kennametal Inc. Ceramic body reinforced with coarse silicon carbide whiskers and method for making the same

Also Published As

Publication number Publication date
JPS5954680A (en) 1984-03-29

Similar Documents

Publication Publication Date Title
JPS6055469B2 (en) Method for producing fiber-reinforced silicon nitride sintered body
US4543345A (en) Silicon carbide whisker reinforced ceramic composites and method for making same
US5006493A (en) Novel ceramic binder comprising poly(ethyloxazoline)
JPH06505225A (en) High-density, self-strengthening silicon nitride ceramic produced by pressureless or low-pressure gas sintering
JP2882575B2 (en) High thermal conductive silicon nitride ceramics and method for producing the same
USRE32843E (en) Silicon carbide whisker reinforced ceramic composites and method for making same
JPH01313369A (en) Method for dispersing carbon carbide whisker
JPS6219396B2 (en)
US4929472A (en) Surface-coated SiC whiskers, processes for preparing the same, ceramic reinforced with the same, and process for preparing said reinforced ceramic
US4710435A (en) Method for production of sintered composite having spinel reinforced with short fibers of silicon carbide and sintered composite produced by said method
JPS59102861A (en) Silicon carbide composite oxide sintered ceramics
KR101735456B1 (en) Electrically conductive siliconoxycarbide ceramics, and method for preparing thereof
US5077242A (en) Fiber-reinforced ceramic green body and method of producing same
US5167887A (en) SI3 N4 process using polysilane as a binder
CA2074516A1 (en) Method of making large cross-section injection molded or slip cast ceramic shapes
USRE34446E (en) Silicon carbide whisker reinforced ceramic composites and method for making same
CN111196724A (en) Modified silicon carbide and preparation method thereof
JPS5957965A (en) Manufacture of fiber reinforced silicon nitride sintered bo-dy
CN115894070B (en) Preparation method of porous silicon carbide ceramic
JPS62216969A (en) Fiber reinforced si3n4 ceramics and manufacture
US4975302A (en) Surface-coated SiC whiskers, processes for preparing the same, ceramic reinforced with the same, and process for preparing said reinforced ceramic
KR970001053B1 (en) Process for preparation cordierite matrix ceramics
Maria et al. Gelcasting of sintered reaction bonded silicon nitride for improved mechanical properties
JPS5954679A (en) Manufacture of fiber reinforced silicon nitride sintered body
JPH0525833B2 (en)