JPS6219396B2 - - Google Patents

Info

Publication number
JPS6219396B2
JPS6219396B2 JP57213027A JP21302782A JPS6219396B2 JP S6219396 B2 JPS6219396 B2 JP S6219396B2 JP 57213027 A JP57213027 A JP 57213027A JP 21302782 A JP21302782 A JP 21302782A JP S6219396 B2 JPS6219396 B2 JP S6219396B2
Authority
JP
Japan
Prior art keywords
ceramics
powder
sic
sintered body
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP57213027A
Other languages
Japanese (ja)
Other versions
JPS59102862A (en
Inventor
Yasuo Hihashi
Kazuo Ueno
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP57213027A priority Critical patent/JPS59102862A/en
Priority to US06/556,551 priority patent/US4507224A/en
Publication of JPS59102862A publication Critical patent/JPS59102862A/en
Publication of JPS6219396B2 publication Critical patent/JPS6219396B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Ceramic Products (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、複合焼結セラミクスに関し、更に詳
しくは高い電気伝導性を備えた放電加工可能な複
合焼結セラミクスに関する。 セラミクスは耐熱性や耐酸化性に優れているの
で、耐熱部材や機械用構造材料として注目されて
いる。一般に高強度にして高密度の酸化物セラミ
クスを得るためには、熱間加工成形法、いわゆる
ホツトプレス法によることが好ましいとされてい
る。しかるに、この方法においては、素材を比較
的単純な形状の押し型内で加工するため、複雑な
形状の部品を成形製造することは困難であり、こ
の点がホツトプレス法の大きな技術的制約となつ
ている。また、ホツトプレス法ほど高強度焼結体
は得られないが、セラミクスに対しては従来より
広く用いられている空気中もしくはその他の雰囲
気中での焼成法がある。しかし、この場合にも焼
成にともなう収縮等の現象のため、高精度で部材
寸法を一段の焼結で出すことは困難である。 従つて最終的にはいずれの方法による場合にも
焼結体の高精度の加工が不可欠であるが、セラミ
クスは概して極めてもろいという欠点がある。こ
のためセラミクスの切削加工は金属材料のそれと
は異なり、加工速度も制限され、また高精度の寸
法出しも困難であり、そのため時間的にも費用的
にも改良が望まれている。而してセラミクスの
種々の優れた特性を有効に利用し、これを各種の
構造材料として広範に使用する為には、金属材料
と同様に所望の形状に高精度に加工し得る技術及
び/又は新規材料の開発が必要である。例えば、
熱交換器部材やバルブ、歯車、あるいはガスター
ビン用翼車等の製造には単純な切削加工のみなら
ず、三次元的加工も必要である。金属材料によ
る、これら複雑な形状の型材等の製造に際して
は、放電加工による高精度の曲面加工が可能であ
るが、電気伝導性の低い多くのセラミクスについ
ては放電加工を行なうことは不可能であつた。 本発明者は、公知のセラミクス材料の加工上の
問題点を解消もしくは軽減すべく種々研究を重ね
た結果、セラミクス中に特定量の繊維状炭化ケイ
素単結晶(通常ひげ結晶あるいはウイスカーと呼
ばれている)及び特定の導電性を有する紛末を分
散させてなる焼結材料が、その要求を満足させる
ことを見い出した。即ち、本発明は、族、族
及び族元素の酸化物、窒化物及び炭化物の少く
とも一種を母相とし、10Ω―cm以下の比抵抗を有
するセラミクスであつて、セラミクス中に全重量
に対して5〜50%の範囲内で繊維状炭化ケイ素単
結晶と2〜20%の範囲内で導電性を有する炭化
物、窒化物及びホウ化物の少くとも一種の粉末と
を分散含有せしめたことを特徴とする複合焼結セ
ラミクスに係る。 本発明の複合焼結セラミクスは、高い電気伝導
性を有しているので、放電加工性に優れている。
殊に本複合セラミクスにおいては、単に繊維状炭
化ケイ素単結晶のみを複合させた焼結セラミクス
に比較し、導電性の微粉末が焼結体組織中に均一
に分散されているため、より放電加工特性が向上
する。具体的には、複合セラミクスの電気伝導性
がより高くなり、放電加工時に加工速度の向上が
可能となる。さらには、組織内での電気伝導がよ
り均一化するため、加工面の仕上げ精度が改良さ
れる。即ち、放電によりより均一な面もしくは線
切削が起こり、加工面の表面粗度がより小さくな
る効果を有する。 本発明において用いられる繊維状炭化ケイ素
(SiC)単結晶の長さや太さについては特に限定
されないが、長さが通常10〜500μm、好ましく
は50〜500μm程度、太さが通常0.1〜10μm、好
ましくは0.5〜3μm程度のものを使用するのが
よい。長さが10μmより極端に短かくなると、粒
状SiCを加えて成形した場合と同様に、放電加工
が可能な程度に電気伝導性を高めるためには多量
の添加が必要となり、セラミクス本来の特性であ
る優れた強度等が損われる傾向が生ずる。繊維状
SiCの太さが0.1μmより極端に細くなると、成形
中に繊維が破断して、粒状SiCを使用する場合と
同様の結果となる傾向が生ずる。一方太さが10μ
mより極端に太くなると、繊維の剛性が高くなる
ため、焼結による緻密化が困難となる傾向が生ず
る。 セラミクス中に分散含有せしめられる繊維状
SiC単結晶の量としては、全重量に対して5〜50
%とするのがよい。SiC繊維の量が5%未満の場
合には、焼結体の電気伝導性が十分に改善され
ず、一方、50%を上回る場合には焼結体の緻密化
が低下する傾向にある。繊維状SiC単結晶の添加
量は、全重量の10〜40%とすることがより好まし
い。 放電加工性を向上させるために加えられる導電
性粉末としては、炭化物、窒化物又はホウ化物が
用いられる。斯かる炭化物としては例えばSiC、
TiC、ZrC、B4C、WC、HfC、TaC、NbCなどを
挙げることができ、窒化物としては例えばTiN、
TaN、ZrN、NbN、VN等を挙げることができ、
ホウ化物としては例えばTiB2、ZrB2、HfB2
TaB2等を挙げることができる。これら導電性粉
末の種類及びその使用量は、加えられるべき繊維
状SiC単結晶の量、またそのものの電気伝導性等
を考慮して適宜決定すればよい。ただし、SiC結
晶および導電性粉末の両者の合計量が全重量に対
して70%を上回ると、複合されるべき母相セラミ
クスの本来の特性が損われてしまうという不都合
が生ずる。導電性粉末の添加量が2%以下の場合
には放電加工特性の向上が認められず、また20%
以上の場合には母相セラミクスの機械的特性の劣
化が生じる(具体的には高温(>800℃)での強
度が低下する)という結果を招く。また導電性粉
末の粒径としては特に制限されないが、通常2μ
m以下、好ましくは1μm以下であるのが好まし
い。粒径が大きくなりすぎると、放電特性の向上
が認められなくなり、また強度も低下する傾向と
なる。 本発明において母相として用いられるは族、
族又は族元素の酸化物、窒化物及び炭化物の
少くとも一種である。族、族又は族元素の
酸化物、窒化物又は炭化物としては公知のものを
広く使用できる。酸化物としては例えばアルミ
ナ、ジルコニア、マグネシア、Fe2O3などのフエ
ライト、酸化ウラン、酸化トリウム等の単一酸化
物の他、MgAl2O4、NiFeO4、NiCrO4、MgFe2O4
等の各種スピネル型化合物、ペロブスカイト構造
のLaCrO3、LaSrCrO3、SrZrO3等の複合酸化物
を、窒化物としては例えば窒化ケイ素、窒化アル
ミ、窒化ホウ素等を、炭化物としては例えば炭化
ケイ素、炭化ホウ素、炭化チタン等をそれぞれ挙
げることができる。本発明では、放電加工特性を
向上させるべく複合される導電性粉末と同じ母相
を用いる場合には、導電性粉末が焼結時に母相に
吸収され、その有効性を失う結果を招きやすいの
で、他の種類の導電性粉末を用いるのが好まし
い。こうすることにより、母相結晶体の粒界に微
粒子の導電性物質が残留し、より放電特性が改善
される。 本発明の複合セラミクスは次の様に製造され
る。即ち、母相となるべきセラミクス粉末に所定
量の繊維状SiC単結晶および所定量の導電性粉末
を添加混合し、均一に分散させた後、混合物重量
の0.1〜2%程度の粘結剤を加え、成形及び乾燥
後焼して、所望の複合セラミクスを得る。粘結剤
としては好ましくはポリビニルアルコール、アク
リル樹脂、セルロース、アルギン酸ソーダ等の
水、アルコール或いはその他の有機溶剤溶液が使
用される。母相セラミクス粉末、SiC結晶粉末及
び粘結剤からなるペーストは射出成形、押出し成
形等により所定形状に成形され、得られた成形体
は、加熱又は減圧下に予備乾燥され、次いで600
℃以下に加熱して粘結剤を除去される。次に乾燥
した成形体を加圧下又は非加圧下1200〜2000℃程
度の温度で焼結する。 尚、必要に応じ、Al2O3に対して少量のMgO、
或いはSi3N4に対してMgO、Y2O3、Al2O3等の酸
化物もしくは窒化物等の焼結助剤の併用を妨げな
い。 この様な本発明の複合焼結セラミクスは、複雑
な形状の機械部品の製造を可能とし、また大型の
焼結体から少量の小型部品を効率よく製造するこ
とも可能とするばかりでなく、さらに単に繊維状
SiC単結晶のみを複合させたものに比較して、よ
り放電加工速度が向上し、また高精度で平滑性に
より優れた加工面を得ることが可能となる。 実施例 1 Si3N4粉末(0.5〜2μm)100重量部に焼結助
剤としてのMgO 5重量部、よく分散したSiCウ
イスカー(太さ0.1〜5μm、長さ50〜500μm)
30重量部、導電性粉末としSiC粉末(1μm以
下)10重量部及び粘結剤としてポリビニルアルコ
ール2重量部を加え、十分に混合してペーストと
した。得られたペーストを減圧ろ過法により薄板
状に成形し、130℃で10時間乾燥した後、300Kg/
cm2の加圧下1800℃で焼結して100%相対密度の焼
結体を得た。 得られた焼結体の比抵抗、ワイヤーカツト放電
加工における線加工速度、加工面の面粗さ及び室
温強度を第1表に示す。ただし、ワイヤーカツト
放電加工は、放電パルス幅6μsec、放電休止時
間20μsec、電流ピーク値3.5A、タツプ電圧
100V、ワイヤ径20μmという条件で行なつた。 比較例 1 導電性粉末としてのSiC粉末を添加複合しない
以外は実施例1と同様にして焼結体を得た。得ら
れた焼結体の物性を第1表に併せて示す。 比較例 2 繊維状SiC単結晶及びSiC粉末を添加複合しな
い以外は実施例1と同様にして焼結体を得た。焼
結体の物性は第1表に示す通りである。ただし、
放電加工は不可能であるので、加工速度及び加工
面粗さは示していない。
The present invention relates to composite sintered ceramics, and more particularly to composite sintered ceramics that have high electrical conductivity and are capable of electrical discharge machining. Ceramics have excellent heat resistance and oxidation resistance, so they are attracting attention as heat-resistant members and structural materials for machinery. Generally, in order to obtain high-strength, high-density oxide ceramics, it is preferable to use a hot processing method, the so-called hot press method. However, in this method, the material is processed in a mold with a relatively simple shape, so it is difficult to mold and manufacture parts with complex shapes, and this point is a major technical limitation of the hot pressing method. ing. There is also a firing method in air or other atmosphere that has been widely used for ceramics, although it does not yield as high a strength as the hot pressing method. However, in this case as well, it is difficult to determine the dimensions of the component with high precision in one step of sintering due to phenomena such as shrinkage that accompanies firing. Therefore, in any method, it is ultimately essential to process the sintered body with high precision, but ceramics generally have the drawback of being extremely brittle. For this reason, the cutting process for ceramics is different from that for metal materials, the processing speed is limited, and it is difficult to obtain highly accurate dimensions, so improvements are desired in terms of both time and cost. In order to make effective use of the various excellent properties of ceramics and widely use them as various structural materials, we need technology and/or technology that can process them into desired shapes with high precision, similar to metal materials. Development of new materials is necessary. for example,
The manufacture of heat exchanger components, valves, gears, gas turbine impellers, etc. requires not only simple cutting but also three-dimensional processing. When manufacturing these complicated shapes of metal materials, it is possible to process curved surfaces with high precision by electric discharge machining, but it is impossible to perform electric discharge machining on many ceramics that have low electrical conductivity. Ta. As a result of various studies aimed at solving or alleviating problems in the processing of known ceramic materials, the present inventor discovered that a specific amount of fibrous silicon carbide single crystals (usually called whiskers or whiskers) are present in ceramics. It has been found that a sintered material in which a powder having a specific electrical conductivity is dispersed satisfies these requirements. That is, the present invention provides a ceramic having a matrix of at least one of oxides, nitrides, and carbides of group elements, and having a specific resistance of 10 Ω-cm or less, wherein 5 to 50% of fibrous silicon carbide single crystal and 2 to 20% of at least one type of powder of conductive carbide, nitride, or boride dispersed within the range. This relates to composite sintered ceramics. Since the composite sintered ceramic of the present invention has high electrical conductivity, it has excellent electrical discharge machinability.
In particular, in this composite ceramic, compared to sintered ceramics in which only fibrous silicon carbide single crystals are composited, conductive fine powder is uniformly dispersed in the sintered body structure, making it easier to perform electrical discharge machining. Characteristics improve. Specifically, the electrical conductivity of the composite ceramic becomes higher, making it possible to improve the machining speed during electrical discharge machining. Furthermore, since electrical conduction within the tissue becomes more uniform, the finishing accuracy of the machined surface is improved. That is, more uniform surface or line cutting occurs due to the electric discharge, which has the effect of reducing the surface roughness of the machined surface. The length and thickness of the fibrous silicon carbide (SiC) single crystal used in the present invention are not particularly limited, but the length is usually 10 to 500 μm, preferably about 50 to 500 μm, and the thickness is usually 0.1 to 10 μm, preferably It is best to use a material with a diameter of about 0.5 to 3 μm. When the length becomes extremely short than 10 μm, a large amount of addition is required to increase the electrical conductivity to the extent that electrical discharge machining is possible, as is the case when granular SiC is added and molded, and the inherent characteristics of ceramics are lost. There is a tendency for some superior strength etc. to be lost. fibrous
When the thickness of the SiC becomes extremely thinner than 0.1 μm, the fibers tend to break during molding, resulting in a similar result as when using granular SiC. On the other hand, the thickness is 10μ
When the thickness becomes extremely thicker than m, the rigidity of the fiber becomes high, so that densification by sintering tends to become difficult. Fibrous material dispersed in ceramics
The amount of SiC single crystal is 5 to 50% of the total weight.
It is better to set it as %. When the amount of SiC fibers is less than 5%, the electrical conductivity of the sintered body is not sufficiently improved, while when it exceeds 50%, the densification of the sintered body tends to decrease. The amount of the fibrous SiC single crystal added is more preferably 10 to 40% of the total weight. Carbide, nitride, or boride is used as the conductive powder added to improve electrical discharge machinability. Examples of such carbides include SiC,
Examples of nitrides include TiC, ZrC, B 4 C, WC, HfC, TaC, NbC, etc., and examples of nitrides include TiN,
Examples include TaN, ZrN, NbN, VN, etc.
Examples of borides include TiB 2 , ZrB 2 , HfB 2 ,
Examples include TaB 2 . The type and amount of these conductive powders to be used may be appropriately determined in consideration of the amount of fibrous SiC single crystal to be added, the electrical conductivity of the powder itself, and the like. However, if the total amount of both the SiC crystal and the conductive powder exceeds 70% of the total weight, a problem arises in that the original properties of the matrix ceramic to be composited are impaired. When the amount of conductive powder added is less than 2%, no improvement in electrical discharge machining properties is observed, and when the amount of conductive powder added is less than 2%,
In the above case, the mechanical properties of the matrix ceramic deteriorate (specifically, the strength at high temperatures (>800°C) decreases). Furthermore, the particle size of the conductive powder is not particularly limited, but is usually 2 μm.
It is preferable that the thickness is less than m, preferably less than 1 μm. If the particle size becomes too large, no improvement in discharge characteristics will be observed, and the strength will also tend to decrease. The group used as the matrix in the present invention,
At least one type of oxide, nitride, or carbide of a group element. A wide variety of known oxides, nitrides, or carbides of group elements can be used. Examples of oxides include ferrites such as alumina, zirconia, magnesia, and Fe 2 O 3 , single oxides such as uranium oxide, and thorium oxide, as well as MgAl 2 O 4 , NiFeO 4 , NiCrO 4 , and MgFe 2 O 4 .
various spinel-type compounds such as, perovskite structure complex oxides such as LaCrO 3 , LaSrCrO 3 , SrZrO 3 , nitrides such as silicon nitride, aluminum nitride, boron nitride, etc., and carbides such as silicon carbide, boron carbide, etc. , titanium carbide, and the like. In the present invention, when using the same matrix as the conductive powder that is combined to improve electrical discharge machining characteristics, the conductive powder is likely to be absorbed into the matrix during sintering and lose its effectiveness. , it is preferred to use other types of conductive powders. By doing so, fine particles of the conductive substance remain at the grain boundaries of the matrix crystal, and the discharge characteristics are further improved. The composite ceramic of the present invention is manufactured as follows. That is, a predetermined amount of fibrous SiC single crystal and a predetermined amount of conductive powder are added to and mixed with the ceramic powder to be the matrix, and after uniformly dispersing the mixture, a binder of about 0.1 to 2% of the weight of the mixture is added. In addition, the desired composite ceramics are obtained by molding, drying, and baking. As the binder, preferably used is a solution of polyvinyl alcohol, acrylic resin, cellulose, sodium alginate, etc. in water, alcohol, or other organic solvent. A paste consisting of matrix ceramic powder, SiC crystal powder, and binder is molded into a predetermined shape by injection molding, extrusion molding, etc. The obtained molded body is predried under heat or reduced pressure, and then
The binder is removed by heating below ℃. Next, the dried molded body is sintered at a temperature of about 1200 to 2000°C with or without pressure. In addition, if necessary, a small amount of MgO ,
Alternatively, a sintering aid such as an oxide or nitride such as MgO, Y 2 O 3 or Al 2 O 3 may be used in combination with Si 3 N 4 . The composite sintered ceramics of the present invention not only makes it possible to manufacture mechanical parts with complex shapes, and also makes it possible to efficiently manufacture small quantities of small parts from large sintered bodies. simply fibrous
Compared to a composite of only SiC single crystals, the electrical discharge machining speed is improved, and it is possible to obtain a machined surface with high accuracy and excellent smoothness. Example 1 100 parts by weight of Si 3 N 4 powder (0.5-2 μm), 5 parts by weight of MgO as a sintering aid, and well-dispersed SiC whiskers (thickness 0.1-5 μm, length 50-500 μm)
30 parts by weight, 10 parts by weight of SiC powder (1 μm or less) as a conductive powder, and 2 parts by weight of polyvinyl alcohol as a binder were mixed thoroughly to form a paste. The obtained paste was formed into a thin plate shape by vacuum filtration method, dried at 130℃ for 10 hours, and then 300Kg/
Sintering was performed at 1800° C. under a pressure of cm 2 to obtain a sintered body with a relative density of 100%. Table 1 shows the specific resistance of the obtained sintered body, the wire machining speed in wire cut electrical discharge machining, the surface roughness of the machined surface, and the room temperature strength. However, wire cut electrical discharge machining requires a discharge pulse width of 6μsec, a discharge pause time of 20μsec, a current peak value of 3.5A, and a tap voltage.
The test was carried out under the conditions of 100V and a wire diameter of 20μm. Comparative Example 1 A sintered body was obtained in the same manner as in Example 1 except that SiC powder as a conductive powder was not added. The physical properties of the obtained sintered body are also shown in Table 1. Comparative Example 2 A sintered body was obtained in the same manner as in Example 1 except that fibrous SiC single crystal and SiC powder were not added and combined. The physical properties of the sintered body are shown in Table 1. however,
Since electrical discharge machining is not possible, machining speed and machined surface roughness are not shown.

【表】 実施例 2 Al2O3粉末(0.2〜1μm)100重量部に焼結助
剤としてのMgO 2重量部、よく分散したSiCウ
イスカー(太さ0.1〜5μm、長さ50〜500μm)
10重量部、導電性粉末としTiN粉末(0.2〜1.5μ
m)5重量部を加え、十分に混合してのち、300
Kg/cm2の加圧下、1700℃で焼結して100%相対密
度の焼結体を得た。 得られた焼結体の比抵抗、ワイヤーカツト放電
加工における線加工速度、加工面の面粗さ及び室
温強度を第2表に示す。ただし、ワイヤーカツ
は、放電パルス幅8μsec、放電休止時間15μ
ssec、電流ピーク値8.5A、タツプ電圧110V、ワ
イヤ径20μmという条件で行なつた。 実施例 3 導電性粉末としてのTiN粉末を20重量部複合さ
せる以外は実施例2と同様にして焼結体を得た。
得られた焼結体の物性を第2表に併せて示す。 比較例 3 繊維状SiC単結晶及びTiN粉末を添加複合しな
い以外は実施例2と同様にして焼結体を得た。焼
結体の物性は第2表に示す通りである。
[Table] Example 2 100 parts by weight of Al 2 O 3 powder (0.2-1 μm), 2 parts by weight of MgO as a sintering aid, and well-dispersed SiC whiskers (thickness 0.1-5 μm, length 50-500 μm)
10 parts by weight, conductive powder and TiN powder (0.2~1.5μ
m) Add 5 parts by weight and mix thoroughly, then add 300 parts by weight.
It was sintered at 1700° C. under a pressure of Kg/cm 2 to obtain a sintered body with a relative density of 100%. Table 2 shows the specific resistance of the obtained sintered body, the wire machining speed in wire cut electric discharge machining, the surface roughness of the machined surface, and the room temperature strength. However, for wire cutters, the discharge pulse width is 8μsec, and the discharge pause time is 15μsec.
The test was conducted under the following conditions: ssec, current peak value 8.5 A, tap voltage 110 V, and wire diameter 20 μm. Example 3 A sintered body was obtained in the same manner as in Example 2 except that 20 parts by weight of TiN powder as a conductive powder was combined.
The physical properties of the obtained sintered body are also shown in Table 2. Comparative Example 3 A sintered body was obtained in the same manner as in Example 2 except that fibrous SiC single crystal and TiN powder were not added and combined. The physical properties of the sintered body are shown in Table 2.

【表】【table】

Claims (1)

【特許請求の範囲】[Claims] 1 族、族及び族元素の酸化物、窒化物及
び炭化物の少くとも一種を母相とし、10Ω―cm以
下の比抵抗を有するセラミクスであつて、セラミ
クス中に全重量に対して5〜50%の範囲内で繊維
状炭化ケイ素単結晶と2〜20%の範囲内で導電性
を有する炭化物、窒化物及びホウ化物の少くとも
一種の粉末とを分散含有せしめたことを特徴とす
る複合焼結セラミクス。
1 Ceramics with a matrix of at least one of the oxides, nitrides, and carbides of Group, Group, and Group elements, and having a specific resistance of 10 Ω-cm or less, which contains 5 to 50% of the total weight in the ceramics. Composite sintered material containing dispersed fibrous silicon carbide single crystal within the range of 2 to 20% of at least one type of powder of conductive carbide, nitride, or boride. Ceramics.
JP57213027A 1982-12-03 1982-12-03 Composite sintered ceramics Granted JPS59102862A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP57213027A JPS59102862A (en) 1982-12-03 1982-12-03 Composite sintered ceramics
US06/556,551 US4507224A (en) 1982-12-03 1983-11-30 Ceramics containing fibers of silicon carbide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57213027A JPS59102862A (en) 1982-12-03 1982-12-03 Composite sintered ceramics

Publications (2)

Publication Number Publication Date
JPS59102862A JPS59102862A (en) 1984-06-14
JPS6219396B2 true JPS6219396B2 (en) 1987-04-28

Family

ID=16632291

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57213027A Granted JPS59102862A (en) 1982-12-03 1982-12-03 Composite sintered ceramics

Country Status (1)

Country Link
JP (1) JPS59102862A (en)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA1267294C (en) * 1985-03-14 1990-04-03 Reinforced ceramic cutting tools
JPH064515B2 (en) * 1985-04-10 1994-01-19 株式会社日立製作所 High toughness silicon nitride sintered body and manufacturing method thereof
JPS6241776A (en) * 1985-08-15 1987-02-23 日本特殊陶業株式会社 Fiber reinforced composite material for tool
JPS6278160A (en) * 1985-09-30 1987-04-10 日本特殊陶業株式会社 Compositely enhanced sintered body
US4789277A (en) * 1986-02-18 1988-12-06 Advanced Composite Materials Corporation Method of cutting using silicon carbide whisker reinforced ceramic cutting tools
JPH0816028B2 (en) * 1986-07-31 1996-02-21 日本特殊陶業株式会社 Highly tough ceramic sintered body, ceramic tool and method for manufacturing sintered body
JPS6345173A (en) * 1986-08-08 1988-02-26 日本特殊陶業株式会社 High toughness ceramic sintered body and manufacture
JPH0617271B2 (en) * 1986-08-13 1994-03-09 日本特殊陶業株式会社 Cutting tool and its manufacturing method
JPH0723263B2 (en) * 1986-10-03 1995-03-15 三菱マテリアル株式会社 Cutting tool made of aluminum oxide based ceramics
JPS6445755A (en) * 1987-08-12 1989-02-20 Hitachi Ltd Ceramic dull roll for rolling, its production and rolling mill using said roll
JP2556888B2 (en) * 1987-12-24 1996-11-27 日立金属株式会社 Ceramics conductive material with less variation in electrical resistivity
SE507706C2 (en) * 1994-01-21 1998-07-06 Sandvik Ab Silicon carbide whisker reinforced oxide based ceramic cutter
JP2012201566A (en) * 2011-03-28 2012-10-22 Ube Industries Ltd Inorganic fiber-bonded ceramic component and method for producing the same
CN113773090B (en) * 2021-11-15 2022-02-18 长沙理工大学 ZrB2Preparation method of-ZrC-SiC nano composite ceramic material

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5025609A (en) * 1973-03-14 1975-03-18
JPS57135776A (en) * 1981-02-12 1982-08-21 Ngk Spark Plug Co Manufacture of sic sintered body
JPS57188453A (en) * 1981-05-11 1982-11-19 Sumitomo Electric Industries Discharge-workable ceramic sintered body

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5025609A (en) * 1973-03-14 1975-03-18
JPS57135776A (en) * 1981-02-12 1982-08-21 Ngk Spark Plug Co Manufacture of sic sintered body
JPS57188453A (en) * 1981-05-11 1982-11-19 Sumitomo Electric Industries Discharge-workable ceramic sintered body

Also Published As

Publication number Publication date
JPS59102862A (en) 1984-06-14

Similar Documents

Publication Publication Date Title
US4507224A (en) Ceramics containing fibers of silicon carbide
CA1226304A (en) Sintered silicon carbide/graphite/carbon composite ceramic body having ultrafine grain microstructure
KR970001181B1 (en) Laminated extruded thermal shock resistant articles
JPS6219396B2 (en)
US20060220280A1 (en) Consolidation and Densification Methods For Fibrous Monolith Processing
JPS6364968A (en) Silicon carbide base composite ceramics
US4299638A (en) Method of bonding silicon ceramic members
JPS6055469B2 (en) Method for producing fiber-reinforced silicon nitride sintered body
JPS61174165A (en) Alumina-silicon carbide heat-resistant composite sintered body and manufacture
JP2002534345A (en) Metal-ceramic thin band composite
JPS6219391B2 (en)
JPS6035316B2 (en) SiC-Si↓3N↓4-based sintered composite ceramics
JPH03218967A (en) High-strength alumina-zirconia-based ceramics sintered body
US4550063A (en) Silicon nitride reinforced nickel alloy composite materials
US5207958A (en) Pressureless sintering of whisker-toughened ceramic composites
JPS6033265A (en) Silicon carbide electroconductive ceramics
EP0532555B1 (en) Ceramic composite, process for producing it and its use
JP2805969B2 (en) Aluminum oxide based ceramics with high toughness and high strength
JPS60246266A (en) Silicon carbide base normal-temperature sintered body
JPS62216969A (en) Fiber reinforced si3n4 ceramics and manufacture
RU2588079C1 (en) Ultra-high-temperature ceramic material and method for production thereof
JP2577909B2 (en) Ceramics composite material and method for producing the same
JPH01242461A (en) Plastic ceramic sintered body and production thereof
JPH0536384B2 (en)
JPS62105963A (en) Ceramic sintered body and manufacture